复杂疾病的核心基因筛选及分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤、代谢疾病、心脑血管疾病等绝大多数复杂性疾病的的流行和发展不仅给人类带来了漫长的痛苦和折磨,也给世界各国带来了沉重的负担,广泛且深入地研究复杂疾病的发病机理成为现下最迫切的医学难题。然而复杂疾病的诊断与研究与传统的单基因遗传疾病不同,需要综合考虑疾病发生的环境因素和遗传因素,从而为其诊断、药物设计、个性化治疗以及预防提供坚实的基础和突破性思路。
     转录组数据对于揭示疾病相关基因及其分子机制有着重要的作用,发现了许多在癌症发生发展过程中起到重要作用的靶点,为后续的基因表达调控、代谢通路和信号转导等研究提供了有意义的启示。然而对如此庞大数据进行信息挖掘并不容易,我们在现有方法的基础上创建了一套完整的分析流程,注重各基因表达之间的共同合作关系,很好地弥补了传统方法筛选核心基因时的不足。对于每一个基因给予一个分值用以评判它在整个生物学过程的各个阶段下和全过程中是否稳定地与其他基因共表达调控,并以此参数筛选参与生物学功能的核心基因。在分析前列腺癌发生发展的分子机制中,运用这套分析流程筛选核心基因,随机检测证实全部与人类胚胎癌干细胞、增生性疾病、慢性炎症和DNA损伤等肿瘤发生机制相关,证实了该分析流程的有效和可靠,也为进一步的深入研究提供了分析基础和数据积累。在对三种人工多能干细胞全能性的机制研究中,针对全部miRNA表达情况,创新性地将miRNA靶基因和印记基因信息整合在一起,为细胞全能性研究提供思路。在抗糖尿病药物的分子机制分析中,主要关注Rosi、Pio和Met抗糖尿病药物在肝脏、心脏和脂肪组织等五种不同组织细胞中的表达差异,并且结合转录因子和蛋白质相互作用数据库,阐述了三种药物之间存在的相同或不同的作用机制,以及不同脂肪组织在功能与起源分化上的差异,为深入研究糖尿病的发生和抗糖尿病药物的研制提供思路。
     虽然我们的工作还不能完全揭示这些复杂疾病相关的基因群关系,但对整个基因调控网络图而言是很好的补充和完善。进一步的研究需要我们利用更多的数据和手段整合分析才能逐渐理清多基因通过蛋白质复合物、调控网络以及互作的通路网络调控。我们相信随着时间的推移和相关知识的积累,总有一天能够将这张调控网络完全呈现在人们面前。
Prevalence and development of complex diseases like cancer, metabolic diseases, heart andcardiovascular diseases, not only bring human beings a long period of pain and suffering, but alsobe a heavy burden to the world. Thus, it becomes a most pressing medical problem to study thepathogenesis of complex diseases more extensively and deeply. However, the diagnosis ofcomplex diseases are different from those of traditional single-gene genetic diseases, asenvironmental factors and genetic factors are needed to be considered to provide solid foundationand breakthrough ideas for diagnosis, drug design, personalized treatment and prevention.
     Transcriptome data plays an important role in revealing disease-related genes and molecularmechanism. In recent years, some researches based on time series expression data reveal muchcrucial targets in the process of cancer development, which provide meaningful insights in furtherstudy on regulation of gene expression, metabolic pathways and signal transduction. However, it’sdifficult to analyze these hidden changes of gene expression with commonly used statisticalmethods, so we created a complete set of expression profiling data analysis process used to screenout those core regulatory genes closely related with the disease to describe its specific molecularmechanisms in detail on the basis of existing algorithms. Conservative and dynamic cooperativeproperties were firstly introduced to mine gene expression profiling data for finding functionalgene signatures. TiCoGE is just a strategy to find those gene clusters with strong cooperativedynamic conservative properties across cancer progression stages in dealing with gene expressionprofiling data, and each gene will be ranked with a conservative score to evaluate its importance incancer progression and development. Our methodology was presented in an effort to breakthrough the limitations of pure statistical models and looks reasonable sensitive for further studyof gene function and regulation of networks.
     We chose a set of time series gene expression data on prostate cancer, including the fivestages for analyzing the co-expression of genes in the process of tumor development. TiCoGEmethod eventually screened out492high score genes, and several genes were randomly selectedand all annotated to well known oncogenesis mechanisms or disease models, such as humanembryonal cancer stem cells, proliferative disorders, human immunodeficiency, chronicinflammation, out of control of remodeling balance, DNA-damaging, etc. These results not onlyconfirmed the reliability and validity of TiCoGE method, but also explore the relationship ofmultiple genes in cancer development from a global perspective. It is valuable to elucidate thelisted core genes for further research as an analytic basis and data accumulation.
     Our work also included analyzing whole expressed miRNA of three artificial pluripotent cells,by an innovative use of focusing on the region of differentially expressed miRNAs, the adjacentmiRNA target genes and imprinted genes. Besides, another part of our work is about the molecularmechanism of anti-diabetic drugs, including rosiglitazone, pioglitazone and metformin. in fivedifferent tissue cells, that is liver, heart and3adipose tissues. We explained the potential same ordifferent mechanism of drugs and search the diverse function and differentiation between threeadipose tissues, which may provide new idea for anti-diabetic drug design.
     Thus, to some extent, our evolutionary conservation analyzing based methodologycompensates for the inherent weaknesses of current statistical methods and provides a new wayfor gene expression profile analysis. However, complex disease is caused by multiple genesthrough protein complexes, regulatory networks, as well as the interaction path network control,we need to use multiple types of data and tools for integration analysis in order to clarify theassociation between the combination of multiple genes and complex diseases gradually.
引文
1. McKusick, V.A., Mendelian Inheritance in Man and its online version, OMIM. Am J HumGenet,2007.80(4): p.588-604.
    2. Yusuf, S., S. Reddy, S. Ounpuu, et al., Global burden of cardiovascular diseases: Part II:variations in cardiovascular disease by specific ethnic groups and geographic regions andprevention strategies. Circulation,2001.104(23): p.2855-64.
    3. Cook, I.G. and T.J. Dummer, Changing health in China: re-evaluating the epidemiologicaltransition model. Health Policy,2004.67(3): p.329-43.
    4. He, J., D. Gu, X. Wu, et al., Major causes of death among men and women in China. NewEngland Journal of Medicine,2005.353(11): p.1124-1134.
    5. Fields, L.E., V.L. Burt, J.A. Cutler, et al., The burden of adult hypertension in the UnitedStates1999to2000: a rising tide. Hypertension,2004.44(4): p.398-404.
