Choi和Han's免疫分型在弥漫大B细胞淋巴瘤预后评价中的意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨应用Choi新分类法与Han’s分型后DLBCL的免疫分型与预后的相关性。
     方法:收集山西省肿瘤医院病理科有详细随访资料的DLBCL99例,用免疫组织化学EnVision法检测bcl-2、bcl-6、CD10、FOXP1、GCET1、Mum-1的表达情况。根据Choi和Han’s两种分类法分别将所有病例分型。其中35例应用荧光原位杂交技术检测bcl-6基因重排情况。
     结果:按Han’s分类法GCB型共21例(21.9%),nonGCB78例(78.1%)。Choi的新分类法则将Han’s分类法中的4例进行了重新分类,GCB型共23例(23.2%),nonGCB型76例(76.8%),根据随访资料确认重新分类的病例与估计预后一致。分类后的GCB组生存率明显优于nonGCB组(P=0.000)有统计学意义。FOXP1阳性组与阴性组的预后有意义(P=0.011)。GCET1阳性组与阴性组的预后差异也有统计学意义(P=0.027)。bcl-2蛋白的表达对预后无影响,但对Han’s及Choi分型有意义(P值分别为0.003和0.000)。35例DLBCL患者中3q27染色体断裂7例(20%),扩增10例(28.6%)。Bcl-6基因易位重排病例(共为15例,43%)高发于nonGCB型中,bcl-6基因重排与bcl-6蛋白的表达没有明显相关性。
     结论:两种分类法免疫分型GCB组预后都优于nonGCB组。bcl-6、FOXP1、GCET1的表达与预后有相关性。bcl-2蛋白的表达对两种分型有意义。Choi及Han’s分类法对DLBCL的免疫分型、临床预后估计均有应用价值。
Purpose To detect the correlation of DLBCL to the prognosis using Choi’s and Han’s classification.
     Methods Ninty-nine cases of DLBCL were studied using immunohistochemistry EnVision method for bcl-2,bcl-6,CD10, FOXP1 ,GCET1,MUM1 in Shanxi Tumor Hospital. Follow-up was included. They were classified according to Han’s and Choi algorithm. Fluorescence in situ Hybridization (FISH) for bcl-6 gene expression(located on chromosome 3q27)was performed on paraffin-embedded tissues of 35 case.
     Results In Han’s classification, 21(21.9%) cases were GCB subtype and 78 cases(78.1%) nonGCB subtype. The Choi’s classification has been re-classified 4 cases, 23(23.2%) cases were GCB subtype and 76 cases(76.8%) nonGCB subtype, the follow-up data also confirmed that this new classification was included in the 4 patients with similar prognosis classified group. GCB group survival rate was better than nonGCB’s (P = 0.000) by Choi’s. The prognosis of FOXP1-positive group was better than negative group (P = 0.011). There were significant differences in prognosis between GCET1 positive group and negative group (P = 0.027).Bcl-2 protein expression was useful for Hans(P=0.003) and Choi’s(P=0.000) classification but not benefit for prognosis. Breakage of 3q27 was detected in 7 of the 35 case(20%)and proliferation was detected in 10 case(28%).Bcl-6 rearrangement was more frequently encountered in the nonGCB-like type(15 was positive in all 35 cases,43%).There is no relationship between bcl-6 gene rearrangement and bcl-6 protein expression.
     Conclusion On the basis of classification , GCB group had a better clinical outcome than nonGCB group. FOXP1, GCET1 ,bcl-6protein expression is associated with different outcome in DLBCL. bcl-2 protein expression is helpful for immunophenotyping. Both of Choi and Han’s algorithm were play an important role in immunophenotyping and prognosis.
