雷达图像目标特征提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达成像技术具有全天候、全天时、远距离观测能力,有效提高了雷达的信息获取能力,具有重要的军用和民用应用价值。随着雷达成像技术的高速发展,雷达图像收集能力越来越强。从大量雷达图像中获取目标信息进行目标检测、分类与识别则是雷达成像的目的,其中基于雷达图像的目标识别受到越来越广泛的关注。传统的基于数据驱动的目标识别方法依赖于数据本身所反映出来的目标信息,而在实际环境中数据反映的目标信息随环境变化而变化,这给基于数据驱动的目标识别方法带来挑战。目标的一些物理特征(如目标几何尺寸,物理结构等)受环境因素影响较小,而且雷达成像机理在一定程度上可以反映目标物理特征。本文以此为出发点,研究了基于目标参数化回波模型雷达图像中目标物理特征提取技术。论文分别从干涉ISAR(InISAR)横向定标、目标微动特征提取以及目标电磁特征(属性散射中心特征与极化特征)三个方面探讨和研究目标物理特征提取技术,主要工作概括如下:
     1.针对干涉ISAR(InISAR)横向定标中相位缠绕问题,提出一种基于随机霍夫变换(Randomized Hough Transform, RHT)的InISAR横向定标算法。该算法利用ISAR图像中的特显点的模糊横距(干涉相位主值得到的横距)与多普勒频率的线性关系,估计真实横距与多普勒频率之间的尺度因子,实现对目标ISAR图像横向定标,从而避免了繁琐的相位解缠绕过程。仿真实验结果表明该算法可以实现对ISAR图像的定标,并具有一定的抗噪声性能,由定标后的目标ISAR图像可以提取目标的几何尺寸特征。
     2.研究了目标微动特征提取方法,主要包含两部分:(1)在分析微动目标窄带回波信号基础上,指出窄带目标的微动特征提取等价于多分量非平稳信号的瞬时频率估计问题,我们提出一种基于曲线跟踪(Curve track, CT)算法的目标微动特征提取方法。该算法在时频域通过最近邻数据关联(Nearest Neighbor DataAssociation, NNDA)算法对各分量信号的时频曲线进行关联与分离,然后采用扩展卡尔曼(Kalman)滤波器对分离的时频曲线进行平滑滤波,并基于平滑后的时频曲线估计目标微动参数。(2)通过分析微动目标的宽带回波,指出目标回波在距离包络域具有微距特征,以及时频域具有微多普勒特征。对于微距特征提取,利用幅度相位估计方法(Amplitude and phase estimation, APES)得到目标距离包络信号的超分辨估计,在此基础上由CT算法实现目标微距特征曲线的分离与提取;针对微多普勒特征提取,利用多距离单元信号进行联合时频分析得到目标完整的多普勒谱,并由CT算法提取目标微多普勒特征。最后基于电磁计算数据的仿真结果验证所提算法的有效性。
     3.研究了属性散射中心提取方法,包含两部分:(1)考虑目标频率-方位二维观测数据在属性散射中心模型参数空间上的稀疏性,我们提出一种基于字典缩放的属性散射中心提取与参数估计方法。由于模型参数维数较高,构造的高维联合字典将消耗较多系统资源。针对该问题,所提算法采用交替优化与字典缩放实现了对参数化字典的降维。为了减小邻近散射中心之间的相互干扰,采用正交匹配追踪(OMP)-RELAX联合算法求解稀疏信号恢复问题,实现在频率-方位角域提取属性散射中心。(2)我们提出一种基于距离特性与方位特性解耦合的属性散射中心提取算法,进一步降低对系统资源的要求。该方法通过分别构建包含位置信息与方位特性信息的两个低维字典代替高维的联合字典实现距离特性与方位特性的解耦合,并得到散射中心参数估值。根据提取的属性散射中心可以有效地估计目标或目标重要部件的几何尺寸。基于电磁计算数据和实测数据的实验结果验证了上述算法的有效性。
     4.研究了全极化属性散射中心提取方法:(1)考虑目标全极化观测数据在属性散射中心模型参数空间上的联合稀疏特性,利用联合稀疏表示技术提取属性散射中心,并对估计的极化散射矩阵进行极化分解提取目标极化特征,联合干涉测高可以得到目标三维姿态信息。该方法采用基于字典缩放属性散射中心提取算法思想实现参数化字典的降维,对稀疏系数矩阵施加行稀疏约束,通过SOMP(Simultaneous Orthogonal Matching Pursuit)算法求解联合稀疏优化问题并提取属性散射中心。(2)针对散射中心重叠或者同一分辨单元内包含不止一种散射体的情况,依据目标全极化观测在属性特征域(属性参数以及散射类型)的稀疏特性,对目标极化分解系数矩阵施加行稀疏约束与矩阵稀疏约束,该算法利用坐标轮回下降法估计目标极化分解系数矩阵与极化散射机理字典,同时提取目标全极化属性散射中心及其极化特征。基于电磁计算数据的实验结果验证了上述算法的有效性。
Radar imaging technique has the ability of all-weather, day/night and long rangeapplications, which enhances the radar capability of information acquisitiondramatically. Therefore, radar imaging technique plays an important role in manymilitary and civilian fields. As radar imaging technique has developed rapidly, thecapability of image collection has grown much stronger. The aim of radar imaging is toacquire information of target for target detection, classification and recognition, andradar image based target recognition has attracted more and more attention especially.The performance of data-driven recognition method depends on the information thatmeasurements reflect, while the information is influenced by the environmental factorsgreatly in practical application, and this is a challenge for the data-driven recoginitonmethod. The environmental factors have minor impact on physical feature of target,such as geometrical dimension and physical structure, which can be reflected by themechanism of radar imaging. This dissertation studies on the physical feature extractionfrom radar image based on the parametric signal model, and focuses on the technique ofphysical mechanism feature extraction in three aspects: cross-range scaling ofinterferometric ISAR, micro-motion feature extraction of target and electromagneticfeature extraction of target (attributed scattering center and polarimetric feature). Themain work can be summarized as follows:
     1. Aiming at the phase wrapping problem in the cross-range scaling ofinterferometric ISAR, a novel algorithm is proposed based on Randomized HoughTransform. Using the linear relationship between the azimuth positions derived from thewrapping interferometric phases and the Doppler frequencies of the dominant scatters inISAR image, the proposed algorithm estimates the scale factor between true azimuthposition and Doppler frequency and determines the ISAR image scale in the cross rangedirection, consequently avoiding the complex phase unwrapping procedure. Thesimulation results verify the validity and anti-noise capability of this algorithm, and thegeometrical dimension of target can be obtained according to the cross-range scaledISAR image.
