耐热抗冲PVC材料的制备、结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在查阅了大量关于PVC改性,NBR配位硫化和高岭土改性及在塑料中的应用研究等资料的基础之上,采用熔融共混的方法分别制备了PVC/NBR /CuSO4·5H2O复合材料和PVC/改性高岭土复合材料。结果表明,两种复合材料均具有较好的抗冲性能和耐热性能。其实验研究结果主要总结如下:
     首先制得了两种比例的NBR/CuSO4·5H2O共混物,FTIR、溶解性和力学性能测试表明材料内部出现了交联。将该共混物与PVC及加工助剂在密炼机中熔融共混,制备了PVC/NBR/CuSO4·5H2O复合材料。加工性能和力学性能分析表明,NBR/CuSO4·5H2O共混物的加入改善了复合体系加工性能,力学性能也得到了很大的提高,加入3wt%该共混物即可使复合材料的拉伸强度和冲击强度较纯PVC提高9.4%和18.3%,但断裂伸长率则随共混物含量的增加呈下降趋势;耐热性能分析表明,共混物的加入可以抑制复合材料的高温降解,提高其玻璃化转变温度;对复合材料的冲击断面形貌观察发现,其断面出现了许多纳米级的类纤维丝棒状物质并穿插于PVC基体中,这一特殊形貌尚是首次发现。
     在制备PVC/改性高岭土复合材料过程中,首先采用偶联剂处理法和大分子表面处理剂(DF)表面包覆法分别对高岭土进行了改性。FTIR表明偶联剂与高岭土发生了反应,DF也成功的包覆在了高岭土表面,极性测试表明改性后高岭土均由原来的亲水性变为疏水性,XRD分析表明改性高岭土的结构没有发生变化。其次,将改性高岭土与PVC熔融共混制备了PVC/改性高岭土复合材料。加工性能分析表明,改性高岭土的加入缩短了复合体系的塑化时间,且平衡扭矩减小;拉伸性能和冲击性能测试表明,适量的改性高岭土可以对复合体系起到增韧增强的作用,其中以表面包覆改性高岭土的效果最好,添加5wt%的该改性高岭土的PVC复合材料,其拉伸强度比纯PVC提高了9.3%,冲击强度则由原来的51KJ/m2提高到113.4 KJ/m2以上,提高幅度达两倍以上;耐热性能测试表明,改性高岭土的加入对复合材料初期热分解影响较小,但提高了复合材料的玻璃化转变温度;SEM观察表明,采用DF表面包覆法改性的高岭土与PVC的相容性较好。
On the basis of consulting plenty of references about poly (vinyl chloride) (PVC) modification, NBR coordination crosslinking, kaolinite modification and application in plastic. PVC/NBR/CuSO4·5H2O and PVC/modified kaolinite composites were prepared by melt mixing. The results showed that these composites both had better heat resistance and impact strength than pure PVC. The main experimental results can be summarized as follows:
     Firstly, two varying ratios NBR/CuSO4·5H2O compounds were prepared. FTIR, solubility and mechanical properties analysis showed crosslinking structure formed in the materials after heat pressing. Secondly, the PVC/NBR/CuSO4·5H2O composites were prepared by melt mixing with NBR/CuSO4·5H2O compounds, PVC and processing aids in internal mixer. Processing and mechanical properties analysis displayed that processing properties of PVC/NBR/CuSO4·5H2O composites was improved with NBR/Cu-SO4·5H2O compounds contents increased. With adding 3 wt% NBR/CuSO4·5H2O compounds into the composites, tensile strength and impact strength of the composites significantly increased by 9.4% and 18.3% respectively, but the elongation at break decreased with increasingly increased compounds contents. Heat resistant analysis showed that the high temprerature degradation of composites could be restrained and the glass transition temperature increased after adding NBR/CuSO4·5H2O compounds. The impact fracture surfaces of composites analysis indicated that a number of nano-sized fibers wire rod emerged on the fracture surfaces, and these nano-sized fibers firmly inserted into the PVC matrix. The special morphology was first found in the research.
