聚吡咯纳米线修饰电极的制备及其在传感器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚吡咯是一种物理化学性能优异的导电聚合物,在很多方面有着良好的应用前景。聚吡咯易形成不溶不熔的颗粒,限制了它的应用。定向生长的聚吡咯纳米线具有更高导电性和机械强度。聚吡咯纳米线修饰电极对许多化合物的氧化还原反应具有催化作用,它能够降低电化学反应的过电位、增大响应电流,因此可以用于组装电化学传感器。亚硝酸盐易与胺类化合物反应生成强致癌性物质亚硝胺。本文以亚硝酸根离子为模型化合物研究聚吡咯纳米线修饰电极的电催化性能,具有重要的理论和实际意义。
     使用可溶性淀粉为诱导剂在磷酸盐溶液中电化学合成了聚吡咯纳米线。研究了纳米线的生长过程及淀粉在其生长过程中的作用,考察了聚合电位、单体浓度、聚合时间、温度、酸度、高氯酸锂浓度以及淀粉浓度等对聚吡咯纳米形貌的影响。对聚吡咯纳米线进行了红外光谱分析。
     在硫酸溶液中,研究了可溶性淀粉诱导制备的聚吡咯纳米线修饰电极的电化学行为。研究了修饰电极对亚硝酸根离子的电催化还原作用,制备了性能优良的亚硝酸根离子传感器。循环伏安研究表明聚吡咯纳米线修饰电极可以有效降低亚硝酸根离子的还原过电位并且对亚硝酸根离子的电还原有显著的催化作用。双电位阶跃计时电流法研究发现聚吡咯纳米线修饰电极对亚硝酸根离子的电催化还原电流与亚硝酸根离子浓度成线性关系,能够在实验所测范围内(7.81×10~(-5)M~0.02M)准确测定离子浓度。亚硝酸根离子的催化还原电流随电解液温度、吡咯聚合电量和亚硝酸盐溶液酸度的增大而提高。聚吡咯纳米线修饰电极的后处理也对电极性能产生影响。所制备的传感器稳定性有待提高。
Polypyrrole,one of the inherent conducting polymers, has promising applications in many fields. Because of its insoluble and infusible under normal conditions, polypyrrole’s application is restricted. Polypyrrole nanowires have advantage characters on conductivity and mechanical intensity over ordinary samples. Polypyrrole nanowire modified electrodes have obvious catalytic effect on many redox reactions. It can reduce the overpotential, increase response current and prevent analyte and products from absorbing on the surface of electrode. Nitrite is an essential precursor in formation of nitrosamines which have been shown to be potent carcinogens.
     Polypyrrole nanowires were synthesized by electrochemical method under the induce of souble starch. The growth process of polypyrrole nanowires and function of starch were investigated. Obviously, the morphology of polypyrrole is affected by polymerization potential, monomer concentration, polymerization charge, test temperature, acidity of electrolyte, concentration of LiClO_4 and souble starch. The FTIR spectra of polypyrrole nanowires was also analyzed.
     The electrochemical behavior of polypyrrole nanowire modified electrode was studied. The sensor performance namely electrocatalytic performance of polypyrrole nanowire modified electrode towards nitrite was studied. The experimental results show that the modified electrodes have obvious catalytic effect towards nitrite. The electroreduction current has a good linear relationship to the concentration of nitrite. The concentration of nitrite can be accurately tested in the range of 7.81×10~(-5) and 0.02M. The experimental parameters such as testing temperature, polymerization charge, electrochemical extraction time and the pH of the test solution have effects on the reduction current. The post-treatment also has effect on the performance of modified electrode. The long term stability of nitrite sensor shoule be improved.
