急性胰腺炎血脑屏障变化规律及影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分不同胰腺炎模型胰腺病理改变与MCP-1表达的关系
     目的:验证不同浓度胆酸钠诱导的急性胰腺炎严重程度及胰腺病理评分与MCP-1表达的相关性。
     方法:分别在胰管内给予浓度为5%和0.5%的胆酸钠诱导急性胰腺炎,测定不同时间段胰腺的病理评分,同时利用免疫组化和RT-PCR两种方法在蛋白及mRNA水平测定MCP-1在胰腺内的表达,并通过相关性分析检测MCP-1表达与胰腺病理改变的相关性。
     结果:利用5%和0.5%的胆酸钠成功的诱导了SAP和MAP,两者的病理评分有显著性差异(MAP组2.75±0.86,SAP组10.15±1.44,p< 0.001);而免疫组化提示MCP-1在MAP组及SAP组的胰腺中均有明显表达,RT-PCR半定量分析显示SAP组MCP-1胰腺内表达水平明显高于MAP组(MAP组1.37±0.47,SAP组3.55±0.65,p< 0.001),并且MCP-1的表达量与胰腺损伤的严重程度呈正相关(pearson相关系数=0.922,p< 0.001)。
     结论:0.5%的胆酸钠胰管内注射可以成功的诱导MAP;在急性胰腺炎过程中胰腺MCP-1的表达明显升高,显示MCP-1可能是参与胰腺炎症的重要介质。
     第二部分急性胰腺炎时血脑屏障通透性的变化规律
     目的:观察急性胰腺炎时血脑屏障通透性的变化规律。
     方法:通过不同浓度的胆酸钠构建不同程度的急性胰腺炎模型,并在不同时间点静脉给予伊文兰(Evan’s blue),在生理盐水灌注冲洗后取出大鼠脑组织,匀浆、离心、取上清并用分光光度计读数,通过Evan’s blue的标准曲线得到脑组织中Evan’s blue的含量,而该含量直接反映了BBB的通透性。
     结果:轻症急性胰腺炎两组的血脑屏障通透性和对照组相比没有明显升高(MAP2h 1.64±0.17 p=0.443; MAP6h 1.69±0.24 p=0.321),而BBB通透性在SAP组中2小时开始升高,持续升高至48小时才有所下降(与对照组相比,SAP2h 1.89±0.12 p=0.013;SAP48h 1.84±0.07 p=0.019;SAP6h 2.66±0.32,SAP12h 2.91±0.29,SAP24h 2.89±0.69, p value均小于0.001)。
     结论:SAP时存在血脑屏障通透性的升高,并且这种改变呈现一定的时间依赖性。
     第三部分急性胰腺炎时血脑屏障通透性变化的相关因素分析
     目的:观察急性胰腺炎时血脑屏障通透性的升高与胰腺病变水平及MCP-1、TLR4表达的关系。
     方法:通过不同浓度的胆酸钠构建不同程度的急性胰腺炎模型,根据处死时间对大鼠进行分组,通过伊文兰(Evan’s blue)观察不同时间点大鼠BBB的通透性,利用病理评分评估胰腺病理损伤的水平,同时采用免疫组化和RT-PCR的方法在蛋白和RNA水平来测定MCP-1和TLR4的表达,观察其表达水平与BBB通透性的相关性。结果: BBB通透性在轻症急性胰腺炎组没有明显升高,在SAP组中2小时开始升高,持续升高至48小时才有所下降;而重症急性胰腺炎各组的病理评分均较MAP组明显升高(SAP2h=8.50±1.07; SAP6h=9.75±0.71; SAP12h10.25±1.28; SAP24h=11.13±1.25; SAP48h=11.13±1.13)BBB通透性与胰腺病理评分的相关系数为0.626(p<0.01);与此同时,MCP-1和TLR4的表达相一致,均在SAP的各组中有明显表达,而对照组和MAP组表达为阴性,相关性分析提示MCP-1和TLR4的表达水平均与BBB通透性的升高显著相关。(MCP-1 Pearson相关系数: 0.812 p=0.007<0.01;TLR4 Pearson相关系数: 0.208 p<0.05),同时MCP-1的表达与TLR4的表达也相关(相关系数: 0.818 p<0.001)。
     结论:随着胰腺炎的加重,血脑屏障通透性逐渐升高,而由TLR4导致的MCP-1表达上调可能参与了重症急性胰腺炎时血脑屏障通透性的改变。
     第四部分急性胰腺炎时CNS的损伤与BBB通透性的关系
     目的:观察急性胰腺炎时血脑屏障通透性的升高与CNS损伤的关系。
     方法:在不同的急性胰腺炎模型中利用伊文兰(Evan’s blue)观察不同时间点大鼠BBB的通透性,同时利用利用胶质纤维酸性蛋白(Glial fibillary acidic protein, GFAP)作为神经损伤的标志物,利用免疫组织化学和RP-PCR的方法检测其表达,同时观察其表达水平与BBB通透性的相关性。
     结果: BBB通透性在轻症急性胰腺炎组没有明显升高,在SAP组中2小时开始升高,持续升高至48小时才有所下降;而重症急性胰腺炎各组的病理评分均较MAP组明显升高;与此同时,GFAP在对照组中呈基础性的低表达,GFAP在SAP2h、SAP6h与SAP12h三组中表达明显上升,12h组时表达最为明显,然而在24h以后的SAP各组中表达量迅速下降至基础水平(对照组1.13±0.33;MAP2h=1.00±0.33; MAP6h=1.10±0.55; SAP2h=1.81±0.27; SAP6h=2.26±0.65; SAP12h 2.49±0.64; SAP24h=1.05±0.64; SAP48h=1.00±0.61);而GFAP的表达水平和血脑屏障通透性之间呈正相关(pearson相关系数=0.383,p=0.007<0.01)。