    6. Gu, D., K. Reynolds, X. Wu, et al., Prevalence, awareness, treatment, and control ofhypertension in china. Hypertension,2002.40(6): p.920-7.
    7. Murray, C.J.L. and A.D. Lopez, Mortality by cause for eight regions of the world: GlobalBurden of Disease Study. The Lancet,1997.349(9061): p.1269-1276.
    8. Sreekumar, K.R., Y. Huang, M.H. Pausch, et al., Predicting GPCR-G-protein coupling usinghidden Markov models. Bioinformatics,2004.20(18): p.3490-9.
    9. Li, L., C.R. Weinberg, T.A. Darden, et al., Gene selection for sample classification based ongene expression data: study of sensitivity to choice of parameters of the GA/KNN method.Bioinformatics,2001.17(12): p.1131-42.
    10. Clare, A. and R.D. King, Machine learning of functional class from phenotype data.Bioinformatics,2002.18(1): p.160-6.
    11. Hirschhorn, J.N., K. Lohmueller, E. Byrne, et al., A comprehensive review of geneticassociation studies. Genet Med,2002.4(2): p.45-61.
    12. Lohmueller, K.E., C.L. Pearce, M. Pike, et al., Meta-analysis of genetic association studiessupports a contribution of common variants to susceptibility to common disease. Nat Genet,2003.33(2): p.177-82.
    13. Iafrate, A.J., L. Feuk, M.N. Rivera, et al., Detection of large-scale variation in the humangenome. Nat Genet,2004.36(9): p.949-51.
    14. Sebat, J., B. Lakshmi, J. Troge, et al., Large-scale copy number polymorphism in the humangenome. Science,2004.305(5683): p.525-8.
    15. DeRisi, J., L. Penland, P.O. Brown, et al., Use of a cDNA microarray to analyse geneexpression patterns in human cancer. Nat Genet,1996.14(4): p.457-60.
    16. Soinov, L.A., M.A. Krestyaninova, and A. Brazma, Towards reconstruction of gene networksfrom expression data by supervised learning. Genome Biol,2003.4(1): p. R6.
    17. Hartemink, A.J., D.K. Gifford, T.S. Jaakkola, et al., Using graphical models and genomicexpression data to statistically validate models of genetic regulatory networks. Pac SympBiocomput,2001: p.422-33.
    18. Rison, S.C. and J.M. Thornton, Pathway evolution, structurally speaking. Curr Opin StructBiol,2002.12(3): p.374-82.
    19. Graff, J.C., M. Behnke, J. Radke, et al., A comprehensive SAGE database for the analysis ofgammadelta T cells. Int Immunol,2006.18(4): p.613-26.
    20. Ma, X.H., S.J. Hu, H. Ni, et al., Serial analysis of gene expression in mouse uterus at theimplantation site. J Biol Chem,2006.281(14): p.9351-60.
    21. Sharma, U.K., J. Trujillo, H.F. Song, et al., A novel factor produced by placental cells withactivity against HIV-1. J Immunol,1998.161(11): p.6406-12.
    22. Ergun, A., C.A. Lawrence, M.A. Kohanski, et al., A network biology approach to prostatecancer. Mol Syst Biol,2007.3: p.82.
    23. Berns, A., Gene expression in diagnosis. Nature,2000.403(6769): p.491-2.
    24. Haqqani, A.S., J.K. Sandhu, and H.C. Birnboim, Constitutive expression of interleukin-8byMutatect cells markedly affects their tumor biology. Carcinogenesis,2001.22(2): p.243-50.
    25. Ramsay, G., DNA chips: state-of-the art. Nat Biotechnol,1998.16(1): p.40-4.
    26. Aparicio, S., J. Chapman, E. Stupka, et al., Whole-genome shotgun assembly and analysis ofthe genome of Fugu rubripes. Science,2002.297(5585): p.1301-10.
    27. Sequence and comparative analysis of the chicken genome provide unique perspectives onvertebrate evolution. Nature,2004.432(7018): p.695-716.
    28. Costa, V., C. Angelini, I. De Feis, et al., Uncovering the complexity of transcriptomes withRNA-Seq. J Biomed Biotechnol,2010.2010: p.853916.
    29. Wang, Z., M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics.Nat Rev Genet,2009.10(1): p.57-63.
    30. Marioni, J.C., C.E. Mason, S.M. Mane, et al., RNA-seq: an assessment of technicalreproducibility and comparison with gene expression arrays. Genome Res,2008.18(9): p.1509-17.
    31. Kato, J., Y. Kuwabara, M. Mitani, et al., Expression of survivin in esophageal cancer:correlation with the prognosis and response to chemotherapy. Int J Cancer,2001.95(2): p.92-5.
    32. Abba, M.C., J.A. Drake, K.A. Hawkins, et al., Transcriptomic changes in human breastcancer progression as determined by serial analysis of gene expression. Breast Cancer Res,2004.6(5): p. R499-513.
    33. Ito, H., K. Honda, R. Satow, et al., Combined functional genome survey of therapeutic targetsfor clear cell carcinoma of the kidney. Jpn J Clin Oncol,2011.41(7): p.847-53.
    34. Ohmachi, T., F. Tanaka, K. Mimori, et al., Clinical significance of TROP2expression incolorectal cancer. Clin Cancer Res,2006.12(10): p.3057-63.
    35. Kok, S.H., H.H. Chang, J.Y. Tsai, et al., Expression of Cyr61(CCN1) in human oralsquamous cell carcinoma: An independent marker for poor prognosis. Head Neck,2010.32(12): p.1665-73.
    36. Okudela, K., T. Yazawa, T. Woo, et al., Down-regulation of DUSP6expression in lung cancer:its mechanism and potential role in carcinogenesis. Am J Pathol,2009.175(2): p.867-81.
    37. Gronberg, H., Prostate cancer epidemiology. Lancet,2003.361(9360): p.859-64.
    38. MacQueen, J. Some methods for classification and analysis of multivariate observations.1967. California, USA.
    39. ROUSSEEUW, L.K.P.J., CLUSTERING BY MEANS OF MEDOIDS. Statistical dataanalysis based on the L1-norm and related methods,1987: p.405.
    40. Ernst, J., G.J. Nau, and Z. Bar-Joseph, Clustering short time series gene expression data.Bioinformatics,2005.21Suppl1: p. i159-68.
    41. Carlin, B.P. and T.A. Louis, Bayes and empirical Bayes methods for data analysis. Statisticsand Computing,1997.7(2): p.153-154.