引文
[1] Anderson JR, Armitage JO, Weisenburger DD. Epidemiology of the non-Hodgkin’s lymphomas: distributions of the major subtypes differ by geographic locations. Annals of Oncology ,9(7);717-720
    [2] Peh SC. Host ethnicity influences non-Hodgkin’s lymphoma (NHL) subtypefrequency and Epstein-Barr virus association rate: the experience of a multiethnicpopulation in Malaysia. Histopathology. 2001 May;38(5):458-465
    [3] Han’s CP,Weiseuberger D,Greiner TC,et a1.Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarry.Blood,2003,103(1): 275-282.
    [4] William W.L. Choi , Dennis D. Weisenburger,1 Timothy C. Greiner, et al. A New Immunostain Algorithm Classifies Diffuse Large B-Cell Lymphoma into Molecular Subtypes with High Accuracy. Clin Cancer Res. 2009 Sep 1;15(17): 5494-5502.
    [5] Philip J. Brown, Sally L. Ashe, Ellen Leich, Christof Burek, Sharon Barrans, James A. Fenton, AndrewS. Jack, Karen Pulford, Andreas Rosenwald and Alison H. Banham. Potentially oncogenic B-cell activation–induced smaller isoforms of FOXP1 are highly expressed in the activated B cell–like subtype of DLBCL. Blood, 2008;111:2816-2824
    [6] Hunt KE,Reichard KK.Diffuse large B-cell lymphoma.Arch Pathoi Lab Med. 2008.132(1):118-124.
    [7] Pasqualucci L, Bereschenko O, Niu H, et al. Molecular pathogenesis ofnon-Hodgkin’s lymphoma:the role of Bcl-6. Leuk Lymphoma. 2003;44(suppl 3):S5–12.
    [8] Phan RT, Dalla-Favera R. The BCL6 proto-oncogene suppresses p53 expression in germinalcentreB cells. Nature,2004;432:635-639.
    [9] Petersen BL,Scrensen MC,Pedemen S,et a1.FIuorescence in situ hybridizatioll on formalin—fixed and paraffin-embedded tissue:Optimizing the method.Appl Immunohistochem Mol Morphol.2004,12(3):259-265.
    [10] Han’s CP, Weisenburger DD, Greiner TC, et al.Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 2004;103:275–282.
    [11] Muris JJ, Meijer CJ, Vos W, et al. Immunohistochemical Profiling based on bcl-2 , CD10 and MUM1 expression improves risk stratification in patients with primary nodal diffuse large B cell lymphoma. J Pathol 2006;Apr;208:714–723.
    [12] Chang CC, McClintock S, Cleveland RP, et al.Immunohistochemical expression patterns of germinal center and activation B-cell markers correlate with prognosis in diffuse large B-cell lymphoma. Am J Surg Pathol 2004;28:464–470.
    [13] Barrans SL, Carter I, Owen RG, et al. Germinal center phenotype and bcl-2 expression combined with the International Prognostic Index improves patient risk stratification in diffuse large B-cell lymphoma. Blood ,2002;99:1136–1143.
    [14] Colomo L, Lopez-Guillermo A, Perales M, et al.Clinical impact of the differentiation profile assessed by immunophenotyping in patients with diffuse large B-cell lymphoma. Blood 2003;101:78–84.
    [15] Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503-511.
    [16] Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002 Jun 20;346(25):1937-1947
    [18] Lossos IS, Jones CD, Warnke R, et al. Expression of a single gene, bcl-6, strongly predicts survival in patients with diffuse large B-cell lymphoma.Blood. 2001;98:945-951.
    [19] Weimin Ci, Jose M. Polo, Leandro Cerchietti, et al. The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL. Blood, May 2009; 113: 5536 - 5548.
    [20]陈燕,陈慧,朱雄增等.上海地区弥漫性大B细胞淋巴瘤的生发中心B细胞样型显著偏低.中华病理学杂志,2010,39(5):313-318
    [21] Mounier N, Briere J, Gisselbrecht C, et al. Rituximab plus CHOP (R-CHOP) overcomes bcl-2–associated resistance to chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL). Blood. 2003;101:4279-4284.
    [22] Iqbal J, Neppalli VT, Wright G, et al. BCL2 expression is a prognostic marker for the activated B-cell-like type of diffuse large B-cell lymphoma. J Clin Oncol. 2006;24:961-968.