     2. The micro-motion feature extraction is studied in this section, and the main workconcerns the following two aspects. Firstly, based on the analysis of narrowband echoesof target, we point out that its micro-motion feature extraction is equivalent to theinstantaneous frequency estimation of multi-component non-stationary signal. A novelmethod based on curve tracking algorithm is proposed to extract micro-motion feature.The proposed method separates the time-frequency curves successfully in time-frequency domain with the Nearest Neighbor Data Association (NNDA) algorithm,and the separated time-frequency curve of each component signal is smoothed by theextended Kalman filter, then the parameter of micro-motion can be estimated with thesmoothed time-frequency curves. Secondly the wideband echoes are analyzed withsome conclusions that the wideband echoes posess micro-range feature indownrange-slow time domain and micro-doppler feature in time-frequency domain.APES (Amplitude and phase estimation) is adopted to obtain the superresolution ofmicro-range, and then CT algorithm is used to separate and extract the micro-rangecurve; Signals of multi range cells are jointly analyzed to obtain the intacttime-frequency distribution of target, then CT algorithm is utilized to extractmicro-doppler feature. Simulation results on electromagnetic data verify the validity ofthe proposed algorithms.
     3. Attributed scattering center extraction is discussed in this section and it containstwo parts.(1) Considering the sparsity of the frequency-aspect backscattered data in theattributed scattering center model parameter domain, a novel method based ondictionary refinement is proposed to extract attributed scattering center and estimateparameters in frequency-aspect domain. Due to the high dimension of model parameter,one high dimensional joint dictionary needs to be constructed, which may cost a massstorage. Aiming at this problem, dictionary zooming and alternative optimization areexplored to reduce the dictionary dimension in the proposed algorithm, sparse signalrecovery problem is solved by utilizing OMP (Orthognal Matching Pursuit) algorithmcombined with RELAX to alleviate the influence of closely-spaced scattering centers oneach other, and attributed scattering centers are extracted from frequency-aspect domain.(2) A new method based on range characteristic and aspect characteristic decoupling isdeveloped to reduce the storage resources request further. Two low dimensionaldictionaries including localization and aspect attribute parameters respectively areconstructed to replace the high dimensional joint dictionary to decouple the rangecharacteristic and aspect characteristic and obtain the parameters estimation. With theextracted attributed scattering centers, geometrical dimensions of the target or its mainstructure can be estimated. Numerical results both on electromagnetic computation dataand measured data verify the validity of the proposed method.
     4. This section focuses on the extraction of fully polarimetric attributed scatteringcenter:(1) Considering the joint sparsity of the fully polarimetric measurements in theattributed scattering center model parameter domain, a novel method based on jointsparsity is proposed for attributed scattering center extraction; and the recovered sparse coefficient matrix is used for polarimetric signature extraction, the three dimensionalpose of target can be acquired by interferometric processing. Alternative optimizationand dictionary refinement are utilized for dimension reduction, which are also adoptedin the dictionary refinement based attributed scattering center extraction method, whilejoint sparsity constraint is imposed on the sparse coefficient matrix, and simultaneousorthogonal matching pursuit (SOMP) are adopted to find the solution of the joint sparseoptimization problem for attributed scattering center extraction.(2) Aiming to extractattributed features of overlapped attributed scattering centers, row sparse constraint andmatrix sparse constraint are imposed on the polarimetric decomposition coefficientmatrix of target based on the sparsity of scattering center in the parameter domain andscattering mechanism domain, coordinate decent technique is employed to optimizepolarimetric decomposition coefficient matrix and polarimetric scattering mechanismdictionary to extract attributed scattering center and polarimetric signaturesimultaneously. Numerical results on electromagnetic computation data verify thevalidity of the proposed algorithms.
引文
[1] D. L. Mensa, High Resolution Radar Imaging. Dedham, MA: Artech House,1981.
    [2] W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic ApertureRadar-Signal Processing and Algorithms. Boston, MA: Artech House,1995.
    [3] C. V. Jakowatz, Jr. D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A Thompson,Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach.Norwell, MA: Kluwer,1996.
    [4] S. A. Hovanessian. Introduction to Synthetic Array and Imaging Radar. ArtechHouse,1980.
    [5] J. P. Fitch. Synthetic Aperture Radar. Springer-Verlag New York Inc.,1988.
    [6] D. R. Wehner. High-Resolution Radar.2nd Edition. Boston, MA: Artech House,Inc.1994.
    [7]保铮,刑孟道,王彤.雷达成像技术.北京:电子工业出版社,2005:30-33.