引文
[1] Heeger AJ, Shirakawa H, Macdiarmid AG, et al., Electrical conductivity in doped polyacetylene, Physical Review Letters, 1977, 39(17): 1098-1010
    [2] Heeger AJ, MacDiarmid AG., Electronic properties of doped polyacetylene, (CH)//x: Insulator-Semiconductor-Metal, American Chemical Society, 1977, 38, 631-633
    [3]万梅香,导电高分子,高分子通报, 1999, (3): 47-53
    [4] Zhang DH, Preparation of core-shell structured alumina-polyaniline particles and their application for corrosion protection, Journal of Applied Polymer Science, 2006, 101 (6): 4372-4377
    [5] Somani P, Mandale AB, Radhakrishnan S, Study and development of conducting polymer-based electrochromic display devices, Acta Materialia, 2000, 48 (11): 2859-2871
    [6] Iroh JO, Levine K, Capacitance of the polypyrrole/polyimide composite by electrochemical impedance spectroscopy, Journal of Power Sources, 2003, 117(1-2): 267-272
    [7] Virji S, Huang JX, Kaner RB, et al., Polyaniline nanofiber gas sensors: Examination of response mechanisms, Nano Letters, 2004, 4(3): 491-496
    [8] Athawale AA, Kulkarni MV, Chabukswar VV, Studies on chemically synthesized soluble acrylic acid doped polyaniline, Materials Chemistry and Physics, 2002, 73(1): 106-110
    [9] Naudin E, Dabo P, Guav D, et al., X-ray photoelectron spectroscopy studies of the electrochemically n-doped state of a conducting polymer, Synthetic Metals, 2003, 132(1): 71-79
    [10] Yoshino K, Takiquchi T, Shiraishi T, et al., Electrochemical doping in heterocyclic conducting polymers and their electrical and optical properties, Transactions of the Institute of Electrical Engineers of Japan, 1986, 106(6): 1-15
    [11] Pillalamarri SK, Blum FD, Tokuhiro AT, et al., Radiolytic synthesis of polyaniline nanofibers: A new templateless pathway, 2005, 17(2): 227-229
    [12] Cao Y, Smith P, Heeger AJ, Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers, 1992, 48(10): 91-97
    [13] Wu AM, Kolla H, Manohar SK, Chemical synthesis of highly conducting polypyrrole nanofiber film, Macromolecules, 2005, 38(19): 7873-7875
    [14] Kwang SR, Youngil L, Kyoo-Seung H, et al., The electrochemical performance of polythiophene synthesized by chemical method as the polymer battery electrode, Materials Chemistry Physics, 2004, 84 (2-3), 380-384
    [15] Lei XP, Su ZX, Conducting polyaniline-coated nano silica by in situ chemical oxidative grafting polymerization, Polymers for Advanced Technologies, 2007, 18(6): 472-476
    [16] Pringle JM, Forsyth M, MacFarlane DR, et al., The influence of the monomer and the ionic liquid on the electrochemical preparation of polythiophene, Polymer, 2005, 46 (7): 2047-2058
    [17] Ge DT, Wang JX, Wang SC, Electrochemical synthesis of polypyrrole nanowires, Journal of Materials Science Letters, 2003, 22: 839-840
    [18] Fritz B, Paul R, Rechargeable batteries with aqueous electrolytes, Electrochimica Acta, 2000, 45 (15-16): 2467-2482
    [19] Armelin E, Pla R, Liesa F, et al., Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint, Corrosion Science, 2008, 50(3): 721-728
    [20] Mo XP, Wang JX, Wang Z, et al., Potentiometric pH responses of fibrillar polypyrrole modified electrodes, Sensors and Actuators B, 2003, 96(3): 533-536
    [21] Maier J, Li ZF, High-performance polypyrrole electrode materials for redox supercapacitors, Electrochemistry Communications, 2006, 8 (6): 937-940
    [22] Hlavaty J, Papez V, Kavan L, Electrochemical polymerization of N-alkenylp- yrroles, Synthetic Metals, 1994, 66(2): 165-168
    [23]谢海明,韩明媚,于海英等,聚吡咯的合成与新型双离子电池性能研究,高等学校化学学报,2007,28(1):109-112
    [24]莫尊理,左丹丹,陈红等,纳米石墨薄片/聚吡咯复合材料的制备及导电性能,无机化学学报,2007,23(2):265-269