    [23] N Niitsu, M Okamoto, I Miura and M Hirano. Clinical features and prognosis of de novo diffuse large B-cell lymphoma with t(14;18) and 8q24/c-MYC translocations DLBCL with t(14;18)and8q24/c-MYC transloca-teons. Leukemia 23, 777-783 (April 2009) | doi:10.1038/leu.2008.344
    [24] Wihon W.Dunleavy K,Pittalnga S,et a1.Phase II study ofdose—adjusted EPOCH.Bituximub in Untreated diffuse large B-cell lymphohm with analysis of germinal center and post·germinal center biomarkel_.J Clin Oncol,2008,26(16):2717-2724.
    [25] Coiffier B, Thieblemont C, Van Den Neste E, et al.Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d’Etudes des Lymphomes de l’Adulte.Blood.2010 ;116(12): 2040-2045
    [26] Gisselbrecht C, Glass B, Mounier N, et al.Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era: a CORAL study [published online ahead of print July 26, 2010]. J Clin Oncol. doi:1.1200/JCO.201.28.1618.
    [27] R R Singh, J E Kim, Y Davuluri, E Drakos, et al. Hedgehog signaling pathway is activated in diffuse large B-cell lymphoma and contributes to tumor cell survival and proliferation. Leukemia 24, 1025-1036 (May 2010) | doi: 10.1038/leu.2010.35
    [28] Ryan D Morin, Nathalie A Johnson, Tesa M Severson. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nature,January 2010; 42(2).181-185
    [29] Xiaoyu Jiang, Xiaoqing Lu, George McNamara. HGAL, a germinal center specific protein, decreases lymphoma cell motility by modulation of the RhoA signaling pathway. Blood, September 15, 2010; doi:10.1182/blood-2010-04 -281568.
    [1] Gatter K, Warnke RA. Diffuse large B-cell lymphoma. In: Jaffe ES, Stein H, Vardiman JW, editors. World Health Organization classification of tumors: pathology and genetics of tumors of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2001. p. 171–4.
    [2] Engl N, Med J. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s Lymphoma. 1993; 329:987-994.
    [3] Coiffier B. Diffuse large cell lymphoma. Curr. Opin. Oncol. 2001; 13:325–334.
    [4] Jong D, Glas AM, Boerrigter L, et al. Very late relapse in diffuse lage B-cell lymphoma represents clonally related disease and is marked by germinal center cell features.(J ).Blood ,2003;102 (1) :324~3271.
    [5] Trumper L, Brittinger G, Diehl V, Harris NL.Non-Hodgkin’s lymphoma: a history of classificationand clinical observations. In: Mauch PM,Armitage JO, Coiffier B, Dalla-Favera R, HarrisNL, eds. Non-Hodgkin’s Lymphomas. NewYork, NY: Lippincott, Williams and Wilkins;2004:3-19.
    [6] National Cancer Institute sponsored study of classifications of non-Hodgkin’s lymphomas:summary and description of a working formulation for clinical usage. The Non-Hodgkin’s LymphomaPathologic Classification Project. Cancer. 1982;49:2112-2135.
    [7] Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms:a proposal from the International Lymphoma Study Group. Blood. 1994;84:1361-1392.
    [8] Gatter KC, Warnke RA. Diffuse large B-cell lymphoma. In: Jaffe ES, Harris NL, Stein H, Classification of Tumours Pathology and Geneticsof Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press;2001:171-174.
    [9] Savage KJ, Monti S, Kutok JL, et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large Bcell lymphomas and shares features with classical Hodgkin lymphoma. Blood. 2003;102:3871-3879.
    [10] Banks PM,Warnke RA. Mediastinal (thymic) large B-cell lymphoma. In: Jaffe ES, Harris NL, Stein H,Vardiman JW, eds.World Health Organization Classification of Tumours Pathology and Genetics of Tumours of Hematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2001:175-176.