    42. Nowell, P.C., The clonal evolution of tumor cell populations. Science,1976.194(4260): p.23-8.
    43. Greaves, M., Cancer causation: the Darwinian downside of past success? Lancet Oncol,2002.3(4): p.244-51.
    44. Loberg, R.D., D.A. Bradley, S.A. Tomlins, et al., The lethal phenotype of cancer: themolecular basis of death due to malignancy. CA Cancer J Clin,2007.57(4): p.225-41.
    45. Davidson, J.M., K.L. Gorringe, S.F. Chin, et al., Molecular cytogenetic analysis of breastcancer cell lines. Br J Cancer,2000.83(10): p.1309-17.
    46. Hande, M.P., T.V. Azizova, C.R. Geard, et al., Past exposure to densely ionizing radiationleaves a unique permanent signature in the genome. Am J Hum Genet,2003.72(5): p.1162-70.
    47. Gomyo, Y., M. Osaki, N. Kaibara, et al., Numerical aberration and point mutation of p53genein human gastric intestinal metaplasia and well-differentiated adenocarcinoma: analysis byfluorescence in situ hybridization (FISH) and PCR-SSCP. Int J Cancer,1996.66(5): p.594-9.
    48. Czader, M., A. Porwit, E. Tani, et al., DNA image cytometry and the expression ofproliferative markers (proliferating cell nuclear antigen and Ki67) in non-Hodgkin'slymphomas. Mod Pathol,1995.8(1): p.51-8.
    49. Kanehisa, M., S. Goto, Y. Sato, et al., KEGG for integration and interpretation of large-scalemolecular data sets. Nucleic Acids Res,2012.40(D1): p. D109-D114.
    50. Ogata, H., S. Goto, K. Sato, et al., KEGG: Kyoto encyclopedia of genes and genomes.Nucleic Acids Res,1999.27(1): p.29-34.
    51. Strasser, A., A.W. Harris, M.L. Bath, et al., Novel primitive lymphoid tumours induced intransgenic mice by cooperation between myc and bcl-2. Nature,1990.348(6299): p.331-3.
    52. Gonzalgo, M.L. and W.B. Isaacs, Molecular pathways to prostate cancer. J Urol,2003.170(6Pt1): p.2444-52.
    53. Shand, R.L. and E.P. Gelmann, Molecular biology of prostate-cancer pathogenesis. Curr OpinUrol,2006.16(3): p.123-31.
    54. Wang, W., J.B. Wyckoff, V.C. Frohlich, et al., Single cell behavior in metastatic primarymammary tumors correlated with gene expression patterns revealed by molecular profiling.Cancer Res,2002.62(21): p.6278-88.
    55. Pantel, K. and U. Woelfle, Micrometastasis in breast cancer and other solid tumors. J BiolRegul Homeost Agents,2004.18(2): p.120-5.
    56. Budhu, A.S., B. Zipser, M. Forgues, et al., The molecular signature of metastases of humanhepatocellular carcinoma. Oncology,2005.69Suppl1: p.23-7.
    57. D'Arrigo, A., C. Belluco, A. Ambrosi, et al., Metastatic transcriptional pattern revealed bygene expression profiling in primary colorectal carcinoma. Int J Cancer,2005.115(2): p.256-62.
    58. Minn, A.J., Y. Kang, I. Serganova, et al., Distinct organ-specific metastatic potential ofindividual breast cancer cells and primary tumors. J Clin Invest,2005.115(1): p.44-55.
    59. Paget, S., The distribution of secondary growths in cancer of the breast.1889. CancerMetastasis Rev,1989.8(2): p.98-101.
    60. Fidler, I.J., The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. NatRev Cancer,2003.3(6): p.453-8.
    61. Pienta, K.J. and R. Loberg, The "emigration, migration, and immigration"of prostate cancer.Clin Prostate Cancer,2005.4(1): p.24-30.
    62. Tomlins, S.A., R. Mehra, D.R. Rhodes, et al., Integrative molecular concept modeling ofprostate cancer progression. Nat Genet,2007.39(1): p.41-51.
    63. Hsing, A.W., S. Chua, Jr., Y.T. Gao, et al., Prostate cancer risk and serum levels of insulin andleptin: a population-based study. J Natl Cancer Inst,2001.93(10): p.783-9.
    64. Stattin, P., S. Soderberg, G. Hallmans, et al., Leptin is associated with increased prostatecancer risk: a nested case-referent study. J Clin Endocrinol Metab,2001.86(3): p.1341-5.
    65. Huggins, C. and C.V. Hodges, Studies on prostatic cancer. I. The effect of castration, ofestrogen and of androgen injection on serum phosphatases in metastatic carcinoma of theprostate.1941. J Urol,2002.167(2Pt2): p.948-51; discussion952.
    66. Ashburner, M., C.A. Ball, J.A. Blake, et al., Gene Ontology: tool for the unification ofbiology. Nature genetics,2000.25(1): p.25.
    67. Jiang, G. and B.B. Zhang, Glucagon and regulation of glucose metabolism. Am J PhysiolEndocrinol Metab,2003.284(4): p. E671-8.
    68. Riemann, K., H. Struwe, A. Eisenhardt, et al., Characterization of intron-1haplotypes of theG protein beta4subunit gene--association with survival and progression in patients withurothelial bladder carcinoma. Pharmacogenet Genomics,2008.18(11): p.999-1008.
    69. Riemann, K., H. Struwe, H. Alakus, et al., Association of GNB4intron-1haplotypes withsurvival in patients with UICC stage III and IV colorectal carcinoma. Anticancer Res,2009.29(4): p.1271-4.
    70. Pyon, Y.S. and J. Li, Identifying Gene Signatures from Cancer Progression Data UsingOrdinal Analysis. Proceedings of IEEE International Conference on Bioinformatics andBiomedicine,2009: p.136-141.
    71. Vincenzo, S., M. Leo, P. Furio, et al., Genetic Effects of Trabecular Titanium on MG-63CellLine: A Genetic Profiling Evaluation. ISRN Materials Science,2011.6.
    72. Uhl, G.R., Q.R. Liu, T. Drgon, et al., Molecular genetics of successful smoking cessation:convergent genome-wide association study results. Arch Gen Psychiatry,2008.65(6): p.683-93.
    73. Rose, J.E., F.M. Behm, T. Drgon, et al., Personalized smoking cessation: interactions betweennicotine dose, dependence and quit-success genotype score. Mol Med,2010.16(7-8): p.247-53.
    74. Mishina, T., H. Watanabe, H. Araki, et al., Epidemiological study of prostatic cancer bymatched-pair analysis. Prostate,1985.6(4): p.423-36.
    75. Honda, G.D., L. Bernstein, R.K. Ross, et al., Vasectomy, cigarette smoking, and age at firstsexual intercourse as risk factors for prostate cancer in middle-aged men. Br J Cancer,1988.57(3): p.326-31.