     结论:GFAP的一过性表达提示诱导急性胰腺炎后CNS没有出现严重的病理损伤,然而血脑屏障通透性的升高可能是GFAP表达增加的原因。
PartⅠThe pathological injury in different acute pancreatitis model and its relationship with pancreatic MCP-1 expression
     Objective:To explore the pathological injury after inducing acute pancreatitis by intrapancreatic ductal injection with different concentration choleate sodium and find the relationship between pancreatic damage and MCP-1 expression.
     Method:After injection of 5% and 0.5%choleate sodium, we evaluated the pancreatic injury by a score system. Then, we may detect MCP-1 expression by immunohistochemistry and RT-PCR and analyze the relationship between MCP-1 expression and pancreatic inflammation.
     Result:SAP and MAP had been made by intraductal injection with 5% and 0.5% choleate sodium. Pathological score was significantly different between these two groups(MAP group 2.75±0.86,SAP group 10.15±1.44,p< 0.001). In addition, MCP-1 expression could be found in both these two groups in pancreas, but RT-PCR indicated their levels were different: MCP-1 expressed higher in SAP group than that in MAP group (MAP group 1.37±0.47,SAP group 3.55±0.65,p< 0.001). Correlation analyse showed Pearson correlation coefficient was 0.922,p< 0.001.
     Conclusion:0.5% choleate sodium can induce mild acute pancreatitis simply and cheaply. MCP-1 may be an important cytokine in the pathogenesis of acute pancreatitis.
     PartⅡThe change of blood brain barrier permeability in acute pancreatitis Objective:To explore the rule of blood brain barrier permeability change after inducing acute pancreatitis.
     Method : In different models of acute pancreatitis, we injected Evan’s blue intravenously before sacrificing,then we got supernatant fluid after homogenate and centrifuging, then measured its OD value by spectrophotometer. We could get the quantity of Evan’s blue in brain by standard curve which reflect the relationship between the quantity of Evan’s blue and OD’s value.
     Result:Compared to control group, there was no significant increase of BBB permeability in MAP groups(MAP2h 1.64±0.17 p=0.319; MAP6h 1.69±0.24 p=0.249),However, BBB permeability increased in all SAP groups (SAP2h 1.89±0.12;SAP6h 2.66±0.32;SAP12h 2.91±0.29;SAP242.89±0.69;SAP48h 1.84±0.07,p value are all below 0.05).