    [8]刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社,1999.
    [9]袁孝康.星载合成孔径雷达导论.北京:国防工业出版社,2003.
    [10]张直中.机载和星载合成孔径雷达导论.北京:电子工业出版社,2004.
    [11] J. S. Lee and E. Pottier, Polarimetric Radar Imaging: From Basics to Applications.Boca Raton, FL: Taylor&Francis,2009.
    [12]王超,张红,陈曦,等.全极化合成孔径雷达图像处理.北京:科学出版社,2008.
    [13] W. M. Brown. Synthetic Aperture Radar. IEEE Trans. Aerosp. Electron. Syst.1967,3(2).217-229.
    [14] C. W. Sherwin, J. P. Ruina, R. D. Rawcliffe. Some Early Developments inSynthetic Aperture Radar Systems. IRE Trans on Military Electronics,1962,6(2),111-115.
    [15] http://en.wikipedia.org/wiki/Lacrosse
    [16] Rosario D S. New automated terrain and feature extraction approach for thePredator UAV TESAR ATR system. SPIE,3721,1999:47~55.
    [17] Tsunoda S I, Pace F, Stence J, et al. Lynx: a high-resolution syntheticapertureradar. SPIE,3704,1999:20~27.
    [18] http://www.sandia.gov/radar/minisar.html.
    [19] Henry J C. The Lincoln Laboratory35GHz airborne polarimetric SARimagingradar system. IEEE National Telesystems Conference,1991,1:353~358.
    [20]杜兰.雷达高分辨距离像目标识别方法研究.博士研究生学位论文.西安电子科技大学.2007.
    [21]胡利平.合成孔径雷达图像目标识别技术研究.博士研究生学位论文.西安电子科技大学.2009.
    [22]李丽亚.宽带雷达目标识别技术研究.博士研究生学位论文.西安电子科技大学.2009.
    [23]尹奎英. SAR图像处理及地面目标识别技术研究.博士研究生学位论文.西安电子科技大学.20011.
    [24]陶勇.知识辅助的SAR图像目标特性分析与识别研究.博士研究生学位论文.国防科学技术大学.2010.
    [25]计科峰. SAR图像目标特征提取与分类方法研究.博士研究生学位论文[D].国防科学技术大学.2003.
    [26] Novak L M, Owirka G J, Netishen C M. Performance of a high-resolutionpolarimetric SAR automatic target recognition system. The Lincoln LaboratoryJournal,1993,6(1):11~24.
    [27] T. Ross, S. Worrell, V. Velten, J. Mossing, and M. Bryant. Standard SAR ATRevaluation experiments using the MSTAR public release data set. Part of the SPIEConference on Algorithms for Synthetic Aperture Radar Imagery V,1998,3370:566-573.
    [28] M. Bryant, S. Worrell, and A. Dixon. MSE template size analysis for MSTARdata. Part of the SPIE Conference on Algorithms for Synthetic Aperture RadarImagery V,1998,3370:396-405.
    [29] L. M. Kaplan. Analysis of multiplicative speckle models for template-based SARATR. IEEE Trans. Aerosp. Electron. Syst.2001,37(4),1424-1432.
    [30] L. M.Kaplan, R. Murenzi, E. Asika, and K. Namuduri. Effect of signal-to-clutterratio on template-based ATR. Part of the SPIE Conference on Algorithms forSynthetic Aperture Radar Imagery V,1998,3370:408-419.
    [31] R. Sharma and N. S. Subotic. Construction of hybrid templates from collected andsimulated data for SAR ATR algorithms. Proceedings of SPIE-The InternationalSociety for Optical Engineering,1998,3371:480-486.
    [32]匡纲要,计科峰,粟毅,郁文贤. SAR图像自动目标识别研究.中国图像图形学报,2003,8(A):1115-1120.
    [33]袁礼海,宋建社,薛文通,赵伟舟. SAR图像自动目标识别系统研究与设计.计算机应用研究,2006,11:249-251.
    [34]韩萍,吴仁彪,蒋立辉.一种有效的SAR图像分割与目标识别方法.系统工程与电子技术,2004,26(6):737-737.
    [35] Novak L M, Owirka G J, Brower W S, et al. The automatic target recognitionsystem in SAIP. The Lincoln Laboratory Journal,1997,10(2):187~202.
    [36] D.E. Dudgeon, R.T.Laeoss, An overview of automatic target recognition. LincolnLaboratory Joumal.1993,6(1):3-10.
    [37] B. Bhanu, D.E. Dudgeon, E.G. Zelnio, etal. Introduction to the special issue onautomatic target detection and recognition. IEEE Transactions on Imageproeessing,1997,6(1):1-6.
    [38] T. Cooke, Marco Martorella, Brett Haywood, et.al. Use of3D ship scatterermodels from ISAR image sequences for target recognition. Elsevier DSP,2006,16:523-532.
    [39] M. Martorella, E. GIUSTI, L. DEMI, et.al. Target recognition by means ofpolarimetric ISAR images, IEEE Trans. Aerosp. Electron. Syst.2011,47(1):225-239.
    [40] M. Martorella, et.al. CLEAN technique for polarimetric ISAR. InternationalJournal of Navigation and Observation,(special issue on modelling andprocessing of radar signals for Earth observation,2008(2008),1-12.
    [41] S. Musman, D. Kerr, and C. Bachmann, Automatic recognition of ISARship/images. IEEE Trans. Aerosp. Electron. Syst.1996,32(4):1392-1404.
    [42] D. Pastina, C. Spina, Multi-feature based automatic recognition of ship targets inISAR. IET Radar Sonar Navig.,2009,3(4):406-423.