    76. Hiatt, R.A., M.A. Armstrong, A.L. Klatsky, et al., Alcohol consumption, smoking, and otherrisk factors and prostate cancer in a large health plan cohort in California (United States).Cancer Causes Control,1994.5(1): p.66-72.
    77. Rodriguez, C., L.M. Tatham, M.J. Thun, et al., Smoking and fatal prostate cancer in a largecohort of adult men. Am J Epidemiol,1997.145(5): p.466-75.
    78. Barbieri, M.A., C. Kong, P.I. Chen, et al., The SRC homology2domain of Rin1mediates itsbinding to the epidermal growth factor receptor and regulates receptor endocytosis. J BiolChem,2003.278(34): p.32027-36.
    79. Hu, H., J.M. Bliss, Y. Wang, et al., RIN1is an ABL tyrosine kinase activator and a regulatorof epithelial-cell adhesion and migration. Curr Biol,2005.15(9): p.815-23.
    80. Milstein, M., C.K. Mooser, H. Hu, et al., RIN1is a breast tumor suppressor gene. Cancer Res,2007.67(24): p.11510-6.
    81. Tomshine, J.C., S.R. Severson, D.A. Wigle, et al., Cell proliferation and epidermal growthfactor signaling in non-small cell lung adenocarcinoma cell lines are dependent on Rin1. JBiol Chem,2009.284(39): p.26331-9.
    82. Wong, S. and O.N. Witte, The BCR-ABL story: bench to bedside and back. Annu RevImmunol,2004.22: p.247-306.
    83. Thai, M., P.Y. Ting, J. McLaughlin, et al., ABL fusion oncogene transformation and inhibitorsensitivity are mediated by the cellular regulator RIN1. Leukemia,2011.25(2): p.290-300.
    84. Baldwin, A.S., Jr., K.P. LeClair, H. Singh, et al., A large protein containing zinc fingerdomains binds to related sequence elements in the enhancers of the class I majorhistocompatibility complex and kappa immunoglobulin genes. Mol Cell Biol,1990.10(4): p.1406-14.
    85. Fan, C.M. and T. Maniatis, A DNA-binding protein containing two widely separated zincfinger motifs that recognize the same DNA sequence. Genes Dev,1990.4(1): p.29-42.
    86. Maekawa, T., H. Sakura, T. Sudo, et al., Putative metal finger structure of the humanimmunodeficiency virus type1enhancer binding protein HIV-EP1. J Biol Chem,1989.264(25): p.14591-3.
    87. Morange, P.E., I. Bezemer, N. Saut, et al., A follow-up study of a genome-wide associationscan identifies a susceptibility locus for venous thrombosis on chromosome6p24.1. Am JHum Genet,2010.86(4): p.592-5.
    88. Berishaj, M., S.P. Gao, S. Ahmed, et al., Stat3is tyrosine-phosphorylated through theinterleukin-6/glycoprotein130/Janus kinase pathway in breast cancer. Breast Cancer Res,2007.9(3): p. R32.
    89. Waugh, D.J. and C. Wilson, The interleukin-8pathway in cancer. Clin Cancer Res,2008.14(21): p.6735-41.
    90. Kawai, T. and S. Akira, The role of pattern-recognition receptors in innate immunity: updateon Toll-like receptors. Nat Immunol.11(5): p.373-84.
    91. O'Neill, L.A., When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transduction. Immunity,2008.29(1): p.12-20.
    92. Zheng, S.L., K. Augustsson-Balter, B. Chang, et al., Sequence variants of toll-like receptor4are associated with prostate cancer risk: results from the CAncer Prostate in Sweden Study.Cancer Res,2004.64(8): p.2918-22.
    93. Hua, D., M.Y. Liu, Z.D. Cheng, et al., Small interfering RNA-directed targeting of Toll-likereceptor4inhibits human prostate cancer cell invasion, survival, and tumorigenicity. MolImmunol,2009.46(15): p.2876-84.
    94. Riddell, J.R., W. Bshara, M.T. Moser, et al., Peroxiredoxin1controls prostate cancer growththrough Toll-like receptor4-dependent regulation of tumor vasculature. Cancer Res,2011.71(5): p.1637-46.
    95. Kundu, S.D., C. Lee, B.K. Billips, et al., The toll-like receptor pathway: a novel mechanismof infection-induced carcinogenesis of prostate epithelial cells. Prostate,2008.68(2): p.223-9.
    96. Ellerman, J.E., C.K. Brown, M. de Vera, et al., Masquerader: high mobility group box-1andcancer. Clin Cancer Res,2007.13(10): p.2836-48.
    97. Zagorska, A., M. Deak, D.G. Campbell, et al., New roles for the LKB1-NUAK pathway incontrolling myosin phosphatase complexes and cell adhesion. Sci Signal,2010.3(115): p.ra25.
    98. Suzuki, A., J. Lu, G. Kusakai, et al., ARK5is a tumor invasion-associated factor downstreamof Akt signaling. Mol Cell Biol,2004.24(8): p.3526-35.
    99. Suzuki, A., G. Kusakai, A. Kishimoto, et al., Regulation of caspase-6and FLIP by the AMPKfamily member ARK5. Oncogene,2004.23(42): p.7067-75.
    100. Humbert, N., N. Navaratnam, A. Augert, et al., Regulation of ploidy and senescence by theAMPK-related kinase NUAK1. EMBO J,2010.29(2): p.376-86.
    101. Jiang, H., M.B. Harris, and P. Rothman, IL-4/IL-13signaling beyond JAK/STAT. J AllergyClin Immunol,2000.105(6Pt1): p.1063-70.
    102. Hershey, G.K., IL-13receptors and signaling pathways: an evolving web. J Allergy ClinImmunol,2003.111(4): p.677-90; quiz691.
    103. Martinez-Nunez, R.T., F. Louafi, and T. Sanchez-Elsner, The interleukin13(IL-13) pathwayin human macrophages is modulated by microRNA-155via direct targeting of interleukin13receptor alpha1(IL13Ralpha1). J Biol Chem,2011.286(3): p.1786-94.
    104. Wills-Karp, M., Interleukin-13in asthma pathogenesis. Immunol Rev,2004.202: p.175-90.
    105. Fuss, I.J. and W. Strober, The role of IL-13and NK T cells in experimental and humanulcerative colitis. Mucosal Immunol,2008.1Suppl1: p. S31-3.