     Conclusion:BBB permeability increase in SAP groups time-dependently.
     PartⅢThe relationship among pancreatic injury、MCP-1 expression and the change of blood brain barrier permeability in acute pancreatitis
     Objective:To investigate the relationship among pancreatic injury、MCP-1/TLR4 expression and the change of blood brain barrier permeability in acute pancreatitis.
     Method:In different models of acute pancreatitis, we used Evan’s blue to detect the BBB permeability. The grade of pancreatic injury was measured by a score system and the expression of MCP-1 and TLR4 were measured by immunohistochemistry and RT-PCR.
     Result:Compared to control group, there was no significant increase of BBB permeability in MAP groups. However, BBB permeability increase in all SAP groups. In the same time, the pathological score of pancreas were significantly higher in SAP groups than those in MAP groups(SAP2h=8.50±1.07; SAP6h=9.75±0.71; SAP2h=8.50±1.07; SAP6h=9.75±0.71; SAP12h10.25±1.28; SAP24h=11.13±1.25; SAP48h=11.13±1.13). Therefore, the expression of MCP-1 and TLR4 only existed in SAP groups.
     Conclusion:The increase of BBB permeability is related to the severity of pancreatic inflammation and MCP-1 may contribute to the change of BBB permeability. The activation of TLR4 may be the cause of MCP-1 expression increase.
     PartⅣThe relationship between blood brain barrier permeability and CNS injury in acute pancreatitis
     Objective:To investigate the relationship between blood brain barrier permeability and CNS injury in acute pancreatitis.
     Method:In different models of acute pancreatitis, we used Evan’s blue to detect the BBB permeability. The grade of CNS injury was measured by expression of GFAP which was an indicator of astrocyte activation. The expression of GFAP was measured by immunohistochemistry and RT-PCR.
     Result:Compared to control group, there was no significant increase of BBB permeability in MAP groups. However, BBB permeability increased in all SAP groups. In the same time, the expression of GFAP was lower in control group and MAP groups(control group 1.13±0.33;MAP2h=1.00±0.33; MAP6h=1.10±0.55). However, in SAP groups, the level of GFAP expression began to increase in 2 hours and reach the peak value in 12h, then it return to normal(*SAP2h=1.81±0.27; *SAP6h=2.26±0.65; *SAP12h 2.49±0.64; SAP24h=1.05±0.64; SAP48h=1.00±0.61, * means p value <0.05). Therefore, the expression of GFAP related to the BBB permeability.
     Conclusion:GFAP expression increase transiently which suggest there is no severe injury in CNS during acute pancreatitis. However, BBB permeability may be the cause of GFAP expression.
引文
1.周秉舵,朱生墚,马淑颖等.急性胰腺炎动物模型的研究进展.中国比较医学杂志,2006,16:442-446.
    2. Aho HJ, Koskensalo SM, Nevalainen TJ. Experimental pancreatitis in the rat. Sodium taurocholate-induced acute haemorrhagic pancreatitis. Scand J Gastroenterol,1980,15: 411-6.
    3.许永春,李兆申,屠振兴等.改良逆行胆胰管注射法制备轻重不同两种大鼠急性胰腺炎模型.第二军医大学学报,2004,25:1251-1252.
    4.许永春李兆申屠振兴等.单核细胞趋化蛋白在重症急性胰腺炎发病机制中的作用.胰腺病学. 2004. 4(2):94-97.
    5. Conti P,DiGioacchino M. MCP-1 and RANTES are mediators of acute and chronic inflammation. Allergy Asthma Proc. 2001,22:133-7.
    6. Viedt C, Orth SR. Monocyte chemoattractant protein-1 (MCP-1) in the kidney: does it more than simply attract monocytes? Allergy Asthma Proc,2001,22: 133-7.