     During the preparation processes of PVC/modified kaolinite composites, firstly, original kaolinite was modified with coupling agent and macromolecule surface-coated modifier (DF). FTIR showed that the coupling agents could graft onto kaolinite surface, and DF was also successfully coated around the kaolinite surface. Polarity analysis displayed that the modified kaolinite became hydrophobic from original hydrophilic. XRD analysis indicated that the modification did not change the structure of kaolinite. Secondly, PVC/modified kaolinite composites were prepared by melt mixing. Processing properties analysis showed that both plasticizing time and balance torques of the composites were reduced with adding modified kaolinite. Tensile and impact properties analysis indicated that the appropriate amount of modified kaolinite could toughen and strengthen the composites. However, the surface-coated modified kaolinite had a better effect than coupling agent modified kaolinite. When its content was 5 wt%, the tensile strength of the PVC/surface-coated kaolinite composites could increase by 9.3% than pure PVC, while the impact strength was increased to 113.4 KJ/m2 from the 51KJ/m2, the increment was twice times. Heat resistant analysis displayed that the modified kaolinite addition had little influence on the initial thermal decomposition tenperatuure of composites, but the glass transition temperature significantly increased. SEM photographs showed that surface-coated kaolinite had a better compatibility with PVC than coupling agent modified kaolinite.
引文
[1]马军营,李庆华,李小红,等.聚氯乙烯纳米复合材料研究进展[J].聚氯乙烯,2007,8:1-5.
    [2]杨明山,李林楷等.塑料改性工艺、配方与应用[M].化学工业出版社,2006:85-86.
    [3]Djelloul Messadi, Jean-Louls Taverdet, Jean-Maurlce Vergnaud. Plasticizer Migration from Plasticized Poly(vinyl chloride) into Liquids. Effect of Several Parameters on the Transfer. Ind. Eng. Chem,1983,22(1):142-146.
    [4]Byong Yong Yu, Jae Woo Chung, Seung-Yeop Kwak. Reduced Migration from Flexible Poly(vinyl chloride) of a Plasticizer Containing-Cyclodextrin Derivative. Environmental science & technology,2008,42(19):7522-7527.
    [5]苑会林,娄庆,等.聚氯乙烯共混改性的研究[J].工程塑料应用,2002,30(2):8-10.
    [6]黄兴.国内硬质PVC共混增韧改性研究现状[J].塑料科技,1999,2:32-42.
    [7]M Du, ZX Weng, GR Shan et al. Study on suspension copolymerization rate of vinyl chloride/N-phenylmaleimide[J]. J Appl Polym Sci,1999,73:2649-2656.
    [8]WF Lee, YM Tu. Graft copolymerization of N-lsopropylacrylamide onto Poly(vinyl chloride)[J]. J Appl Polym Sci,1999,74:1234-1241.
    [9]WF Lee, CC Lai. Studies on graft copolymerization of glycidyl methacrylate onto poly(vinyl chloride)and curing behavior of Its gra fled copolymer[J]. J Appl Polymr Sci, 1995,55:1197-1208.
    [10]A K Maiti, M S Choudhary. Melt grafting of n-butyl methacryhte onto poly(vinyl chloride): synthesis and characterization[J]. J Appl Polym Sci,2004,92:2442-2449.
    [11]蒋必彪,陶国良,吴爱民,等.聚氯乙烯-g-聚苯乙烯新型吸油树脂的合成与性能[J].塑料工业,1999,27(4):1-3.
    [12]周凯梁,张美珍.交联剂DB对聚氯乙烯的交联改性[J].化工新型材料,2000,28(2):27-30.
    [13]罗伟,刘晓明.热可逆共价交联软聚氯乙烯性能的研究[J].塑料科技,2005,(2):1-3.
    [14]S. H. Zhu, C.M. Chan. Mechanical Properties of PVC/SBR Blends Compatibilized by Acrylonitrile-Butadiene Rubber and Covulcanization[J]. Polymer Engineering and Science, 1999,39(10):1998-2006.
    [15]G. Sivalingam, Giridhar Madras. Effect of Metal Oxides/Chlorides on the Thermal Degradation of Poly(vinyl chloride), Poly(bisphenol A carbonate), and Their Blends[J]. Ind. Eng. Chem. Res,2004,43:7716-7722.
    [16]S. Y. Soong, R. E. Cohen, M. C. Boyce et al. Rate-Dependent Deformation Behavior of POSS-Filled and Plasticized Poly(vinyl chloride) [J]. Macromolecules,2006,39:2900-2908.
    [17]Mian Wang, K. P. Pramoda, S. H. Goh. Reinforcing and Toughening of Poly(vinyl chloride) with Double-C60-End-Capped Poly(n-butyl methacrylate) [J]. Macromolecules,2006,39: 4932-4934.