    106. Balkwill, F. and A. Mantovani, Inflammation and cancer: back to Virchow? Lancet,2001.357(9255): p.539-45.
    107. Coussens, L.M. and Z. Werb, Inflammation and cancer. Nature,2002.420(6917): p.860-7.
    108. Balkwill, F. and L.M. Coussens, Cancer: an inflammatory link. Nature,2004.431(7007): p.405-6.
    109. Karin, M., Inflammation and cancer: the long reach of Ras. Nat Med,2005.11(1): p.20-1.
    110. Karin, M., Nuclear factor-kappaB in cancer development and progression. Nature,2006.441(7092): p.431-6.
    111. Mantovani, A., P. Allavena, A. Sica, et al., Cancer-related inflammation. Nature,2008.454(7203): p.436-44.
    112. Kolonel, L.N., B.E. Henderson, J.H. Hankin, et al., A multiethnic cohort in Hawaii and LosAngeles: baseline characteristics. Am J Epidemiol,2000.151(4): p.346-57.
    113. Kaaks, R. and A. Lukanova, Effects of weight control and physical activity in cancerprevention: role of endogenous hormone metabolism. Ann N Y Acad Sci,2002.963: p.268-81.
    114. Chan, J.M., P.H. Gann, and E.L. Giovannucci, Role of diet in prostate cancer developmentand progression. J Clin Oncol,2005.23(32): p.8152-60.
    115. Medes, G., A. Thomas, and S. Weinhouse, Metabolism of neoplastic tissue. IV. A study oflipid synthesis in neoplastic tissue slices in vitro. Cancer Res,1953.13(1): p.27-9.
    116. Ookhtens, M., R. Kannan, I. Lyon, et al., Liver and adipose tissue contributions to newlyformed fatty acids in an ascites tumor. Am J Physiol,1984.247(1Pt2): p. R146-53.
    117. Campa, D., A. Husing, J. Chang-Claude, et al., Genetic variability of the fatty acid synthasepathway is not associated with prostate cancer risk in the European Prospective Investigationon Cancer (EPIC). Eur J Cancer,2011.47(3): p.420-7.
    118. Gansler, T.S., W. Hardman,3rd, D.A. Hunt, et al., Increased expression of fatty acid synthase(OA-519) in ovarian neoplasms predicts shorter survival. Hum Pathol,1997.28(6): p.686-92.
    119. Swinnen, J.V., T. Roskams, S. Joniau, et al., Overexpression of fatty acid synthase is an earlyand common event in the development of prostate cancer. Int J Cancer,2002.98(1): p.19-22.
    120. Brusselmans, K., E. De Schrijver, W. Heyns, et al., Epigallocatechin-3-gallate is a potentnatural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis inprostate cancer cells. Int J Cancer,2003.106(6): p.856-62.
    121. Takahiro, T., K. Shinichi, and S. Toshimitsu, Expression of fatty acid synthase as a prognosticindicator in soft tissue sarcomas. Clin Cancer Res,2003.9(6): p.2204-12.
    122. Brusselmans, K., E. De Schrijver, G. Verhoeven, et al., RNA interference-mediated silencingof the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostatecancer cells. Cancer Res,2005.65(15): p.6719-25.
    123. Rossi, S., W. Ou, D. Tang, et al., Gastrointestinal stromal tumours overexpress fatty acidsynthase. J Pathol,2006.209(3): p.369-75.
    124. Pei, Z., P. Sun, P. Huang, et al., Acyl-CoA synthetase VL3knockdown inhibits human gliomacell proliferation and tumorigenicity. Cancer Res,2009.69(24): p.9175-82.
    125. Homma, S., T. Shimada, T. Hikake, et al., Expression pattern of LRR and Igdomain-containing protein (LRRIG protein) in the early mouse embryo. Gene Expr Patterns,2009.9(1): p.1-26.
    126. Zou, T.T., F.M. Selaru, Y. Xu, et al., Application of cDNA microarrays to generate amolecular taxonomy capable of distinguishing between colon cancer and normal colon.Oncogene,2002.21(31): p.4855-62.
    127. Jacobsen, L., P. Madsen, S.K. Moestrup, et al., Molecular characterization of a novel humanhybrid-type receptor that binds the alpha2-macroglobulin receptor-associated protein. J BiolChem,1996.271(49): p.31379-83.
    128. Jacobsen, L., P. Madsen, C. Jacobsen, et al., Activation and functional characterization of themosaic receptor SorLA/LR11. J Biol Chem,2001.276(25): p.22788-96.
    129. Jacobsen, L., P. Madsen, M.S. Nielsen, et al., The sorLA cytoplasmic domain interacts withGGA1and-2and defines minimum requirements for GGA binding. FEBS Lett,2002.511(1-3): p.155-8.
    130. Motoi, Y., T. Aizawa, S. Haga, et al., Neuronal localization of a novel mosaic apolipoproteinE receptor, LR11, in rat and human brain. Brain Res,1999.833(2): p.209-15.
    131. Scherzer, C.R., K. Offe, M. Gearing, et al., Loss of apolipoprotein E receptor LR11inAlzheimer disease. Arch Neurol,2004.61(8): p.1200-5.
    132. Offe, K., S.E. Dodson, J.T. Shoemaker, et al., The lipoprotein receptor LR11regulatesamyloid beta production and amyloid precursor protein traffic in endosomal compartments. JNeurosci,2006.26(5): p.1596-603.
    133. Herskowitz, J.H., N.T. Seyfried, M. Gearing, et al., Rho kinase II phosphorylation of thelipoprotein receptor LR11/SORLA alters amyloid-beta production. J Biol Chem,2010.286(8):p.6117-27.
    134. Iorio, M.V., M. Ferracin, C.G. Liu, et al., MicroRNA gene expression deregulation in humanbreast cancer. Cancer Res,2005.65(16): p.7065-70.
    135. Lee, Y.S., H.K. Kim, S. Chung, et al., Depletion of human micro-RNA miR-125b reveals thatit is critical for the proliferation of differentiated cells but not for the down-regulation ofputative targets during differentiation. J Biol Chem,2005.280(17): p.16635-16641.
    136. Borchert, G.M., W. Lanier, and B.L. Davidson, RNA polymerase III transcribes humanmicroRNAs. Nat Struct Mol Biol,2006.13(12): p.1097-101.
    137. Scott, G.K., A. Goga, D. Bhaumik, et al., Coordinate suppression of ERBB2and ERBB3byenforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem,2007.282(2): p.1479-1486.
    138. Shi, X.B., L. Xue, J. Yang, et al., An androgen-regulated miRNA suppresses Bak1expressionand induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci U S A,2007.104(50): p.19983-8.