    7. Mark Brady, Madhav Bhatia, Stephen Christmas, et al. Expression of the Chemokines MCP-1/JE and Cytokine-Induced Neutrophil Chemoattractant in Early Acute Pancreatitis. Pancreas,2002,25:260–269.
    8. Rose CE Jr, Sung SS, Fu SM. Significant involvement of CCL2 (MCP-1) in inflammatory disorders of the lung. Semin Immunol,2003,15: 23-32.
    9. Mahad DJ, Ransohoff RM. The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Semin Immunol,2003,15: 23-32.
    10. Fabio Marra. Renaming cytokines: MCP-1, major chemokine in pancreatitis. Gut,2005,54: 1679 - 1681.
    1. Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci. 1999;22:11-28.
    2.种兆忠,冯亦璞.脑损伤过程中血脑屏障通透性的变化及其调节机制.中国药理学通报,1999,15: 204~7.
    3. Kirk J, Plumb J,Mirakhur M, et al. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination.J Pathol. 2003; 201: 319-27.
    4.汪谦,李湘. SAP病人胰性脑病的研究进展.中国实用外科杂志. 2004,24:63-64.
    5.卢崇亮.胰性脑病的研究现状.中国普通外科杂志. 2001,10:362-365.
    6.刘小丰,钱祝银,苗毅.外源性溶血卵磷脂对急性胰腺炎大鼠血脑屏障通透性的影响.中国普通外科杂志. 2005,14(5):331-333.
    7. Banks PA, Freeman ML, Practice Parameters Committee of the American College of Gastroenterology. Practice guidelines in acute pancreatitis. Am J Gastroenterol,2006, 101: 2379-2400.
    8. Gyula Farkasa, Janos Martona, Zsuzsanna Nagyb,et al. Experimental acute pancreatitis results in increased blood–brain barrier permeability in the rat: a potential role for tumor necrosis factor and interleukin 6. Neuroscience Letters. 1998,242:147–150.
    1.刘小丰,钱祝银,苗毅.外源性溶血卵磷脂对急性胰腺炎大鼠血脑屏障通透性的影响.中国普通外科杂志. 2005,14(5):331-333.
    2. Tran PB, Miller RJ. Chemokine receptors in the brain: a developing story. J Comp Neurol,2003,457: 1-6.
    3. Karpus WJ. Chemokines and central nervous system disorders. J Neurovirol, 2001,7:493-500.
    4. Hillyer P, Mordelet E, Flynn G, et al. Chemokines, chemokine receptors and adhesion molecules on different human endothelia: discriminating the tissue-specific functions that affect leucocyte migration. Clin Exp Immunol,2003,134:431-41.
    5. Dawson J, Miltz W, Mir AK, et al. Targeting monocyte chemoattractant protein-1 signalling in disease. Expert Opin Ther Targets,2003,7: 35-48.
    6. Stamatovic SM, Keep RF, Kunkel SL, et al. Potential role of MCP-1 in endothelial cell tight junction‘opening’: signaling via Rho and Rho kinase. Journal of Cell Science,2003,116, 4615-4628.
    7.许永春,李兆申,屠振兴等.改良逆行胆胰管注射法制备轻重不同两种大鼠急性胰腺炎模型.第二军医大学学报,2004,25:1251-1252.
    8. Banks PA, Freeman ML, Practice Parameters Committee of the American College of Gastroenterology. Practice guidelines in acute pancreatitis. Am J Gastroenterol,2006, 101: 2379-2400.
    9. Yan-Ling Yang, Ji-Peng Li, Kai-Zong Li, et al. Tumor necrosis factorαantibodyprevents brain damage of rats with acute necrotizing pancreatitis. World J Gastroenterol, 2004, 10: 2898-2900.
    10. Gyula Farkasa, Janos Martona, Zsuzsanna Nagyb,et al. Experimental acute pancreatitis results in increased blood–brain barrier permeability in the rat: a potential role for tumor necrosis factor and interleukin 6. Neuroscience Letters. 1998,242:147–150.