    [43] Chao Yuan, David Casasent, Composite filters for inverse synthetic aperture radarclassification of small ships. Optical engineering,2002.
    [44] Atsuto Maki, Kazuhiro Fukui, Ship identification in sequential ISAR imagery.Machine Vision and Applications (2004)15:149-155.
    [45] Murali Menon, An automatic ship classification system for ISAR imagery. Proc.SPIE,1995, vol,2492,373.
    [46] Bahram A. Parvin, Target recognition using string-to-string matching, US patent4845610,1989.
    [47] T. Cooke, M. Martorella, B. Haywood, D. Gibbins, Use of3D ship scatterermodels from ISAR image sequences for target recognition. Digital SignalProcessing,2006,16(5),:523-532.
    [48] Feng Rice, Tristrom Cooke, Danny Gibbins, Model based ISAR ship classification.Digital Signal Processing2006,16(3):628-637.
    [49]黄培康,闫锦.弹道导弹(BM)对抗中的识别与反识别技术.航天电子对抗,2005,21(3):1~3.
    [50]金光虎.中段弹道目标ISAR成像及物理特性反演技术研究.博士研究生学位论文.国防科学技术大学.2009.
    [51]薛雷达.美国国家导弹防御系统地基雷达测量与识别能力.863先进防御技术通讯(A类),2000,6.
    [52] Camp W W, Mayhan J T, O’Donnell R M. Wideband Radar for Ballistic MissileDefense and Range-Doppler Imaging of Satellites. Lincoln Laboratory Journal,2000,12(2):267~280.
    [53]金林.弹道导弹目标识别技术.现代雷达,2008,30(2):1~5.
    [54] M. Bryant, S. Worrell, and S. Parker. Class separability assessments and MSEalgorithm robustness. Proceedings of SPIE-The International Society for OpticalEngineering,1997,3070:294-305.
    [55] A. S. Stephen, Eric Keydel, et al. The use of the mean squared error matchingmetric in a model-based automatic target recognition system. SPIE,1998,3370:360-368.
    [56] Diemunsch J, Wissinger J. Moving and stationary target acquisition andrecognition (MSTAR) model-based automatic target recognition: searchtechnology for a robust ATR. SPIE,1998,3370:481~492.
    [57] Wissinger J, Washbum R, Morgan D, et al. Search algorithm for model-basedSAR ATR. SPIE,1996,2757:279~293.
    [58] Ettinger G J, Klanderman G A, Wells W M, et al. A probabilistic optimizationapproach to SAR feature matching. SPIE,1996,2757:318~329.
    [59] Wissinger J, Diemunsch J, Severson W, et al. MSTAR's extensible search engineand model-based inferencing toolkit. SPIE,1999,3721:554~570.
    [60] Keydel E R. Signature prediction for model-based automatic target recognition.SPIE,1996,2757:306~317.
    [61] Keydel E R, Williams W, Sieron R, et al. Reasoning support and uncertaintyprediction in model-based vision SAR ATR. SPIE,1999,3721:620~631.
    [62] C.-M. Yeh, J. Xu, and Y.-N. Peng, et.al. Cross-range scaling for ISAR based onimage rotation correlation. IEEE Geosci. Remote Sens. Lett.,2009,6(3):597–601.
    [63] S.-H. Park, H.-T. Kim, and K.-T. Kim, Cross-rang scaling algorithm for ISARimages using2-D Fourier transform and polar mapping. IEEE Trans. OnGeoscience and Remote Sensing,2011,49(2):868-877.
    [64] Qiu X. H. and Zhao Y. An non-parametric rotating angle acquisition method foroptimal ISAR imaging. IEEE International Symposium on Antennas andPropagation Society, Albuquerque, New Mexico, USA,2006:2697-2700.
    [65]李文臣,王雪松,丹梅,王国玉.对称目标的ISAR成像横向距离定标方法与性能分析.电子与信息学报,2009.31(10):2504-2508.
    [66]王勇,姜义成,一种估计ISAR成像转角的新方法.电子与信息学报,2007,29(3):521-523.
    [67] M. Martorella, Novel approach for ISAR image cross-range scaling. IEEE Trans.Aerosp. Electron. Syst.,2008,44(1):281–294.
    [68]王国林.逆合成孔径雷达运动补偿和系统补偿的研究.博士研究生学位论文,哈尔滨工业大学,1996.
    [69] Werness S, et al. Moving target imaging algorithm for SAR data. IEEE Trans.Aerosp. Electron. Syst.,1990,26(1):57-67.
    [70] Q.Zhang, T. S.Yeo, G.Du, S.Zhang. Estimation of three dimensional motionparameters in interferometric ISAR imaging. IEEE Trans. Geosci. Remote Sens.,2004,42(2):292~300.
    [71] Q.Zhang, T. S. Yeo. Three-dimensional SAR imaging of a ground moving targetusing the InISAR technique. IEEE Trans. Geosci. Remote Sens.,2004,42(9):1818-1828.
    [72] D. Felguera-Mart n, J.-T. Gonzalez-Partida, and M. Burgos-Garcia,Interferometric ISAR imaging on maritime target applications: simulation ofrealistic targets and dynamics, Progress In Electromagnetics Research,2012,132:571-586.
    [73] Changzheng Ma, Tat Soon Yeo, and Qiang Guo, etal Bistatic ISAR ImagingIncorporating Interferometric3-D Imaging Technique. IEEE Trans. Geosci.Remote Sens.,2012,50(10):3859-3867.