    [25] Martina S, Enkelmann V, Wegner G, et al., Polypyrrole. Towards the development of a chemical synthesis, Synthetic Metals, 1991, 41(1-2): 403-406
    [26] Baker CK, Reynolds JR, Quartz microbalance study of the electrosynthesis of polypyrrole, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 251(2): 307-322
    [27] Li YF, Liu ZF, Electrochemical quartz crystal microbalance studies on the two reduction processes of conducting polypyrrole nitrate films in aqueous solutions, Synthetic Metals, 1998, 94(1): 131-133
    [28] Li YF, Qian RY, Effect of anion and solution pH on the electrochemical behavior of polypyrrole in aqueous solution, Synthetic Metals, 1989, 28 (1-2): C127-C132
    [29] Li YF, Deng BH, He GF, et a1., Two reduction processes of conducting polypyrrole tosylate film in aqueous solutions, Journal of Applied Polymer Science, 2001, 79(2): 350-355
    [30] Yah BZ, Yang J, Li YF, et al., Cyclic votammetry of polypyrrole in anhydrous acetonitrile solutions, Synthetic Metals, 1993, 58(1): 17-27
    [31] Li YF, Qian RY, Electrochemical overoxidation of conducting polypyrrole nitrate film in aqueous solution, Electrochimica Acta, 2000, 45(11): 1727-1731
    [32] Cai ZH, Martin CR, Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities, Journal of the American Chemical Society, 1989, 111(11): 4138-4139
    [33] Wang JX, Zhang XL, Wang Z, et al., Electrocatalytic reduction of nitrate at polypyrrole modified electrode, Synthetic Metals, 2005, 155 (1): 95-99
    [34] Joo J, Kim BH, Park DH, et al., Fabrication and applications of conducting polymers nanotube, nanowire, nanohole, and double wall nanotube, Synthetic Metals, 2005, 153(1-3): 313-316
    [35] Sun SG, Xu HY, Tang SH, et al., Synthesis of PtRu nanowires and their catalytic activity in the anode of direct methanol fuel cells, Chinese Journal of Catalysis, 2006, 27(10): 932-936
    [36] Zhang DQ, Moore S, Wei J, et al., Potassium chloride nanowire formation inside a microchannel glass array, Applied Physics Letters, 2005, 86(26): 263110
    [37] Cepak VM, Martin CR, Preparation of polymeric micro- and nanostructures using a template-based deposition method, Chemistry of Materials, 1999, 11 (5): 1363-1367
    [38] Sapp SA, Martin CR, Template synthesis of functionalized conducting polymer nanostructure, Abstracts of Papers of the American Chemical Society, 1999, 27: U139-140
    [39] Van DLS, Martin CR, Electrochemical investigations of electronically conductive polymers. 4. Controlling the supermolecular structure allows charge transport rates to be enhanced, Langmuir, 1990, 6(6): 1118-1118
    [40] Noll JD, Nicholson MA, Van Patten PG, et a1., Template electropolymerization of polypyrrole nanostructures on highly ordered pyrolytic graphite step and pit defects, Journa of the E1ectrochemical Society, 1998, 145 (10): 3320-3327
    [41] Shen YQ, Wan MX, Tubular polypyrrole synthesized by in situ doping polymerization in the presence of organic function acids as dopants, Journal of Polymer Chemistry, 1999, 37 (10): 1443-1449
    [42] Nyffenegger RM, Penner RM, Nanometer-Scale electropolymerization of aniline using the scanning tunneling microscope, Journal of Physical Chemistry, 1996, 100(45): 17041-17049
    [43] Pellegrino L, Yanagisawa Y, Ishikawa M, et al., (Fe, Mn)(3)O-4 nanochannels fabricated by AFM located-oxidation nanolithography using Mo/poly(methyl methacrylate) nanomasks, Advanced Materials, 2006,18(23): 3099-3104
    [44] Zhu DS, Shou XX, Liu YX, et al., AFM-tip-induced crystallization of poly(ethylene oxide) melt droplets, Acta Polymerica Sinica, 2006, (4): 553-556