    [18]W. Arayapranee, P. Prasassarakich, G. L. Rempel. Blends of Poly(Vinyl Chloride) (PVC)/Natural Rubber-g-(Styrene-co-Methyl Methacrylate) for Improved Impact Resistance of PVC[J]. Journal of Applied Polymer Science,2004,93:1666-1672.
    [19]Youngjae Yoo, Sung-Su Kim, Jong Chan Won et al. Enhancement of the thermal stability, mechanical properties and morphologies of recycled PVC/clay nanocomposites[J]. Polymer Bulletin,2004,52:373-380.
    [20]Ling Zhang, Xuehua Chen, Chuanzhong Li. Mechanical properties of PVC/nano-CaCO3 composites[J]. Journal of Materials Science,2005,40:2097-2098.
    [21]Ying Xiong, Guangshun Chen, Shaoyun Guo. The Preparation of Core-Shell CaCO3 Particles and Its Effect on Mechanical Property of PVC Composites [J]. Journal of Applied Polymer Science,2006,102:1084-1091.
    [22]苏小红.碳纳米管类流体的制备及特性研究.[硕士论文].武汉理工大学,2003.
    [23]Youan Lei, Chuanxi Xiong, Lijie Dong, et al. Ionic liquid of ultralong carbon nanotubes[J]. Small,2007,3 (11):1889-1893.
    [24]Youan Lei, Chuanxi Xiong, Hong Guo, et al. Controlled viscoelastic carbon nanotube fluids[J]. J Am Chem Soc,2008,130 (11):3256-3257.
    [25]Qi Li, Lijie Dong, Wei Deng et al. Solvent-free Fluids Based on Rhombohedral Nanoparticles of Calcium Carbonate[J]. J. AM. CHEM. SOC,2009,131:9148-9149.
    [26]李柳斌.聚氯乙烯熔融共混改性研究.[硕士论文].武汉理工大学,2008.
    [27]朱庆明.纳米碳酸钙类流体的制备及其在PVC加工中的应用.[硕士论文].武汉理工大学,2009.
    [28]杨清芝.现代橡胶工艺学[M].北京:中国石化出版社,2004:55-57.
    [29]谢遂志,刘登详,周鸣峦.橡胶工业手册第一分册.北京:化学工业出版社,1989:387-401.
    [30]张琪等.国内外丁腈橡胶发展态势分析[J].合成橡胶工业,2002,25(5):269-273.
    [31]李汉堂.开发新型的氢化丁腈橡胶[J].世界橡胶工业,2005,32(1):15-18.
    [32]黄立本,谷育生,黄敬.粉末橡胶[M].北京:化学工业出版社,2003:249-250.
    [33]Schonherr, Wiyatno W, Pople J, et al. Morphology of thermoplastic elastomers: stereoblock polypropylene [J].Macromolecules,2002,35(7):2654-2666.
    [34]Mark J E. Some recent theory, experiments, and simulations on rubberlike elasticity[J]. J Phys Chem B,2003,107(4):903-913.
    [35]Ibarra L, Alzorriz M. Ionic elastomers based on carboxylated nitrile rubber (XNBR) and calcium oxide [J]. J.Appl Polym Sci,2003,87(5):805-813.
    [36]Dutta S, De p p, De S K. Ionic elastomer blends of zinc salts of maleated EPDM rubber and carboxylated nitrile rubber[J]. J Appl Polym Sci,1998,69(1):153-160.
    [37]Chino K,Ashiura M. Thermoreversible cross-linking rubber using supramolecular hydrogen bonding networks[J]. Macromolecules,2001,34(26):9201-9204.
    [38]李晓强,唐斌.丁腈橡胶的性能及其配合技术[J].特种橡胶制品,2004,25(2):1-4.
    [39]李慧,袁晓芳,黄剑峰,等.高性能丁腈橡胶的配位键交联[J].中国有色金属学报,2004,14(3):140-142.
    [40]袁晓芳,吴国章,吴驰飞.新型配位交联硫酸铜/丁腈橡胶复合材料的影响因素[J].特种橡胶制品,2007,28(4):16-19.
    [41]Xiaofang Yuan, Fei Shen, Guozhang Wu et al. Novel in Situ Coordination Copper Sulfate/Acrylonitrile-Butadiene Rubber Composite [J]. Journal of Polymer Science:Part B: Polymer Physics,2007,45:571-576.