    [74] D. Felguera-Mart n, J.-T. Gonzalez-Partida, and P. Almorox-Gonzalez, etal.Interferometric inverse synthetic aperture radar experiment using aninterferometric linear frequency modulated continuous wave millimeter-waveradar. IET Radar Sonar Navig.2011,5(1):39–47.
    [75] Changzheng Ma, Tat Soon Yeo, and Chee Seng Tan, etal, Three-DimensionalImaging Using Colocated MIMO Radar and ISAR Technique. IEEE Trans.Geosci. Remote Sens.,2012,50(8):3189-3201.
    [76] Changzheng Ma, Tat Soon Yeo, and Qun Zhang, Three-Dimensional ISARimaging based on antenna array. IEEE Trans. Geosci. Remote Sens.,2008,46(2):504-511.
    [77]张群,马长征,张涛等.干涉式逆合成孔径雷达三维成像技术研究[J].电子与信息学报,2001,23(9):890-898.
    [78]李丽亚,刘宏伟,纠博,吴顺君.基于多特显点的干涉ISAR横向定标技术.系统工程与电子技术,2008,30(9):62-65.
    [79] R. M. Goldstein, H. A. Zebker, and C. L. Werner. Satellite radar interferometry:Two-Dimensional phase unwrapping. Radio Science.1988,23(4):713-720.
    [80] D. C. Ghiglia and L. A. Romero, Robust Two-Dimensional weighted andunweighted phase unwrapping that uses fast transforms and iterative methods.J.Opt. Soc. Am. A,1994,1(1):107-117.
    [81]庄钊文,刘永祥,黎湘.目标微动特性研究进展.电子学报,2007,35(3):520~525.
    [82]杨立明,曹祥玉.直升机旋翼对回波的调制效应分析.电波科学学报,2002,17(1):93-96.
    [83]高红卫,谢良贵,文树梁,等.基于微多普勒特征的真假目标雷达识别研究.电波科学学报,2008,23(4):775-780.
    [84]陈行勇,黎湘,郭桂蓉.微进动弹道导弹目标雷达特征提取.电子与信息学报,2006,28(4):643-646.
    [85]关永胜,左群声,刘宏伟,等.空间锥体目标微动特性分析与识别方法.西安电子科技大学学报,2011,38(2):105-111.
    [86]王宝帅,杜兰,刘宏伟,等.基于经验模态分解的空中飞机目标分类.电子与信息学报,2012,34(9):2116-2121.
    [87]李彦兵,杜兰,刘宏伟,等.基于微多普勒特征的地面目标分类.电子与信息学报,2010,32(12):2848-2852.
    [88]李彦兵,杜兰,刘宏伟,等.基于信号特征谱的地面运动目标分类.电波科学学报,2011,26(4):641-648.
    [89]Bell M R, Grubbs R A. JEM modeling and measurement for radar targetidentification. IEEE Transactions on Aerospace and Electronic Systems,1993,29(1):73-87.
    [90] Chen V C, Li F Y, Ho S S. Micro-Doppler effect in radar phenomenon, model andsimulation study. IEEE Trans Aerospace and Electronic System,2006,42(1):2-21.
    [91] Chen V C, Li F, Ho S S, et al. Analysis of Micro-Doppler signatures. IEEEProceedings Radar, Sonar&Navigation,2003,150(4):271-276.
    [92] Kwok H K. Jones D L. Improved instantaneous frequency estimation using anadaptive short-time Fourier transform. IEEE Trans Signal Processing,2000,48(10):2964-2972.
    [93] Thayaparan T. Separation of target rigid body and micro-Doppler effects inISAR/SAR imaging. Ottawa: Defence Research and Development Canada,2006.
    [94] Thayaparan T, Stankovicb L, Djurovicb I, et al. Micro-Doppler-based targetdetection and feature extraction in indoor and outdoor environments. Franklin Inst,2008,345(6):700-722.
    [95] ZHANG Q, YEO T S, TAN H S, et al. Imaging of a moving target with rotatingparts based on the Hough transform. IEEE Trans Geosci Remote Sens,2008,46(1):291-299.
    [96] Parker K J, Lerner R M, and Huang S R. Method and apparatus for using Dopplermodulation parameters for estimation of vibration amplitude. U. S. Patent5,086,775, Feb.11,1992.
    [97] Sparr T, Krane B. Time-frequency analysis of vibrating targets in airborne SARsystems. IET Radar, Sonar&Navigation,2003,150(3):173-176.
    [98]王璐,刘宏伟.基于时频图的微动目标运动参数提取和特征识别的方法.电子与信息学报.2010,32(8):1812-1817.
    [99] Gao H, Xie L,Wen S, et al.. Micro-Doppler signature extraction form ballistictarget with micro-Motions. IEEE Transactions on Aerospace and ElectronicSystems,2010,46(4):1969-1982.
    [100]李开明,李长栋,李松,等.基于Gabor变换的微动目标微多普勒分析与仿真.空军工程大学学报.2010,11(1):40-43.
    [101] Stankovic L, Djurovic I, Ohsumi A, et al. Instantaneous frequency estimation byusing Wigner distribution and Viterbi algorithm. ICASSP. Hong Kong, April6-10,2003:121-124.
    [102] Li Po, Wang D C, and Wang Lu. Separation of micro-Doppler signals based ontime frequency filter and Viterbi algorithm. Signal, Image and Video Processing.2011,30:1-13.
    [103] Djurovic I. Viterbi algorithm for chirp-rate and instantaneous frequencyestimation. Franklin Inst,2011,345(6):700-722.
    [104] Sucic V, Saulic N, Boashash B, et al. Estimating the number of components of amulticomponent nonstaionary signal using the short-term time-frequency Rényientropy. EURASIP Journal on Advances in Signal Processing,2011:125.