    [45] Cai XW, Gao JS, Xie ZX, et a1., Nanomodification of polypyrrole and polyaniline on highly oriented pyrolytic graphite electrodes by atomic force microscopy, Langmuir, 1998, 14(9): 2508-2514
    [46] Seo I, Pyo M, Cho GJ, Micrometer to nanometer patterns of polypyrrole thin films via microphase separation and molecular mask, Langmuir, 2002, 18(20): 7253-7257
    [47] Zhang XT, Zhang J, Liu ZF, et al., Inorganic/organic mesostructure directed synthesis of wire/ribbon-like polypyrrole nanostructures, Chemical Communications, 2004, (16): 1852-1853
    [48]田昀,聚吡咯纳米线修饰电极的电催化还原,博士(学位论文),天津大学, 2005
    [49]金利通,仝威,徐金瑞等,化学修饰电极,上海:华东师范大学出版社,1993
    [50]董绍俊,车广礼,谢远武,化学修饰电极,北京:科学出版社,2003
    [51]李佳,徐金瑞,孙向英,壳聚糖共价键合化学修饰电极测定亚硝酸根,分析化学,2002,30(2):206-209
    [52]白燕,莫金垣,卟啉修饰电极的制备及金属离子的电位溶出行为,暨南大学学报,自然科学与医学版, 2001, 22(3): 71-76
    [53] Vaskevich A, Rubinstein I, Underpotential deposition of copper in acetonitrile, Journal of Electroanalytical Chemistry, 2000, 491(1-2): 87-94
    [54] Mecheri B, Piras L, Caminati G, Langmuir-Blodgett films incorporating redox mediators for molecular recognition of NADH, Bioelectrochemistry, 2004, 63(1-2): 13-18
    [55]许媛媛,边超,陈绍凤等,采用自组装技术修饰电极的电化学微型免疫传感器,中国微米纳米技术第七届学术年会,2005,16:74-76
    [56]董绍俊,金哲,化学修饰电极的研究—1:12磷钼杂多阴离子薄膜修饰电极的电化学性质,化学学报, 1989, 47(9): 922-925
    [57] Reddy TM, Reddy SJ, Differential pulse adsorptive stripping voltammetric determination of nifedipine and nimodipine in pharmaceutical formulations, urine, and serum samples by using a clay-modified carbon-paste electrode, Analytical Letters, 2004, 37(10): 2079-2098
    [58] Zhang XL, Wang JX, Wang Z, et al., Electrocatalytic reduction of nitrate at polypyrrole modified electrode, Synthetic Metals, 2005, 155(1): 95-99
    [59] Mo XP, Wang JX, Wang Z, et al., The application of polypyrrole fibrils in hydrogen evolution reaction, Synthetic Metals, 2004, 142(1-3): 217-221
    [60] Tian Y, Wang JX, Wang Z, et al., Solid-phase extraction and amperometric determination of nitrite with polypyrrole nanowire modified electrodes, Sensors and Actuators B, 2005, 104(1): 23-28
    [61]谢远武,董绍俊,光谱电化学方法—理论与应用,长春:吉林科学技术出版社, 1993
    [62] Kanemoto K, Yamauchi J, ESR broadening in conducting polypyrrole because of oxygen: Application to the study of oxygen adsorption, Journal of Physical Chemistry B, 2001, 105(11): 2117-2121
    [63] Chehimi MM, Essadik A, A study of the degradation and stability of polypyrrole by inverse gas chromatography, X-ray photoelectron spectroscopy, and conductivity measurements, Synthetic Metals, 2004, 145(1): 15-22
    [64] Yang XF, Richter AM, Tallman DE, et al., AFM and SEM studies of polypyrrole deposition, Abstracts of papers of the American chemical society, 2002, 223: U422-U422
    [65] Fujikawa K, Jung HS, Park JW, et al., AFM imaging of nanostructure polypyrrole doughnuts shapes fabricated by direct electrochemical oxidation, Electrochemistry Communications, 2004, 6(5): 461-464
    [66] Jiang JH, Kucernak A, Electrooxidation of small organic molecules on mesoporous precious metal catalysts II: CO and methanol on platinum-ruthenium alloy, Journal of Electroanalytical Chemistry, 2003, 543(2): 187-199
    [67] de Oliveira UMF, Lichtig J, Masini JC, Evaluation of a Nafion coated glassy carbon electrode for determination of paraquat by differential pulse voltammetry, Journal of the Brazilian Chemical Society, 2004, 15 (5): 735-741
    [68] Rocha LS, Pinheiro JP, Carapuca HM, Evaluation of nanometer thick mercury film electrodes for stripping chronopotentiometry, Journal of Electroanalytical Chemistry, 2007, 610: 37-45