    11. Hage N, Wu G, Wang J, et al. HIV-1 Tat and opiate-induced changes in astrocytes promote chemotaxis of microglia through the expression of MCP-1 and alternative chemokines. Glia,2006,53: 132-46.
    12. Li Song,Joel S. Pachter. Monocyte chemoattractant protein-1 alters expression of tight junction-associated proteins in brain microvascular endothelial cells. Microvascular Research, 2004, 67: 78– 89.
    13. Stamatovic SM, Shakui P, Keep RF, et al. Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J Cereb Blood Flow Metab,2005,25: 593-606.
    14. Norman J. The role of cytokines in the pathogenesis of acute pancreatitis. Am J Surg,1998,175:76-83.
    15. Zhang H, Li YY, Wu XZ. Effect of Tetrandrine on LPS-induced NF-kappaB activation in isolated pancreatic acinar cells of rat. World J Gastroenterol,2006,12:4232-6.
    16. Bajetto A, Bonavia R, Barbero S, et al. Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J Neurochem,2002, 82: 1311-29.
    17. 14. Yasuko Sakurai-Yamashita, Kazuto Shigematsu, et al. Expression of MCP-1 in the Hippocampus of SHRSP with Ischemia-Related Delayed Neuronal Death. Cellular and Molecular Neurobiology, 2006, 26: 823-831.
    18. Anuska V Andjelkovic, Danielle Kerkovich, Joel S. Pachter. Monocyte:astrocyte interactions regulate MCP-1 expression in both cell types. Journal of Leukocyte Biology, 2000, 68: 545-552.
    19. Shukaliak JA, Dorovini-Zis K. Expression of the beta-chemokines RANTES and MIP-1 beta by human brain microvessel endothelial cells in primary culture. JNeuropathol Exp Neurol,2000,59:339-52.
    20. Bruce Beutler. Toll-like receptors and their place in immunology. Nat rev immunol,2004,4: 498.
    21. Humphries HE, Triantafilou M, Makepeace BL, et al. Activation of human meningeal cells is modulated by lipopolysaccharide (LPS) and non-LPS components of Neisseria meningitidis and is independent of Toll-like receptor (TLR)4 and TLR2 signalling. Cell Microbiol,2005,7:415-430.
    22. Andonegui G, Bonder CS, Green F, et al. Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J Clin Invest,2003,111:1011-1020.
    23. Antoniazi S, Price HP, Kropf P, et al. Chemokine gene expression in toll-like receptor-competent and -deficient mice infected with Leishmania major. Infect Immun,2004,72: 5168-74.
    24. Laflamme N, Rivest S. Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J, 2004, 15:155–163.
    25. Kerfoot SM, Long EM, Hickey MJ,et al. TLR4 Contributes to Disease-Inducing Mechanisms Resulting in Central Nervous System Autoimmune Disease. The Journal of Immunology, 2004, 173: 7070–7077.
    1.邓莉,袁琼兰.胶质纤维酸性蛋白( GFAP)在神经系统中的研究进展.泸州医学院学报. 2005;28:189-192.
    2. Tang G, Xu Z, Goldman JE. Synergistic effects of the SAPK/JNK and the proteasome pathway on glial fibrillary acidic protein (GFAP) accumulation in Alexander disease. J Biol Chem, 2006, 281: 38634-43.
    3. Triolo D, Dina G, Lorenzetti I, et al. Loss of glial fibrillary acidic protein (GFAP) impairs Schwann cell proliferation and delays nerve regeneration after damage. J Cell Sci,2006,119: 3981-93.
    4. Vos PE, Lamers KJ, Hendriks JC,et al. Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology,2004,62: 1303-10.
    5.李玉红,闫平.脑损伤后GFAP和NGF的表达研究进展.中国法医学杂志,2003,18:378-380.
    6. Pelinka LE, Kroepfl A, Leixnering M,et al. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma,2004,21: 1553-61.
    7.李光伟,苗宏志,李波等.人脑出血周围组织星形胶质细胞反应及意义.医学研究杂志,2006,35:13-15.