    [105] Boashash B. Estimating and interpreting the instantaneous frequency of asignal-part II: Algorithms and Applications. Proc IEEE,1992,80(4):521-538.
    [106] T. Sparr, B. Krane, Time-frequency analysis of vibrating targets in airborne SARsystems, Proc. Inst. Elect. Eng.—Radar Sonar Navig.2003,150(3):173–176.
    [107] T. Sparr, B. Krane, Micro-Doppler analysis of vibrating targets in SAR. Proc. Inst.Elect. Eng.—Radar Sonar Navig,2003,150(4):277–283.
    [108] T. Sparr, B. Krane, Analysis of phase modulation caused by target motion in SARimages. Proc. SPIE,2003,5102:178–188.
    [109] Xiang Li, Bin Deng, Yuliang Qin, etal. The Influence of Target Micromotion onSAR and GMTI. IEEE Trans. Geosci. Remote Sens.,2011,49(7):2738-2751.
    [110] Maurice Rüegg, Erich Meier, Daniel Nüesch, Vibration and Rotation inMillimeter-Wave SAR. IEEE Trans. Geosci. Remote Sens.,2007,45(2):293-303.
    [111] Kaiming Li, Xianjiao Liang, Qun Zhang, etal. Micro-Doppler SignatureExtraction and ISAR Imaging for Target With Micromotion Dynamics. IEEETrans. Geosci. Remote Sens Lett.,2011,8(3):411-415.
    [112]黄培康,殷红成,许小剑.雷达目标特性.北京:电子工业出版社,2006.
    [113]郭桂蓉等.电磁特征抽取与识别.长沙:国防科技大学出版社,1996.
    [114]周剑雄.光学区雷达目标三维散射中心重构理论与技术.博士研究生学位论文.国防科学技术大学,2006.
    [115]孙真真.基于光学区雷达目标二维像的目标散射特征提取的理论及方法研究.博士研究生学位论文.国防科技大学,2001.
    [116]徐牧.极化SAR图像人造目标提取与几何结构反演研究.博士研究生学位论文.国防科学技术大学.2008.
    [117]代大海.极化雷达成像及目标特征提取研究.博士研究生学位论文.国防科学技术大学.2008.
    [118] Moses R L, Potter L C. Feature extraction using attributed scattering centermodels for mode-based automatic target recognition. DARPA ImageUnderstanding Workshop,1997:1019~1022.
    [119] Chiang H C, Mose R L, Potter L C, et al. Model-based classification of radarimages. IEEE Trans on Information Theory.2000,46(5):1842~1854.
    [120] Chiang H C, Mose R L, Potter L C, et al. Model-based Bayesian feature matchingwith application to synthetic aperture radar target recognition. Pattern Rcognition.2001,34(8):1539~1553.
    [121] Hurst M P, Mittra R. Scattering center analysis via prony’s method. IEEE Transon AP,1987,35(8):986~988.
    [122] Carriere R, Moses R L. High resolution radar target modeling using a modifiedprony estimator. IEEE Trans on AP,1992,40(1):13~18.
    [123] Sacchini J J, Steedly W M, Moses R L. Two-dimensional prony modeling andparameter estimation. IEEE Trans on SP,1993,41(11):3127~3137.
    [124] Carriere R, Potter L C, Moses R L, et al. Radar target modeling: a GTD-basedapproach. SPIE,2234,1994:67~78.
    [125] Potter L C, Chiang D M, Carriere R, et al. A GTD-based parametric model forradar scattering. IEEE Trans on AP,1995,43(10):1058~1067.
    [126]孙真真,陈曾平,庄钊文,等.一种高频区复杂雷达目标二维散射的参数模型.国防科技大学学报,2001,23(4):113~119.
    [127]计科峰,匡纲要,粟毅,等.基于SAR图像的目标散射中心特征提取方法研究.国防科技大学学报,2003,25(1):45~50.
    [128]刘拥军,葛德彪,张忠治,等.有属性的散射中心理论及应用.电波科学学报,2003,18(5):559~563.
    [129]张进,闫冬梅,王超,等.高分辨率SAR图像目标属性散射中心特征提取方法.中国图象图形学报,2009,14(1):35~39.
    [130]段佳,张磊,盛佳恋,刑孟道.独立属性散射中心参数解耦合估计方法.电子与信息学报,2012,34(8):1853-1859.
    [131]付强,周剑雄,秦敬喜,等.雷达目标散射中心模型反演及其在识别中的应用.系统工程与电子技术,2011,33(1):48-52.
    [132] M. J. Gerry, L. C. Potter, I. J. Gupta, and A. van der Merwe, A parametric modelfor synthetic aperture radar measurements. IEEE Trans Antennas Propagat.,1999,47(7):1179–1188.
    [133] M. A. Koets and R. L. Moses, Feature extraction using attributed scattering centermodels on SAR imagery, in Proc. SPIE, Orlando, Florida, Apr.1999.
    [134] M. A. Koets and R. L. Moses, Image domain feature extraction from syntheticaperture imagery. in Proc. ICASSP, Phoenix, AZ, Mar.1999.
    [135] Yeliz Akyildiz, Randolph L. Moses, A scattering center model for SAR imagery.in Proc. SPIE SAR Image Analysis, Modeling and Techniques, Florence, Italy,1999, pp.76–85.
    [136] L. C. Potter and R. L. Moses, Attributed scattering centers for SAR ATR. IEEETrans. Image Process.,1997,6(1):79–91.
    [137] Fuller D F, Terznoli A J, Collins P J, et al. Approach to object classification usingdispersive scattering centres. IEE Proc-Radar Sonar Navig.,2004,151(2):85~90.