    139. Tili, E., J.J. Michaille, A. Cimino, et al., Modulation of miR-155and miR-125b levelsfollowing lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating theresponse to endotoxin shock. J Immunol,2007.179(8): p.5082-9.
    140. Mizuno, Y., K. Yagi, Y. Tokuzawa, et al., miR-125b inhibits osteoblastic differentiation bydown-regulation of cell proliferation. Biochem Biophys Res Commun,2008.368(2): p.267-72.
    141. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonicand adult fibroblast cultures by defined factors. Cell,2006.126(4): p.663-76.
    142. Waikel, R.L., Y. Kawachi, P.A. Waikel, et al., Deregulated expression of c-Myc depletesepidermal stem cells. Nat Genet,2001.28(2): p.165-8.
    143. Satoh, Y., I. Matsumura, H. Tanaka, et al., Roles for c-Myc in self-renewal of hematopoieticstem cells. J Biol Chem,2004.279(24): p.24986-93.
    144. Adhikary, S. and M. Eilers, Transcriptional regulation and transformation by Myc proteins.Nat Rev Mol Cell Biol,2005.6(8): p.635-45.
    145. Yamanaka, S., Strategies and new developments in the generation of patient-specificpluripotent stem cells. Cell stem cell,2007.1(1): p.39-49.
    146. Cartwright, P., C. McLean, A. Sheppard, et al., LIF/STAT3controls ES cell self-renewal andpluripotency by a Myc-dependent mechanism. Development,2005.132(5): p.885-96.
    147. Sarkis, A.S., G. Dalbagni, C. Cordon-Cardo, et al., Nuclear overexpression of p53protein intransitional cell bladder carcinoma: a marker for disease progression. Journal of the NationalCancer Institute,1993.85(1): p.53-59.
    148. Ping, X.L., D. Ratner, H. Zhang, et al., PTCH mutations in squamous cell carcinoma of theskin. J Invest Dermatol,2001.116(4): p.614-6.
    149. Mitrakou, A., D. Kelley, T. Veneman, et al., Contribution of abnormal muscle and liverglucose metabolism to postprandial hyperglycemia in NIDDM. Diabetes,1990.39(11): p.1381-1390.
    150. Scheen, A.J., Drug treatment of non-insulin-dependent diabetes mellitus in the1990s.Achievements and future developments. Drugs,1997.54(3): p.355-68.
    151. Mooradian, A.D. and J.E. Thurman, Drug therapy of postprandial hyperglycaemia. Drugs,1999.57(1): p.19-29.
    152. Sorbera, L., X. Rabasseda, and J. Castaner, ROSIGLITAZONE MALEATE: PROP INNM.Drugs of the Future,1998.23(9): p.977-985.
    153. Plosker, G.L. and D. Faulds, Troglitazone: a review of its use in the management of type2diabetes mellitus. Drugs,1999.57(3): p.409-38.
    154. Okoniewski, M.J. and C.J. Miller, Hybridization interactions between probesets in short oligomicroarrays lead to spurious correlations. BMC Bioinformatics,2006.7: p.276.
    155. Royce, T.E., J.S. Rozowsky, and M.B. Gerstein, Toward a universal microarray: prediction ofgene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res,2007.35(15): p. e99.
    156. Margulies, M., M. Egholm, W.E. Altman, et al., Genome sequencing in microfabricatedhigh-density picolitre reactors. Nature,2005.437(7057): p.376-80.
    157. Bentley, D.R., Whole-genome re-sequencing. Curr Opin Genet Dev,2006.16(6): p.545-52.
    158. Valouev, A., J. Ichikawa, T. Tonthat, et al., A high-resolution, nucleosome position map of C.elegans reveals a lack of universal sequence-dictated positioning. Genome Res,2008.18(7): p.1051-63.
    159. Hillier, L.W., G.T. Marth, A.R. Quinlan, et al., Whole-genome sequencing and variantdiscovery in C. elegans. Nat Methods,2008.5(2): p.183-8.
    160. Cokus, S.J., S. Feng, X. Zhang, et al., Shotgun bisulphite sequencing of the Arabidopsisgenome reveals DNA methylation patterning. Nature,2008.452(7184): p.215-9.
    161. Van Tassell, C.P., T.P. Smith, L.K. Matukumalli, et al., SNP discovery and allele frequencyestimation by deep sequencing of reduced representation libraries. Nat Methods,2008.5(3): p.247-52.
    162. Chen, W., V. Kalscheuer, A. Tzschach, et al., Mapping translocation breakpoints bynext-generation sequencing. Genome Res,2008.18(7): p.1143-9.
    163. Mortazavi, A., B.A. Williams, K. McCue, et al., Mapping and quantifying mammaliantranscriptomes by RNA-Seq. Nat Methods,2008.5(7): p.621-8.
    164. Wilhelm, B.T., S. Marguerat, S. Watt, et al., Dynamic repertoire of a eukaryotic transcriptomesurveyed at single-nucleotide resolution. Nature,2008.453(7199): p.1239-43.
    165. Wang, Z., M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics.Nature Reviews Genetics,2009.10(1): p.57-63.
    166. Haas, B.J. and M.C. Zody, Advancing RNA-Seq analysis. Nat Biotechnol,2010.28(5): p.421-3.
    167. Langmead, B., C. Trapnell, M. Pop, et al., Ultrafast and memory-efficient alignment of shortDNA sequences to the human genome. Genome Biol,2009.10(3): p. R25.
    168. Jiang, H. and W.H. Wong, Statistical inferences for isoform expression in RNA-Seq.Bioinformatics,2009.25(8): p.1026-32.
    169. Trapnell, C., B.A. Williams, G. Pertea, et al., Transcript assembly and quantification byRNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.Nat Biotechnol,2010.28(5): p.511-5.
    170. Brivanlou, A.H. and J.E. Darnell, Jr., Signal transduction and the control of gene expression.Science,2002.295(5556): p.813-8.
    171. Messina, D.N., J. Glasscock, W. Gish, et al., An ORFeome-based analysis of humantranscription factor genes and the construction of a microarray to interrogate their expression.Genome Res,2004.14(10B): p.2041-7.
    172. Venter, J.C., M.D. Adams, E.W. Myers, et al., The sequence of the human genome. Science,2001.291(5507): p.1304-51.
    173. Wei, C.L., Q. Wu, V.B. Vega, et al., A global map of p53transcription-factor binding sites inthe human genome. Cell,2006.124(1): p.207-19.
    174. Cawley, S., S. Bekiranov, H.H. Ng, et al., Unbiased mapping of transcription factor bindingsites along human chromosomes21and22points to widespread regulation of noncodingRNAs. Cell,2004.116(4): p.499-509.