    8. Vos PE, van Gils M, Beems T, et al. Increased GFAP and S100beta but not NSE serum levels after subarachnoid haemorrhage are associated with clinical severity. Eur J Neurol,2006,13: 632-8.
    9. Gyula Farkasa, Janos Martona, Zsuzsanna Nagyb,et al. Experimental acute pancreatitis results in increased blood–brain barrier permeability in the rat: a potential role for tumor necrosis factor and interleukin 6. Neuroscience Letters. 1998,242:147–150.
    1. Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci. 1999;22:11-28.
    2. Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol, 1967, 34:207–17.
    3. Stewart PA, Wiley MJ. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev Biol, 1981, 84:183–92.
    4. Janzer RC, Raff MC. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature, 1987, 325:253–57.
    5.王顺蓉,张英,李著华.血脑屏障的结构与功能研究进展.四川生理科学杂志, 2005, 27:88-89.
    6. McLay RN, Kimura M, Banks WA, et al. Granulocyte-macrophage colony stimulating factor crosses the blood-brain and blood-spinal cord barriers. Brain, 1997, 120: 2083–91.
    7. Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol, 2001, 2: 123–128.
    8. Bazan JF, Bacon KB, Hardiman G, et al. A new class of membrane-bound chemokine with a CX3C motif. Nature, 1997, 385: 640–644.
    9. Pan Y, Lloyd C, Zhou H, et al. Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature, 1997, 387: 611–617.
    10. Neptune ER, Iiri T, Bourne HR. Galphai is not required for chemotaxis mediated by Gi-coupled receptors. J Biol Chem, 1999, 274: 2824–2828.
    11. Biber K, Zuurman MW, Dijkstra IM, et al. Chemokines in the brain: neuroimmunology and beyond. Curr Opin Pharmacol,2002,2:63-68.
    12. Stamatovic SM, Keep RF, Kunkel SL, et al. Potential role of MCP-1 in endothelial celltight junction‘opening’: signaling via Rho and Rho kinase. J Cell Sci. 2003; 116: 4615-28.
    13. Hulkower K, Brosnan CF, Aquino DA, et al. Expression of CSF-1, c-fms and MCP-1 in the central nervous system of rats with experimental allergic encephalomyelitis. J Immunol, 1993, 150: 2525-2533.
    14. Simpson J E, Newcombe J, Cuzner ML, et al. Expression of the interferon -gamma-inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol Appl Neurobiol, 2000, 26: 133–142.
    15. Simpson J, Rezaie P, Newcombe J, et al. Expression of the beta-chemokine receptors CCR2, CCR3 and CCR5 in multiple sclerosis central nervous system tissue. J Neuroimmunol, 2000, 108: 192–200.
    16. Fife BT, Kennedy KJ, Paniagua MC, et al. CXCL10 (IFN gamma- inducible protein-10) control of encephalitogenic CD4+ T cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis. J Immunol, 2001,166:7617–7624.
    17. Grzybicki D, Moore S, Schelper R, et al . Expression of Monocyte chemoattractant protein (MCP-1) and nitric oxide synthase-2 following cerebral trauma. Acta Neuropathol, 1998, 95: 98-103.
    18. Che X, Ye W, Panga L, et al. Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Res, 2001, 902: 171–177.
    19. Wang X, Li X, Schmidt DB, et al. Identification and molecular characterization of rat CXCR3: receptor expression and interferon-inducible protein-binding are increased in focal stroke. Mol Pharmacol, 2000, 57: 1190–1198.
    20. Kaul M, Garden GA, Lipton SA. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature, 2001, 410: 988–994.
    21. Lahrtz F, Piali L, Spanaus KS, et al. Chemokines and chemotaxis of leukocytes in infectious meningitis. J Neuroimmunol, 1998;85:33-43.
    22. Luan J, Furuta Y, Du J, Richmond A: Developmental expression of two CXC chemokines, MIP-2 and KC, and their receptors. Cytokine 2001, 14: 253 - 263.