    [11] Klein U, Goossens T, Fischer M, et al. Somatic hypermutation in normal and transformed human B cells. Immunol Rev. 1998;162:261-280.
    [12] JWeimin Ci, Jose M. Polo, Leandro Cerchietti, et al. The BCL6 transcriptional program features repression of multiple oncogenes inprimary B cells and is deregulated in DLBCL. Blood. 2009;113:5536-5548
    [13] Klein U, Dalla-Favera R. Germinal centres: role inB-cell physiology and malignancy. Nat Rev Immunol.2008;8:22-33.
    [14] Ye BH, Cattoretti G, Shen Q, et al. The BCL-6 proto-oncogene controls germinal centre formation and Th2-type inflammation. Nat Genet. 1997;16:161-170.
    [15] Dent AL, Shaffer AL, Yu X, Allman D, Staudt LM. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science.1997;276:589-592.
    [16] Ranuncolo SM, Polo JM, Dierov J, et al. Bcl-6 mediates the germinal center B cell phenotype and lymphomagenesis through transcriptional repression of the DNA damage sensor ATR. Nat Immunol. 2007;8:705-714.
    [17] Cerchietti LC, Polo JM, Da Silva GF, et al. Sequential transcription factor targeting for diffuse large B-cell lymphomas. Cancer Res. 2008;68:3361-3369.
    [18] Phan RT, Dalla-Favera R. The BCL6 proto-oncogene suppresses p53 expression in germinalcentre B cells. Nature. 2004;432:635-639.
    [19] Phan RT, Saito M, Basso K, Niu H, Dalla-Favera R. BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nat Immunol. 2005;6:1054-1060.
    [20] Ranuncolo SM, Polo JM, Melnick A. BCL6 repressesCHEK1 and suppresses DNA damage pathways in normal and malignant B cells. Blood Cells Mol Dis. 2008;41:95-99.
    [21] Shaffer AL, Lin KI, Kuo TC, et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity.2002;17:51-62.
    [22] Shaffer AL, Yu X, He Y, Boldrick J, Chan EP,Staudt LM. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity. 2000;13:199-212.
    [23] Tunyaplin C, Shaffer AL, Angelin-Duclos CD, Yu X, Staudt LM, Calame KL. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation.J Immunol. 2004; 173: 1158 -1165.
    [24] Cerchietti LC, Yang SN, Shaknovich R, et al. A peptomimetic inhibitor of BCL6 with potent antilymphoma effects in vitro and in vivo. Blood. 2009;113:3397-3405.
    [25] Polo JM, Dell’Oso T, Ranuncolo SM, et al. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat Med. 2004; 10: 1329-1335.
    [26] Polo JM, Juszczynski P, Monti S, et al. Transcriptional signature with differential expression of BCL6 target genes accurately identifies BCL6-dependent diffuse large Bcell lymphomas. ProcNatl Acad Sci U S A. 2007;104:3207-3212.
    [27] Dave SS, Fu K, Wright GW, et al. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med. 2006; 354:2431-2442.
    [28] Philip J. Brown, Sally L. Ashe, Ellen Leich, et al. Potentially oncogenic B-cell activation induced smaller isoforms of FOXP1 are highly expressed in the activated B cell–like subtype of DLBCL. Blood.2008;111:2816-2824
    [29] Shaffer AL, Rosenwald A, Staudt LM. Lymphoidmalignancies: the dark side of B-cell differentiation.Nat Rev Immunol. 2002;2:920-932.
    [30] Barrans SL, Fenton JA, Banham A, Owen RG,Jack AS. Strong expression of FOXP1 identifies a distinct subset of diffuse large B-cell lymphoma patients with poor outcome. Blood. 2004;104:2933-2935.
    [31] Banham AH, Connors JM, Brown PJ, et al. Expression of the FOXP1 transcription factor is strongly associated with inferior survival in patients with diffuse large B-cell lymphoma. Clin Cancer Res. 2005;11:1065-1072.