    [138] J. Stach and E. LeBaron,―Enhanced image editing by peak region segmentation,‖in Proc. Antenna Meas. Tech. Assoc.18th Symp., Seattle, WA,1996, pp.303–307.
    [139] Xu Shao-kun, Wei Xi-zhang, and Li Xiang, et al.. Parameter estimation andperformance analysis of coherent polarization attributed scattering center model.Chinese Journal of Electronics,2013,22(1):195-201.
    [140] B.D.Rigling. Signal Processing Strategies for Bistatic Sythetic Aperture Rader.USA: The Ohio State University,2003.
    [141] J. A. Jackson and R. L. Moses, A Feature Extraction Algorithm for3D SceneModeling and Visualization Using Monostatic SAR. Algorithms for SyntheticAperture Radar Imagery XIII, E. G. Zelnio and F. D. Garber, eds., Proc. SPIE, vol.6237,2006.
    [142] J. A. Jackson, Three-dimensional Feature Models for Synthetic Aperture Radarand Experiments in Feature Extraction. Ph.D. dissertation, Ohio State Univ.,Columbus, OH,2009.
    [143] J. A. Jackson and R. L. Moses, Synthetic aperture radar3D feature extraction forarbitrary flight paths, IEEE Trans. on Aerospace and Electronic Systems,2012,48(3):2065–2084.
    [144] J. A. Jackson, B. D. Rigling, and R. L. Moses, Canonical scattering featuremodels for3D and bistatic SAR. IEEE Trans. on Aerospace and ElectronicSystems,2010,46(2):525–541.
    [145] W. L. Cameron, N. N. Youssef, and L. K. Leung, Simulated polarimetricsignatures of primitive geometrical shapes, IEEE Trans. Geosci. Remote Sens.,1996,34(3):793–803.
    [146] J. S. Lee, E. Krogager, T. L. Ainsworth and W.-M. Boerner, Polarimetric analysisof radar signature of a manmade structure. IEEE Geosci. Remote Sens. Lett.,2006,3(4):555-559.
    [147]李丽亚,刘宏伟,纠博,等.基于核函数的多极化HRRP识别.西安电子科技大学学报,2010,37(1):49-55.
    [148] B.D.Rigling, R.L.Moses. Three-Dimensional Surface Reconstruction fromMultiStatic SAR Images. IEEE Transaction on Image Processing,2005,14:1159-1171.
    [149] C.D.Austin, R.L.Moses. IFSAR Processing for3D Target Reconstruction. SPIE,Algorithms for Synthetic Aperture Radar Imagery XII,2005:1-14.
    [150] C.D.Austin, R.L.Moses. Wide-angle Sparse3D Synthetic Aperture Radar Imagingfor Nonlinear Flight Paths. IEEE National Aerospace and Eletronics Conference,2008:330-336.
    [151] C.D.Austin, E.Ertin, R.L.Moses. Sparse Multipass3D Imaging: Applications tothe GOTCHA Data Set. SPIE, Algorithms for Synthetic Aperture Radar ImageryXVI,2009.
    [152] C.D.Austin, E.Ertin, R.L.Moses. Sparse Signal Methods for3-D Radar Imaging.IEEE Journal of Selected Topics in Signal Processing,2011,5(3):408-423.
    [153] Lei Xu, and Oja E. Randomized Hough Transform (RHT): basic mechanism,algorithms, and computational complexities. CVGIP: Image Understanding,1993,57(2):131-154.
    [154] Lei Xu, Erkki OJA, and Pekka KULTANEN. A new curve detection method:Randomized Hough Transform (RHT). Pattern Recognition Letters,1990, pp.331-338.
    [155] Lan Du, Penghui Wang, and Hongwei Liu, etal. Bayesian spatiotemporalmultitask learning for radar HRRP target recognition. IEEE Transactions onSignal Processing,2011,59(7):3182-3196.
    [156] HUE C, CADRE J, PEREZ P. Sequential Monte Carlo methods for multipletarget tracking and data fusion. IEEE Trans Signal Processing,2002,50(2):309-325.
    [157] BAR-SHALOM Y, LI X R, KIRUBARAJAN T. Estimation with Applications toTracking and Navigation. New York: John Wiley and Sons,2001.
    [158] Hartikainen J, S rkk S. Optimal Filtering with Kalman Filters and Smoothers-aManual for Matlab Toolbox EKF/UKF. Helsinki University of Technology,Espoo, Finland,2008.
    [159] Dungan K E and Potter L C. Classifying vehicles in wide-angle radar usingpyramid match hashing, IEEE Journal of Selected Topics in Signal Processing,vol.5, no.3, pp.577–591, Jun.2011.
    [160] Dungan K E and Potter L C. Classifying sets of attributed scattering centers usinga hash coded database, in Proc. Algorithms for Synthetic Aperture Radar ImageryXVII,2010.
    [161] J. B. Keller, Geometrical theory of diffraction, Opt. Soc. Am.1962,52(2):116-130.
    [162] Stoica P, Selen Y. Model-order selection: a review of information criterion rules,IEEE Signal Process. Mag.,2004,21(4):36–47.
    [163] Djuric P M. A model selection rule for sinusoids in white Gaussian noise, IEEETrans. Signal Process.,1996,44(7):1744–1751.
    [164] Hai Deng. Effective CLEAN Algorithms for Performance-Enhanced Detection ofBinary Coding Radar Signals, IEEE Trans. Signal Process.,2004,52(1):72-78.