    [69] Ikeuchi H, Kanakubo M, Determination of diffusion coefficients of the electrode reaction products by the double potential step chronoamperometry at small disk electrodes, Journal of Electroanalytical Chemistry, 2000, 493(1-2): 93-99
    [70] Zic M, Zero charge potential of a dropping mercury electrode drop determined by chronocoulometry, Journal of Electroanalytical Chemistry, 2005, 584(2): 215-218
    [71] Garcia-Belmonte G, Bisquert J, Impedance analysis of galvanostatically synthesized polypyrrole films. Correlation of ionic diffusion and capacitance parameters with the electrode morphology, Electrochimica Acta, 2002, 47(26): 4263-4272
    [72]周旭,现代传感器技术,北京:国防工业出版社,2007
    [73]贾伯年,俞朴,宋爱国,传感器技术,南京:东南大学出版社,2007
    [74]蔡称心,陈洪渊,纳米级微带金电极上葡茵糖氧化酶的固定、性质及应用,化学学报,1995,53:281-285
    [75] Kayrak-Talay D, Akman U, Hortacsu O, Supercritical carbon dioxide immobilization of glucose oxidase on polyurethane/polypyrrole composite, Journal of Supercritical Fluids, 2008, 44(3): 457-465
    [76] Alonso-Lomillo MA, Gonzalo-Ruiz J, Dominguez-Renedo O, et al., CYP450 biosensor based on gold chips for antiepieptic drugs determination, Biosens Bioelectron, 2008, 23(11): 1733-1737
    [77] Riccardi CDS, Kranz C, Kowalik J, et al., Lable-free DNA detection of hepatitis C virus based on modified conducting polypyrrole films at microelectrodes and atomic force microscopy tip-integrated electrodes, Analytical Chemistry, 2008, 80: 237-245
    [78] Miasik JJ, Hooper A, Moseley PT, et al., Electronically conducting polymer gas sensors, Conducting Polymers. Special Applications. Proceedings of the Workshop, 1987, 189-198
    [79] Ogura K, Tonosaki T, Shiigi H, AC impedance spectroscopy of humidity sensor using Poly(o-phenylenediamine)/poly(vinyl alcohol) composite film, Journal of the Electrochemical Socitey, 2001, 148(3): H21-H27
    [80] Su PG, Wang CP, Flexible humidity sensor based on TiO2 nanoparticles–polypyrrole-poly[3-(methacrylamino)propyl] trimethyl ammonium chloride composite materials, Sensors and Actuators B-Chemical, 2008, 129(2): 538-543
    [81] Jahn H, Berthold M, Kaden H, Functional layers for chemical sensors based on conducting polypyrrole, Macromelecular Symposia, 2001, 164: 181-186
    [82] Tsamouras A, Dalas E, Sakkopouras S, et al., Novel pH-sensitive films constructed from polypyrrole composites, Physica Scripta, 1993, 48(5): 521-524
    [83] Witkowski A, Brajter TA, Overoxidized polypyrrole films, a model for the design of permselective electrodes, Analytical Chemistry, 1992, 64 (6): 635-641
    [84]吴小春,吴友谊,环境水样及食品中亚硝酸根的分析进展,分析测试技术与仪器,2003,9(4),227-233
    [85] Afkhami A, Masahi S, Bahran M, Spectrophotometric determination of nitrite based on its reaction with p-nitroaniline in the presence of diphenylamine in micellar media, Bulletin of the Korean Chemical Society, 2004,25(7): 1009-1011
    [86] Fernandez-Arguelles MT, Canabate B, Costa-Fernandez JM, et al., Flow injection determination of nitrite by fluorescence quenching, Talanta, 2004, 62(5): 991-995
    [87] Kapinus EN, Revelsky IA, Ulogov VO, et al., Simultaneous determination of fluoride, chloride, nitrite, bromide, nitrate, phosphate and sulfate in aqueous solutions at 10(-9) to 10(-8) % level by ion chromatography , Journal of Chromatography B, 2004, 800(1-2): 321-323
    [88] Wen ZH, Kang TF, Determination of nitrite using sensors based on nickel phthalocyanine polymer modified electrodes, Talanta, 2004, 62(2): 351-355
    [89] Davis J, Moorcroft MJ, Wilkins SJ, et al., Electrochemical detection of nitrate at a copper modified electrode under the influence of ultrasound, Electroanalysis, 2000, 12(17): 1363-1367
