化肥厂循环冷却水处理技术及工艺控制的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兰州石化公司380循环冷却水系统主要为化肥装置提供工业冷却用水,补充水为处理后的黄河水,属结垢型水质。在运行过程中存在的问题主要表现为:浓缩倍数控制偏低,腐蚀速率、粘附速率时有超标,微生物大量繁殖,粘泥量居高不下,漏氨时循环水处理水平较低,不停车清洗预膜技术不够成熟,现场设施无法实现连续自动加药,现场运行管理制度和管理方式不健全等。
     针对以上问题,按照中国石油循环水场达标要求,本课题开展了高浓缩倍数运行条件下循环水水处理技术和工艺控制的优化。首先引进了碱性耐卤素循环水处理技术,配方筛选并确定了无机磷酸盐、锌、唑类缓蚀剂及优良聚合物复配而成的缓蚀剂MS6209,有效地抑制铁和铜材质的腐蚀。选用的阻垢剂OP8492由绿色环保型聚环氧琥珀酸类聚合物和HPS-I磺酸盐类高效多元聚合物复配,对高硬、高碱、高浓缩倍数循环水水质具有优良的阻垢分散性能,并在碱性条件下能有效地稳定循环水中的锌和正磷。在微生物控制方面,选择了与缓蚀阻垢剂配伍性好、杀菌效果优良的杀菌配方。在装置发生氨泄漏时,冲击增投活性溴、非氧化性杀菌剂、杀菌增强剂来控制微生物滋生,同时实现了不停车清洗预膜。投用了自动加药和换热器在线监测两项自控设施,并加强了运行管理。
     静态缓蚀和阻垢试验确定了高浓缩倍数运行时缓蚀剂MS6209和阻垢剂OP8492投加浓度范围和最佳配比,结果表明缓蚀剂MS6209浓度在5-15 mg/L时缓蚀性能较好,阻垢剂OP8492浓度在40-60 mg/L时阻垢性能较好,两者配比为10mg/L和50mg/L时缓蚀阻垢性能最佳。动态模拟试验显示,碳钢腐蚀速率为0.038 mm/a ,粘附速率为3.56 mcm,均达到很好的水平,铜腐蚀速率仅为0.001 mm/a。通过缓蚀试验,也考察了该配方优良的配伍性和耐卤素氧化性能等。
     现场应用表明,循环水浓缩倍数控制在5-7倍运行时,碳钢和铜材质换热器腐蚀速率分别平均为0.0249mm/a和0.0026mm/a,粘附速率为4.3mcm,漏氨水质得到了很好的控制。加药装置的自动控制和换热器在线监测技术的使用,能够稳定适时加药,充分发挥了药效,减少了药剂消耗。不停车清洗预膜的效果达到了指标要求。380循环水场在处理技术及工艺优化后,年节约补充水量115万吨,减少排污水量115万吨,成本控制在0.009元/吨以下,两年共节约费用874.7万元,达到了节水减排的目的,保证了装置安、稳、长、满、优运行。
Circulating cooling water for the chemical fertilizer installment was provided by Lanzhou Petrochemical Corporation NO. 380 circulating cooling water system, and the pretreated Huanghe River water was used as the make-up water. According to the corrosion factor and scaling index, the make-up water was charged as easy-scaling water. There were many problems in this system, such as low concentratin multiple, high corrosion rate and slime content, microbia multiply and so on as the result of non-mature perfillmimg technology, incontinuously drugging and non-perfect operating rules in anagement. In view of these problems, it was studied how to optimize process controlling in case of high cycles of concentratin in this paper.
     In order to solve the above questions and reach the China petroleum recirculating water standards, the basic and anti-halogen water-treating technology was chosed to preventing ferric and metal equipments from being corroded. The major components were corrosion and scale inhibitor MS6209, which is constituted of phosphate, zinc, high–performance polymer and azole ketone corrosion inhibition, and scale inhibitor OP8492, which was composed of environment-friendly, easy-degrading epoxy-sulfo succinate polymer and HPS-I RSO3H. OP8492 has good antisludging and dispersive performance in treating high-hardness, high-alkalinity and high-cycles of concentratin water, and can stablize the zinc and orthophosphoric acid in condition of alkaline environment. In terms of preventing microorganism from multiplying, the syntheses with better cooperating performance and good sterilizing efffcect was choosed.
     Microorganism was prevented from multiplying by adding more active bromine, non-oxidizing biocide and sterilizing addition in impact way. In addition, automatic drug adding and online detecting was adopted in cleaning and perfilming in processing.
     The concentration range and the constitute rate of corrosion inhibitor MS6209 and scale inhibitor OP8492 was fixed in the captive test of corrosion inhibitoring and scale inhibiting. The results turned out that the corrosion-inhibiting effect is better when the concentration of MS6209 is about from 5 to 15 mg/L, and scale inhibiting effect when OP8492 from 40 to 60 mg/L. The most appropriate concentration of MS6209 and OP8492 is about from 10 and 50 mg/L respectively.The results came out that the corroding rate of steel and copper is 0.038 mm/a and 0.001 mm/a respectively, while the conglutinating rate is 3.56 mcm in dynamic stimulant experimentation.At the same time, the matching performance and anti- oxidating performance was studied in the corrosion-inhibiting experiment.