    23. Ma Q, Jones D, Borghesani PR, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 1998, 95:9448-9453.
    24. Van Der Meer P, Goldberg SH, Fung KM, et al. Expression pattern of CXCR3, CXCR4, and CCR3 chemokine receptors in the developing human brain. J Neuropathol Exp Neurol 2001, 60:25-32.
    25. Brenneman DE, Hauser J, Spong CY, et al. Chemokine released from astroglia by vasoactive intestinal peptide. Mechanism of neuroprotection from HIV envelope protein toxicity. Ann NY Acad Sci 2001, 921:109-114.
    26. Meucci O, Fatatis A, Simen AA, et al. Expression of CX3CR chemokine receptors on neurons and their role in neuronal survival. Proc Natl Acad Sci USA 2000, 97:8075 -8080.
    27. Bezzi P, Volterra A: A neuron-glia signalling network in the active brain. Curr Opin Neurobiol 2001, 11:387-394.
    28. Limatola C, Giovannelli A, Maggi L, et al. SDF-1α-mediated modulation of synaptic transmission in rat cerebellum. Eur J Neurosci 2000, 12: 2497 - 2504.
    29. Tran PB, Miller RJ. Chemokine receptors in the brain: a developing story. J Comp Neurol. 2003, 457:1-6.
    1.陈隆典,张晓琦.胰性脑病和韦尼克脑病.中华内科杂志,2002,41:94-97.
    2.廖专李兆申.胰性脑病研究进展.胰腺病学,2003:248-250.
    3.刘小丰,钱祝银,苗毅.外源性溶血卵磷脂对急性胰腺炎大鼠血脑屏障通透性的影响.中国普通外科杂志. 2005,14(5):331-333.
    4. Nakae H, Endo S, Inoue Y, et al. Matrix metalloproteinase-1 and cytokines in patients with acute pancreatitis. Pancreas 2003;26:134-138.
    5. Rau B, Paszkowski A, Lillich S, et al. Differential effects of caspase-1 /interleukin-1betaconverting enzyme on acinar cell necrosis and apoptosis in severe acute experimental pancreatitis. Lab Invest, 2001; 81: 1001-1013.
    6. Rau B, Schilling MK, Beger HG.Laboratory markers ofsevere acute pancreatitis. Dig Dis 2004;22:247-257.
    7. Farkas C, Matton J, Nagy Z, et al.Experimental acute pancreatitis results in increased blood-brain barrier permeability in the rat: a potential role for tumor necrosis factor and interleukin-6. Neurosci Lett,1998,242:147-150.
    8. Yang YL, Li JP, Li KZ, Dou KF. Tumor necrosis factor alpha antibody prevents brain damage of rats with acute necrotizing pancreatitis. World J Gastroenterol 2004;10: 2898-2900.
    9. Alsfasser G, Antoniu B, Thayer SP, et al. Degradation and inactivation of plasma tumor necrosis factor-alpha by pancreatic proteases in experimental acute pancreatitis. Pancreatology 2005;5:37-43.
    10. Tadao M, Yuji O. Role of free radicals in the development of severe acute pancreatitis. Nippon Rinsho 2004;62:2015-2020.
    11. Shi C, Andersson R, Zhao X, Wang X. Potential role of reactive oxygen species in pancreatitis-associated multiple organ dysfunction. Pancreatology 2005;5:492-500.
    12. Cheng J, Zhou YK, Chen JW, Shi HA. Role of TNF-αand IL-1βin Pathogenesis of Pancreatic Encephalopathy. Chin J Gen Surg 2002;11:142-145.
    13. Jiang HL, Xue WJ, Li DQ, et al.Influence of continuous veno-venous hemofiltration on the course of acute pancreatitis. World J Gastroenterol 2005;11:4815-4821.
    14. Liu X, Nakano I, Yamaguchi H, Ito T, Goto M, Koyanagi S, et al. Protective effect of nitric oxide on development of acute pancreatitis in rats. Dig Dis Sci 1995;40: 2162-2169.