    175. Euskirchen, G., T.E. Royce, P. Bertone, et al., CREB binds to multiple loci on humanchromosome22. Mol Cell Biol,2004.24(9): p.3804-14.
    176. Matys, V., E. Fricke, R. Geffers, et al., TRANSFAC: transcriptional regulation, from patternsto profiles. Nucleic Acids Res,2003.31(1): p.374-8.
    177. Sampley, M.L. and S. Ozcan, Regulation of insulin gene transcription by multiple histoneacetyltransferases. DNA Cell Biol,2012.31(1): p.8-14.
    178. Allis, C.D., S.L. Berger, J. Cote, et al., New nomenclature for chromatin-modifying enzymes.Cell,2007.131(4): p.633-6.
    179. Bedford, D.C., L.H. Kasper, R. Wang, et al., Disrupting the CH1domain structure in theacetyltransferases CBP and p300results in lean mice with increased metabolic control. CellMetab,2011.14(2): p.219-30.
    180. Ranta, F., J. Leveringhaus, D. Theilig, et al., Protein Kinase C Delta (PKC) AffectsProliferation of Insulin-Secreting Cells by Promoting Nuclear Extrusion of the Cell CycleInhibitor p21Cip1/WAF1. PloS one,2011.6(12): p. e28828.
    181. Ka, S., Y. Yeh, X. Huang, et al., Kidney-targeting Smad7gene transfer inhibits renalTGF-β/MAD homologue (SMAD) and nuclear factor κB (NF-κB) signalling pathways, andimproves diabetic nephropathy in mice. Diabetologia,2011: p.1-11.
    182. Berger, J.P., T.E. Akiyama, and P.T. Meinke, PPARs: therapeutic targets for metabolic disease.Trends Pharmacol Sci,2005.26(5): p.244-51.
    183. Silva, J., O. Barrandon, J. Nichols, et al., Promotion of reprogramming to ground statepluripotency by signal inhibition. PLoS Biol,2008.6(10): p. e253.
    184. Silva, J. and A. Smith, Capturing pluripotency. Cell,2008.132(4): p.532-6.
    185. Spivakov, M. and A.G. Fisher, Epigenetic signatures of stem-cell identity. Nat Rev Genet,2007.8(4): p.263-71.
    186. Fujimori, T., Y. Kurotaki, J. Miyazaki, et al., Analysis of cell lineage in two-and four-cellmouse embryos. Development,2003.130(21): p.5113-22.
    187. Nichols, J., B. Zevnik, K. Anastassiadis, et al., Formation of pluripotent stem cells in themammalian embryo depends on the POU transcription factor Oct4. Cell,1998.95(3): p.379-91.
    188. Niwa, H., J. Miyazaki, and A.G. Smith, Quantitative expression of Oct-3/4definesdifferentiation, dedifferentiation or self-renewal of ES cells. Nat Genet,2000.24(4): p.372-6.
    189. Kim, J.B., V. Sebastiano, G. Wu, et al., Oct4-induced pluripotency in adult neural stem cells.Cell,2009.136(3): p.411-9.
    190. Avilion, A.A., S.K. Nicolis, L.H. Pevny, et al., Multipotent cell lineages in early mousedevelopment depend on SOX2function. Genes Dev,2003.17(1): p.126-40.
    191. Chew, J.L., Y.H. Loh, W. Zhang, et al., Reciprocal transcriptional regulation of Pou5f1andSox2via the Oct4/Sox2complex in embryonic stem cells. Molecular and cellular biology,
    2005.25(14): p.6031.
    192. Kim, J., J. Chu, X. Shen, et al., An extended transcriptional network for pluripotency ofembryonic stem cells. Cell,2008.132(6): p.1049-61.
    193. Loh, Y.H., Q. Wu, J.L. Chew, et al., The Oct4and Nanog transcription network regulatespluripotency in mouse embryonic stem cells. Nature genetics,2006.38(4): p.431-440.
    194. Yamanaka, S., J. Li, G. Kania, et al., Pluripotency of embryonic stem cells. Cell and tissueresearch,2008.331(1): p.5-22.
    195. Hochedlinger, K. and R. Jaenisch, Nuclear reprogramming and pluripotency. Nature,2006.441(7097): p.1061-7.
    196. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent inducedpluripotent stem cells. Nature,2007.448(7151): p.313-7.
    197. Maherali, N., R. Sridharan, W. Xie, et al., Directly reprogrammed fibroblasts show globalepigenetic remodeling and widespread tissue contribution. Cell stem cell,2007.1(1): p.55-70.
    198. Wernig, M., A. Meissner, R. Foreman, et al., In vitro reprogramming of fibroblasts into apluripotent ES-cell-like state. Nature,2007.448(7151): p.318-324.
    199. Yu, J., M.A. Vodyanik, K. Smuga-Otto, et al., Induced pluripotent stem cell lines derived fromhuman somatic cells. Science,2007.318(5858): p.1917-20.
    200. Nakagawa, M., M. Koyanagi, K. Tanabe, et al., Generation of induced pluripotent stem cellswithout Myc from mouse and human fibroblasts. Nature biotechnology,2007.26(1): p.101-106.
    201. Farthing, C.R., G. Ficz, R.K. Ng, et al., Global mapping of DNA methylation in mousepromoters reveals epigenetic reprogramming of pluripotency genes. PLoS genetics,2008.4(6): p. e1000116.
    202. Lakshmipathy, U., B. Love, L.A. Goff, et al., MicroRNA expression pattern ofundifferentiated and differentiated human embryonic stem cells. Stem Cells Dev,2007.16(6):p.1003-16.
    203. Tay, Y.M., W.L. Tam, Y.S. Ang, et al., MicroRNA-134modulates the differentiation of mouseembryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1.Stem Cells,2008.26(1): p.17-29.
    204. Kermicle, J.L. and M. Alleman, Gametic imprinting in maize in relation to the angiospermlife cycle. Dev Suppl,1990: p.9-14.
    205. Crouse, H.V., The Controlling Element in Sex Chromosome Behavior in Sciara. Genetics,1960.45(10): p.1429-43.
    206. McGrath, J. and D. Solter, Completion of mouse embryogenesis requires both the maternaland paternal genomes. Cell,1984.37(1): p.179-83.
    207. Varmuza, S., Gametic imprinting as a speciation mechanism in mammals. J Theor Biol,1993.164(1): p.1-13.
    208. Chin, M.H., M.J. Mason, W. Xie, et al., Induced pluripotent stem cells and embryonic stemcells are distinguished by gene expression signatures. Cell Stem Cell,2009.5(1): p.111-23.