     It turned out to be that basic anti-halogen technology took good effect in water treating in practice, which is also fit in circulating water as the cyclw of concentratin is ranging from 5 to 7. The corroding rate of steel and copper was respectively 0.0249mm/a and 0.0026mm/a, while the average conglutinating rate was 4.3cmc. water quality could be well controlled in case of ammonia leaking. Using automatic drug-adding device and on-line inspecting thechnology, drug was added in time and steady,reducing drug and human force. At the same time, the effect of cleaning and perfilming inprocessing met the standards. After optimizaing on process and technology in NO.380 circulating cooling water system, the make-up water was saved 1,150,000 ton, while waste water was reduced 1,150,000 ton. the cost of drug is below 0.009 yuan in treating each ton circulating water. The cost about 8,747,000 yuan was saved in two years, the purpose of saving water and reducing waste water was achieved. It is ensured for the equipment running safely, stably, long-time, fill-loading and optimizingly.
引文
[1]张宇,裴玉梅,耿丽君.全自动加药系统-循环水装置节水降耗的保证[J].北方环境,2003,28(2):48~50
    [2] Dong-Jin Choi, Seung-Jae You and Jung-Gu Kim.Development of an environmentally safe corrosion,scale,and microorganism inhibitor for open recirculating cooling systems[J].Materials Science and Engineering A, 2002, 335:228-235
    [3]项成林.浅谈水工业的现状与展望[J],工业水处理,1997,17(2):4~9
    [4] Ebrahimoour A,Johnsson M.The characterization of hydroxyapatite preparation[J].Coll Interf Sci,1993, 59:63
    [5]李凡修,辛盐.共聚物类阻垢剂的研制进展[J].工业水处理, 2000, 20(3):7~10
    [6]黄宁.共聚物阻垢分散剂的研究进展[J],石油与天然气化工,1999,28(2):133~135
    [7]闫岩.含磺酸盐共聚物作为阻垢分散剂的技术现状[J],工业水处理,1993,13(4):7~8
    [8]李瑞华.工业冷却水处理药剂进展[J],工业水处理,1991,11(5):6~11
    [9]梁秀文.石化企业循环水系统的节水运行与管理[J],2003,23(11):18~20
    [10]周本省.工业水处理技术[M],北京:化学工业出版社,2002,82~84
    [11]李本高,江萍,余正齐等.现代工业水处理技术与应用[M],北京:中国石化出版社,2004,40~47
    [12]戴万红.我国循环冷却水处理技术现状及发展[J],包钢技术,1998,21(4):37~39
    [13]李裕芳.我国循环冷却水处理技术的回顾与展望[J],工业水处理,1991,11(1):3~7
    [14]李本高,江萍,余正齐等.现代工业水处理技术与应用[M],北京:中国石化出版社,2004,231~248
    [15]郑逸云.水处理缓蚀剂应用现状与发展[J],腐蚀科学与防腐技术,2004,16(2):101~104
    [16] Jamison Ketal,Proceedings of International Water Conference[J],Pittsburgh,IWC-93-61,1993
    [17]李永刚,肖锦.水处理剂阻垢性质研究[J],工业水处理,1994,14(6):18~20
    [18]李本高,江萍,余正齐等.现代工业水处理技术与应用[M],北京:中国石化出版社,2004,317
    [19]周本省.工业水处理技术[M],北京:化学工业出版社,2002,42~45
    [20]赵燕,郑涛.改进水处理药剂配方提高循环水浓缩倍数[J],工业水处理,2008,28(03):51-53
    [21]秦会敏,郦和生.适合中硬中碱水质浓缩倍数自然运行配方的研究[J],工业水处理技术,2004,(8)383~384
    [22] Suresh Patel.An investigationg of sulfonated polymers for deposit And corrosion control.Materials Performance[M],1999,(8):56~60
    [23] M Starostina.Inhibition by phosphates of mild steel and cast iron in cooling water[J],Materials Performance,1999, (3):52~58
    [24]程云章,翟祥华,葛红花.阻垢剂的阻垢机理及性能评定[J],华东电力,2003,14(7):14~17
    [25]祁鲁梁,李永存,张莉.水处理药剂及材料实用手册[M],北京:中国石化出版社,2006,178
    [26]李大钢,齐新等.黄河水高浓缩倍数方案的动态模拟试验研究[J],工业水处理,2004,24(5)29
    [27]鲍其鼐.论节约工业冷却用水的关键[J],化工技术经济,1994,10(4):26~30
    [28]史信建,王莉平.氮肥厂氨泄漏对循环冷却水的危害及解决方法[J],大氮肥,1997,203(06):41~45
    [29]梁宗忠,权剑域.循环水漏氨情况下高浓缩倍数运行的工艺控制[J],大氮肥,2006,29(2):32~33
    [30]赵爱蓉,陈希平.含氨循环水处理技术[J],中氮肥,1997,46(5):33~35
    [31]李本高,江萍,余正齐等.现代工业水处理技术与应用[M],北京:中国石化出版社,2004,468
    [32]瞿莜蔷,唐国平.氨对循环水水质稳定的影响及预防措施[J],贵州化工,2001,3(2):36~37
    [33]陈旭俊.工业清洗剂及清洗技术[M],北京:化学工业出版社,2002,2~4
    [34]金熙,项成林.工业水处理技术问答及常用数据[M],北京:化学工业出版社,1989,67
    [35]刘翔宇.循环水处理自动加药装置监控技术研究:[硕士学位论文],大庆:大庆石油学院,2007
    [36]周本省.工业水处理技术[M],北京:化学工业出版社,2002,200~201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700