    [90] Casella IG, Gatta M, Electrochemical reduction of NO3- and NO2- on a composite copper thallium electrode in alkaline solutions, Journal Electroanalytical Chemistry, 2004, 568(1-2): 183-188
    [91] Long YQ, Huang SS, Liao JP, et al., Voltammetric study of diethyltin dichloride and the electrocatalytic reduction of nitrate and nitrite, Microchimica Acta, 2003, 142(4): 263-268
    [92] Liu SQ, Ju HX, Nitrite reduction and detection at a carbon paste electrode containing hemoglobin and colloidal gold, Analyst, 2003, 128(12): 1420-1424
    [93] Shen L, Hu NF, Heme protein films with polyamidoamine dendrimer: direct electrochemistry and electrocatalysis, Biochimica Et Biophysica Acta-Bioenergetics, 2004, 1608(1): 23-33
    [94] Keita B, Girard F, Nadjo L, et al., Cyclic voltammetric evidence of facilitation of the reduction of nitrite by the presence of molybdenum in Fe-or Cu-substituted heteropolytungstates, Journal Electroanalytical Chemistry, 2001, 508(1-2): 70-80
    [95] Belghiche R, Contant R, Lu YW, et al., Synthesis and characterization of Fe- or Cu-substituted molybdenum-enriched tungstodiphosphates, European Journal of Inorganic Chemistry, 2002, 6: 1410-1414
    [96] Zhao G, Liu KZ, Lin S, et al., Electrocatalytic reduction of nitrite using a carbon nantube electrode in the presence of cupric ions, Microchimica Acta, 2004, 144(1-3): 75-80
    [97] Wang JX, Mo XP, Ge DT, Polypyrrole nanostructures formed by electrochemical method on graphite impregnated with paraffin,Synthetic Metals, 2006, 156(7-8): 514-518
    [98] Shi W, Ge DT, Wang JX, Heparin-controlled growth of polypyrrole nanowires, Macromolecular Rapid Communications, 2006, 27(12): 926-930
    [99] Wang JX, Ge DT, Wang SC, Polypyrrole fibrils synthesized on ITO electrode in the presence of polyacrylic acid, Chemistry Letters, 2003, 32(6): 528-529
    [100] Shi W, Liang PF, Ge DT, et al., Starch-assisted synthesis of polypyrrole nanowires by a simple electrochemical approach, Chemical Communications 2007, 23: 2414-2416
    [101] Menon VP, Lei J, Marrin CR, Investigation of molecular and Supermolecular structurein Template-Synthesized polypyrrole tubules and Fibrils, Chemistry of Materials, 1996, 8:2382-2390
    [102]莫笑萍,聚吡咯、硫化镉纳米材料的制备与应用研究,博士(学位论文),天津大学,2003
    [103] Shen JY, Chen ZJ, Wang NL, et al., Electrical properties of a single electrochemically template-synthesized polypyrrole nanowire, Applied Physics Letters, 2006, 88(25): 253106
    [104] Yan HL, Zhang L, Chen JY, et al., Synthesis, property and field-emission behaviour of amorphous polypyrrole nanowires, Nanotechnology, 2006, 17(14): 3446-3450
    [105] Demoustier-Champagne S, Ferain E, Jerome C, Electrochemically synthesized polypyrrole nanotubules: Effecs of different experimental condition, European Polymer Journal, 1998, 34(12): 1767-1774
    [106] Koster EHM, Crescenzi C, den Hoedt W, et al., Fibers coated with molecularly imprinted polymers for solid-phase microextraction, Analytical Chemistry, 2001, 73(13): 3140-3145
    [107] Wu JC, Mullett WM, Pawliszyn J, Electrochemically controlled solid-phase microextraction based on conductive polypyrrole films, Analytical Chemistry, 2002, 74 (18): 4855-4859
    [108] Siangproh W, Ngamukot P, Chailapakul O, Electrochemical determination of captopril at boron-doped diamond thin film electrode applied to a flow injection system, Sensors and Actuatuators, B, 2003, 91 (1-3): 60-66
    [109]董绍俊,孙志胜,吕紫玲,新型导电聚合物-聚吡咯溴离子化学传感器,化学学报, 1990, 48(4): 337-342

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700