    209. Hu, B.Y., J.P. Weick, J. Yu, et al., Neural differentiation of human induced pluripotent stemcells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A,2010.107(9): p.4335-40.
    210. Zhao, X.Y., W. Li, Z. Lv, et al., iPS cells produce viable mice through tetraploidcomplementation. Nature,2009.461(7260): p.86-90.
    211. Liu, L., G.Z. Luo, W. Yang, et al., Activation of the imprinted Dlk1-Dio3region correlateswith pluripotency levels of mouse stem cells. J Biol Chem,2010.285(25): p.19483-90.
    212. Stadtfeld, M., E. Apostolou, H. Akutsu, et al., Aberrant silencing of imprinted genes onchromosome12qF1in mouse induced pluripotent stem cells. Nature,2010.465(7295): p.175-81.
    213. Jiang, J., G. Ding, J. Lin, et al., Different developmental potential of pluripotent stem cellsgenerated by different reprogramming strategies. J Mol Cell Biol,2011.3(3): p.197-9.
    214. Li, H., X. Xing, G. Ding, et al., SysPTM: a systematic resource for proteomic research onpost-translational modifications. Mol Cell Proteomics,2009.8(8): p.1839-49.
    215. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell,2004.116(2):p.281-97.
    216. Yin, J.Q. and Y. Wan, RNA-mediated gene regulation system: now and the future (Review).Int J Mol Med,2002.10(4): p.355-65.
    217. Tan, F.L. and J.Q. Yin, Application of RNAi to cancer research and therapy. Front Biosci,2005.10: p.1946-60.
    218. Sethupathy, P., B. Corda, and A.G. Hatzigeorgiou, TarBase: A comprehensive database ofexperimentally supported animal microRNA targets. RNA,2006.12(2): p.192-7.
    219. Lewis, B.P., I.H. Shih, M.W. Jones-Rhoades, et al., Prediction of mammalian microRNAtargets. Cell,2003.115(7): p.787-98.
    220. John, B., A.J. Enright, A. Aravin, et al., Human MicroRNA targets. PLoS Biol,2004.2(11): p.e363.
    221. Rosati, J., F. Spallotta, S. Nanni, et al., Smad-interacting protein-1and microRNA200familydefine a nitric oxide-dependent molecular circuitry involved in embryonic stem cellmesendoderm differentiation. Arterioscler Thromb Vasc Biol,2011.31(4): p.898-907.
    222. Dang, L.T. and V. Tropepe, FGF dependent regulation of Zfhx1b gene expression promotesthe formation of definitive neural stem cells in the mouse anterior neurectoderm. Neural Dev,2010.5: p.13.
    223. Peng, C., B. Chen, H.K. Kao, et al., Lack of FGF-7further delays cutaneous wound healing indiabetic mice. Plast Reconstr Surg,2011.128(6): p.673e-84e.
    224. Han, J., J. Mayo, X. Xu, et al., Indirect modulation of Shh signaling by Dlx5affects theoral-nasal patterning of palate and rescues cleft palate in Msx1-null mice. Development,2009.136(24): p.4225-33.
    225. Makarenkova, H.P., M.P. Hoffman, A. Beenken, et al., Differential interactions of FGFs withheparan sulfate control gradient formation and branching morphogenesis. Sci Signal,2009.2(88): p. ra55.
    226. Delpretti, S., J. Zakany, and D. Duboule, A function for all posterior Hoxd genes during digitdevelopment? Dev Dyn,2012.241(4): p.792-802.
    227. Yallowitz, A.R., S.M. Hrycaj, K.M. Short, et al., Hox10genes function in kidneydevelopment in the differentiation and integration of the cortical stroma. PLoS One,2011.6(8): p. e23410.
    228. Tschopp, P., A.J. Christen, and D. Duboule, Bimodal control of Hoxd gene transcription in thespinal cord defines two regulatory subclusters. Development,2012.139(5): p.929-39.
    229. Audet, G.N., T.H. Meek, T. Garland, Jr., et al., Expression of angiogenic regulators andskeletal muscle capillarity in selectively bred high aerobic capacity mice. Exp Physiol,2011.96(11): p.1138-50.
    230. Hayashi, H., K. Sakai, H. Baba, et al., Thrombospondin‐1is a novel negative regulator ofliver regeneration after partial hepatectomy through transforming growth factor‐beta1activation in mice. Hepatology,2012.
    231. Vitureira, N., R. Andres, E. Perez-Martinez, et al., Podocalyxin is a novel polysialylatedneural adhesion protein with multiple roles in neural development and synapse formation.PLoS One,2010.5(8): p. e12003.
    232. Sathyanarayana, P., M.P. Menon, O. Bogacheva, et al., Erythropoietin modulation ofpodocalyxin and a proposed erythroblast niche. Blood,2007.110(2): p.509-18.
    233. Doyonnas, R., D.B. Kershaw, C. Duhme, et al., Anuria, omphalocele, and perinatal lethality inmice lacking the CD34-related protein podocalyxin. J Exp Med,2001.194(1): p.13-27.
    234. Vitureira, N., K. McNagny, E. Soriano, et al., Pattern of expression of the podocalyxin gene inthe mouse brain during development. Gene Expr Patterns,2005.5(3): p.349-54.
    235. Diez-Roux, G., S. Banfi, M. Sultan, et al., A high-resolution anatomical atlas of thetranscriptome in the mouse embryo. PLoS Biol,2011.9(1): p. e1000582.
    236. Pardo, M., B. Lang, L. Yu, et al., An expanded Oct4interaction network: implications forstem cell biology, development, and disease. Cell Stem Cell,2010.6(4): p.382-95.
    237. Imamura, T., A. Kerjean, T. Heams, et al., Dynamic CpG and non-CpG methylation of thePeg1/Mest gene in the mouse oocyte and preimplantation embryo. J Biol Chem,2005.280(20): p.20171-5.
    238. Finkielstain, G.P., P. Forcinito, J.C. Lui, et al., An extensive genetic program occurring duringpostnatal growth in multiple tissues. Endocrinology,2009.150(4): p.1791-800.
    239. Bennetts, J.S., L.F. Fowles, J.L. Berkman, et al., Evolutionary conservation and murineembryonic expression of the gene encoding the SERTA domain-containing protein CDCA4(HEPP). Gene,2006.374: p.153-65.
    240. Noble, D., Modeling the heart--from genes to cells to the whole organ. Science,2002.295(5560): p.1678-82.
    241. Wishart, M.J., G. Groblewski, B.J. Goke, et al., Secretagogue regulation of pancreatic acinarcell protein phosphorylation shown by large-scale2D-PAGE. Am J Physiol,1994.267(4Pt1):p. G676-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700