    [165] M. A. Plonus, R. Williams, and S. C. H. Wang, Radar cross section of curvedplates using geometrical and physical diffraction techniques, IEEE Trans.Antennas Propagat.,1978,26:488–493.
    [166] R. A. Ross. Radar cross section of rectangular flat plates as a function of aspectangle, IEEE Trans. Antennas Propagat.,1966,14:329–335.
    [167] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signalreconstruction from highly incomplete frequency information, IEEE Trans. Inf.Theory,2006,52(2):489–509.
    [168] E. Candès, J. Romberg, and T. Tao. Near-optimal signal recovery from randomprojections: universal encoding strategies?, IEEE Trans. Inf. Theory,2006,52(12):5406-5425.
    [169] L. Applebaum, S. Howard, S. Searle, and R. Calderbank. Chirp sensing codes:Deterministic compressed sensing measurements for fast recovery, Appl. Comput.Harmonic Anal.,200826(2):283–290.
    [170] L. Jacques and C. D. Vleeschouwer. A geometrical study of matching pursuitparametrization, IEEE Trans. Signal Process.,2008,56(7):2835–2848.
    [171] J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements viaorthogonal matching pursuit, IEEE Trans. Inf. Theory,2007,53(12):4655–4666.
    [172] Needell D, Tropp J A. CoSaMP: Iterative signal recovery from incomplete andinaccurate samples, Applied and Computational Harmonic Analysis,2009,26(3):301-321.
    [173] Becker S, Bobin J, Candès E J. NESTA: a fast and accurate first-order method forsparse recovery. SIAM Journal on Imaging Sciences,2011,4(1):1-39.
    [174] J. H. G. Ender. For most large underdetermined systems of linear equations, theminimal L1norm solution is also the sparsest solution, Commun. Pure Appl.Math.,2006,59(6):797-829.
    [175] J. A. Tropp. Greed is good: algorithmic results for sparse approximation, IEEETrans. Inf. Theory,2004,50(10):2231–2242.
    [176] S. Chen, D. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit,SIAM J. Sci. Comput.,1998,20(1):33–61.
    [177] Jian. Li, Petre. Stoica. Efficient mixed-spectrum estimation with applications totarget feature extraction, IEEE Trans. Signal Process.,1996,44(2):281-295.
    [178] Lei Hu, Zhiguang Shi, Jianxiong Zhou, and Qiang Fu. Compressed sensing ofcomplex sinusoids: an approach based on dictionary refinement, IEEE Trans.Signal Process.,2012,60(7):3809-3822.
    [179] K. R. Varshney, M. etin, J. W. Fisher, and A. S. Willsky. Sparse representationin structured dictionaries with application to synthetic aperture radar, IEEE Trans.Signal Process.,2008,56(8):3548-3561.
    [180] D. Malioutov, M. etin, and A. S. Willsky. A sparse signal reconstructionperspective for source localization with sensor arrays, IEEE Trans. SignalProcess.,2005,53(8):3010-3022.
    [181] S. D. Cabrera, S. Malladi, R. Mulpuri, and A. E. Brito. Adaptive refinement inmaximally sparse harmonic signal retrieval, in Proc. IEEE11th Digital SignalProcessing Workshop and3rd Signal Processing Education Workshop, Taos SkiValley, New Mexico,2004:231-235.
    [182] R. Mulpuri. Refinement and regularization in best basis selection for harmonicretrieval, M.S. thesis, Univ. of Texas,2002.
    [183] S. Malladi. Adaptive refinement and noise reduction methods for sparse signalreconstruction. M.S. thesis, Univ. of Texas,2004.
    [184] Dmitry M. Malioutov. A sparse signal reconstruction perspective for sourcelocalization with sensor arrays, M.S. thesis, Massachusetts Institute ofTechnology.,2003.
    [185] Air Force Research Laboratory, Model based vision laboratory, sensor datamanagement system MSTAR,[Online]. Available:http://www.mbvlab.wpafb.af.mil/public/sdms/datasets/mst-ar/.
    [186] Müjdat etin. Feature-enhanced synthetic aperture radar imaging,‖Ph.D.dissertation, Boston University.,1992.
    [187] Yi Chen, Nasser M. Nasrabadi and Trac D. Tran. Simultaneous joint sparsitymodel for target detection in hyperspectral imagery, IEEE Geosci. Remote Sens.Lett.,20118(4):676-680.
    [188] Tropp J A, Gilbert A C, Strauss M J. Algorithms for simultaneous sparseapproximation. Part I: Greedy pursuit. Signal Processing,2006,86(3):572-588.
    [189] Tropp J A. Algorithms for simultaneous sparse approximation. Part II: Convexrelaxation. Signal Processing,2006,86(3):589-602.
    [190] Rakotomamonjy A. Surveying and comparing simultaneous sparse approximation(or group-lasso) algorithms. Signal processing,2011,91(7):1505-1526.
    [191]闫照文,苏东林,袁晓梅编著. FEKO5.4电磁场分析技术与实例详解.北京:中国水利水电出版社,2009.
    [192] Mingyi Hong, Ruoyu Sun, and Hadi Baligh, et al. Joint Base Station Clusteringand Beamformer Design for Partial Coordinated Transmission in HeterogeneousNetworks. IEEE J. Sel. Areas Commun.,2013,31(2):226–240.
    [193] Zhang Lei, Zhijun Qiao, and Mengdao Xing, et al. High-Resolution ISARImaging by Exploiting Sparse Apertures, IEEE Trans. Antennas. Propag.,2012,60(2):997-1008.
    [194] M. Grant and S. Boyd. CVX: Matlab software for disciplined convexprogramming, December2008. Available at http://www.stanford.edu/~boyd/cvx/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700