    [42]Xiaofang Yuan, Fei Shen, Guozhang Wu et al. Effects of Small Molecule Plasticizer on the Coordination Crosslinking Reaction Between Acrylonitrile-Butadiene Rubber and Copper Sulfate[J]. Polymer Composites,2008,29(3):302-306.
    [43]李宁子,任文坛,张勇,等.氯化亚锡对氢化丁腈橡胶配位交联作用的研究[J].特种橡胶制品,2007.28(1):14-18.
    [44]邓本诚.橡胶并用与橡塑共混技术[M].化学工业出版社,1998:131-133.
    [45]Feii Shen, Hui Li, Chifei Wu. Crosslinking Induced by In-Situ Coordination in Acrylonitrile Butadiene Rubber/Poly(vinyl chloride) Alloy, Filled with Anhydrous Copper Sulfate Particles[J]. Journal of Polymer Science:Part B:Polymer Physics,2006,44:378-386.
    [46]Baseer Abdul, Hao Du. Surface Characteristics of Kaolinite and Other Selected Two Layer Silicate Minerals [J]. The Canadian Journal of Chemical Engineering,2007,85(5):617-624.
    [47]Jan D. Miller, Jakub Nalaskowski, Brady, et al. Surface Charge and Metal Sorption to Kaolinite Adsorp[J]. Metals Geomedia,1998:371-382.
    [48]Brady, P. V., J. L. Krumhansl. The Surface Chemistry of Clay Minerals [J]. Surfactant Sci. Series,2001,103:281-301.
    [49]钦征骑,钱杏南,贺盘发.新型陶瓷材料手册[M].南京:江苏科学技术出版社,1996:33-34.
    [50](?)春英,刘星,周跃飞.高岭土的综合利用与开发前景[J].昆明理工大学学报(理工版), 2003, (2):4-7.
    [51]Zofia Sokolowska, Mieczyslaw Hajnos, Gnegon Jozefaciuk et al. Influence of Humic Acid on Water Adsorption Characteristics of Kaolin and Quartz [J]. Z. Pflonrenernahr. Bodenk, 1997,160(2):327-331.
    [52]N. A. Armstrong, C. D. Clarke. Influence of solution electrolyte content and dielectric constant on drug adsorption by kaolin [J]. Journal of Pharmaceutical Sciences,1973,62(3): 379-383.
    [53]A. C. Siefert, E. C. Henry. Effect of exchangeable cations on hydrophilic nature of kaolin and bentonite [J]. Journal of the American Ceramic Society,1947,30(2):37-48.
    [54]Yasin Arslan, Halil Ibrahim Unal, Hasim Yilmaz et al. Electrorheological Properties of Kaolinite, Polyindole, and Polyindole/Kaolinite Composite Suspensions [J]. Journal of Applied Polymer Science,2007,104:3484-3493.
    [55]Rugmini Sukumar, A. R. R. Menon. Organomodified kaolin as a reinforcing filler for natural rubber. Journal of Applied Polymer Science,2007,107(6):3476-3483.
    [56]Monhanadas K S, Kuriakose B. Studies on the effect of fillers on air permeability of natural rubber vulcanizates [J]. Kautsch. Gummi. Kunstst,1997,50 (728):545-548.
    [57](S. N. Maiti, B. H. Lopez. Tensile properties of polypropylene/kaolin composites [J]. Journal of Applied Polymer Science,1992,44(2):353-360.
    [58]F. Hindryckx, Ph. Dubois, M. Patin et al. Interfacial adhesion in polyethylene-kaolin composites:Improvement by maleic anhydride-grafted polyethylene [J]. Journal of Applied Polymer Science,1995,56(9):1093-1105.
    [59]E. Wyss, C. Daniel. Effects of autumn kaolin and pyrethrin treatments on the spring population of Dysaphis plantaginea in apple orchards [J]. J Appl. Ent,2004,128(2):147-149.
    [60]Par I. Johansson, Louise Bochsen, S(?)ren Andersen et al. Investigation of the effect of kaolin and tissue factor-activated citrated whole blood, on clot forming variables, as evaluated by thromboelastography[J]. Transfusion,2008,48:2377-2383.
    [61]丁生祥,冯有利.高岭土表面改性方法与应用[J].矿业工程,2009,(71):66-68.