    15. Foitzik T, Faulhaber J, Hotz HG, Kirchengast M, Buhr HJ. Endothelin mediates local and systemic disease sequelae in severe experimental pancreatitis. Pancreas 2001; 22: 248-254.
    16. Andrzejewska A, Dlugosz JW. The endothelin-1 receptor antagonists ameliorate histology and ultrastructural alterations in the pancreas and decrease trypsinogen activation in severe taurocholate pancreatitis in rats. Int J Exp Pathol 2003;84:221-229.
    17. Yin BB, Ma BJ, Cai R, Zhang JH, Ren HM, Zhang YL. Protecting effect of somatostatin and somatotropin on brain injury of severe acute pancreatitis rat. Zhonghua Xiaohua Zazhi (Chinese) 2004;24:271-272.
    18. Liu X, Nakano I, Yamaguchi H, et al. Protective effect of nitric oxide on development of acute pancreatitis in rats. Dig Dis Sci 1995;40:2162-2169.
    19. Leung PS. Local renin-angiotensin system in the pancreas:the significance of changes by chronic hypoxia and acute pancreatitis. JOP 2001;2:3-8.
    20. Zhen ZL. Clinical analysis on severe pancreatitis complicated with pancreatic encephalopathy. Chin J Mode Surg 2004;5: 453.
    21. Powell JJ, Miles R, Siriwardena AK. Antibiotic prophylaxis in the initial management of severe acute pancreatitis. Br J Surg 1998;85:582-587.
    22. Coticchia JM, Lessler MA, Ellison EC, Carey LC. Mitochondrial dysfunction induced by pancreatitis associated ascitic fluid. Proc Soc Exp Biol Med 1983;172: 412-418.
    23. Hoerauf A, Hammer S, Mulle-Muhsok B, Rupprecht H. Intra-abdominal candida infection during acute necrotizing pancreatitis has a high prevalence and is associated with increased mortality. Crit Care Med 1998;26:2010-2015.
    24. Knochel JP. Hypoxia is the cause of brain damage in hyponatremia. JAMA 1999;281: 2342-2343.
    25. Jin SL, Song XW, Gu HG, Yuan T. 13 cases of severe acute pancreatitis complicated with pancreatic encephalopathy. Shijie Huaren Xiaohua Zazhi 2000;8:721-722.
    26. Buerstatte CR, Behar KL, Novotny EJ, et al. Brain regional development of the activity of alpha-ketoglutarate dehydrogenase complex in the rat. Brain Res Dev Brain Res2000;125:139-145.
    27. Buerstatte CR, Behar KL, Novotny EJ, Lai JC. Brain regional development of the activity of alpha-ketoglutarate dehydrogenase complex in the rat. Brain Res Dev Brain Res 2000;125:139-145.
    28. Zhang G, Zhang ZD, Liu XB, Hu WM, Yan LN, Jiang JM.Analysis on 17 Cases of Acute Pancreatitis Complicated with Pancreatic Encephalopathy. Chin J Base Clin Gen Surg 1999;6:344-346.
    29.张鸿彦,夏庆.胰性脑病的临床特点分析.中国综合临床,2005,21:1108-1109.
    30.巫协宁.胰性脑病的病理、病因、发病机制和防治.胰腺病学,2003,3:49-50.
    31.戎兰,施琦赟.注意识别胰性脑病和Wernicke脑病.中华消化杂志. 2006,26:287.
    32.张启龙,代文杰.胰性脑病的诊断治疗.现代生物学进展,2006,6:117-119.
    33.刘训良,钱祝银,苗毅1重症胰腺炎患者血清髓鞘碱性蛋白含量测定及其临床意义.中华实验外科杂志, 1997; 14: 203~204.
    34.张鸿彦,夏庆.胰性脑病的中文文献15年回顾.中国循证医学杂志,2005,5:71-74.
    35.赵近花.输液患者的韦尼克脑病.日本医学介绍, 1995, 16:466-467.
    36. Ruggieri RM , L upo I, P icco li F. Pancreatic encephalophathy: a 7-year follow-up case report and review of the literature. Neurol Sci, 2002, 23: 203-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700