    [62]Shvarzman A, Kovler K, Grader G S, et al. The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite [J]. Cement and Comcrete Research,2003,33: 405-416.
    [63]王兴海.提高偶联剂改性粉体填料在塑料加工应用中的效果[J].非金属矿,2000,23(4):5-8.
    [64]刘伯元,李宝智,刘钦甫.煤系高岭土在橡胶、塑料等高分子材料中的应用[J].中国粉体技术,2002,8(1):33-38.
    [65]刘钦甫,丁述理.煤系高岭石与醋酸钾的热行为[J].矿物学报,1997,(3):276-379.
    [66]阎琳琳,徐政,张存满.醋酸钾夹层高岭石的作用机理分析及模型的提出[J].材料科学与工程学报,2005,23(4):561-564.
    [67]何天白,胡汉杰,等.功能高分子与新技术[M].北京:化学工业出版社,2001:220-221.
    [68]Frost R L, Kristof J, Paoz G N, et al. Intercalation of kaolinite with acetamide [J]. Phys Chem Minerals,1999,26(3):257-263.
    [69]李学强,夏华.高岭土-乙酸钾夹层复合物制备[J].非金属矿,2002,25(4):22-24.
    [70]Gardol Inski J E, Ramos L P, Ssuza G P, et al. Intercalation of benzamide into kaolinite [J]. J Colloid Interface Sci,2000,221 (2):284-290.
    [71]Franco F, Ruiz Cruz M D. Factors influencing t he intercalation degree ('reactivity') of kaolin minerals wit h potassium acetate,formamide,dimet hylsulphoxide and hydrazine [J].Clay Minerals,2004,39(2):193-205.
    [72]Itaga Ki T, Matsumura A, Kato M, et al. Preparation of kaolinite-nylon 6 composites by blending nylon 6 and kaolinite-nylon 6 intercalation compound [J]. J Mater Sci Lett,2001, 20(16):1483-1484.
    [73]A. Ariffin, A. S. Mansor, S. S. Jikan, et al. Mechanical, Morphological, and Thermal Properties of Polypropylene/Kaolin Composite. Part I. The Effects of Surface-Treated Kaolin and Processing Enhancement [J]. Journal of Applied Polymer Science,2008,108(1): 3901-3916.
    [74]M. B. Abu Bakar, Y. W. Leong, A. Ariffin et al. Effect of Chemical Treatments on the Mechanical, Flow, and Morphological Properties of Talc-and Kaolin-filled Polypropylene Hybrid Composites [J]. Journal of Applied Polymer Science,2008,110(5):2770-2779.
    [75]T. KYU, Z.L. Zhou, G C. Zhu et al. Novel Filled Polymer Composites Prepared from In Situ Polymerization via a Colloidal Approach.1. Kaolin/Nylon-6 In Situ Composites [J]. Journal of Polymer Science:Part B:Polymer Physics,1996,34(10):1761-1768.
    [76]张凌燕,陈慧杰,魏婷婷,等.低密度聚乙烯/高岭土对尼龙6的增韧增强协同作用研究[J].非金属矿,2008,31(3):3-6.
    [77]A. L. G. Saad, W. M. Sayed, M. G M. Ahmed et al. Preparation and Properties of Some Filled Poly(vinyl chloride) Compositions [J]. Journal of Applied Polymer Science,1999, 73:2657-2664.
    [78]刘志强,孙红,单永奎,等.改性煅烧剥片高岭土对PVC塑料的改性作用[J].化学世界,2004,(3):130-133.
    [79]王虎,李国喜,章于川,等.高岭土/PVC复合电缆料的制备与性能研究[J].安徽大学学报,2006,30(3):67-70.
    [80]刘新海,李一波.大同高岭土表面改性及效果评价[J].矿产综合利用,2003,(6):11-13.
    [81]刘钦甫,范雪辉,陆银平,等.高岭土表面改性及其在PP中的应用[J].非金属矿,2007,30(增刊):4-6.
    [82]陈文生.2种丁腈橡胶的红外光谱鉴定[J].贵州师范大学学报(自然科学版),2001,19(1):72-73.
    [83]李宝智.煤系煅烧高岭土表面改性及在高分子制品中的应用[J].中国粉体技术(信息资讯版),2005,(2):12-14.
    [84]Ollivrin X, Farin N, Alloin F, et al. Physical properties of amorphous polyether networks [J]. Electrochimica Acta,1998,43 (10-11):1257-1262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700