    [32] Kodama K, Massone C, Chott A, Metze D, Kerl H, Cerroni L. Primary cutaneous large B-cell lymphomas:clinicopathologic features, classification,and prognostic factors in a large series of patients.Blood. 2005;106:2491-2497.
    [33] Senff NJ, Hoefnagel JJ, Jansen PM, et al. Reclassificationof 300 primary cutaneous B-celllymphomas according to the new WHO-EORTC Classification for Cutaneous Lymphomas: comparison with previous classifications and identification of prognostic markers. J Clin Oncol. 2007;25:1581-1587.
    [34] Sagaert X, de Paepe P, Libbrecht L, et al. Forkhead box protein P1 expression in mucosaassociated lymphoid tissue lymphomas predicts poor prognosis and transformation to diffuse large B-cell lymphoma. J Clin Oncol. 2006;24:2490-2497.
    [35] Fox SB, Brown P, Han C, et al. Expression of the forkhead transcription factor FOXP1 is associated with estrogen receptor-_ and improved survival in primary human breast carcinomas. Clin Cancer Res. 2004;10:3521-3527.
    [36] Wang B, Weidenfeld J, Lu MM, et al. Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocytes proliferation and maturation. Development. 2004;131:4477-4487.
    [37] Banham AH, Beasley N, Campo E, et al. The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p. Cancer Res. 2001;61:8820-8829.
    [38] Hu H, Wang B, Borde M, et al. Foxp1 is an essential transcriptional regulator of B cell development.Nat Immunol. 2006;7:819-826.
    [39] Streubel B, Vinatzer U, Lamprecht A, Raderer M,Chott A. T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia. 2005;19:53-58.
    [40] Wlodarska I, Veyt E, De Paepe P, et al. FOXP1, agene highly expressed in a subset of diffuse large B-cell lymphoma, is recurrently targeted by genomicaberrations. Leukemia. 2005;19:1299-1305.
    [41] Fenton JA, Schuuring E, Barrans SL, et al. t(3;14)(p14;q32) results in aberrant expression of FOXP1 in a case of diffuse large B-cell lymphoma.Genes Chromosomes Cancer. 2006;45:164-168.
    [42] Haralambieva E, Adam P, Ventura R, et al. Genetic rearrangement of FOXP1 is predominantly detected in a subset of diffuse large B-cell lymphomas with extranodal presentation. Leukemia.2006;20:1300-1303.
    [43] Barrans SL, Fenton JA, Ventura R, Smith A, Banham AH, Jack AS. Deregulated over expression of FOXP1 protein in diffuse large B-cell lymphoma does not occur as a result of gene rearrangement.Haematologica. 2007;92:863-864.
    [44] Frazer JK, Jackson DG, Gaillard JP, et al. Identification of centerin: a novel human germinal center B cell-restricted serpin. Eur J Immunol. 2000;30:3039 -3048.
    [45] Pan Z, Shen Y, Du C, et al. Two newly characterized germinal center B-cell-associated genes,GCET1 and GCET2, have differential expression in normal and neoplastic B cells. Am J Pathol.2003;163:135-144.
    [46] Paterson MA, Horvath AJ, Pike RN, Coughlin PB.Molecular characterisation of centerin, a germinal centre cell serpin. Biochem J. 2007;405:489-494.
    [47] Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503-511.
    [48] Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma.N Engl J Med. 2002;346:1937-1947.
    [49] Hans CP, Weisenburger DD, Greiner TC, et al.Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103:275-282.
    [50] Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma.N Engl J Med. 2002;346:1937-1947.
    [51] Davis RE, Brown KD, Siebenlist U, Staudt LM.Constitutive nuclear factor kB activity is requiredfor survival of activated B cell-like diffuse large Bcell lymphoma cells. J Exp Med. 2001;194:1861-1874.
    [52] Lam LT, Davis RE, Pierce J, et al. Small molecule inhibitors of IkappaB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling. Clin Cancer Res. 2005;11:28-40.
    [53] Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature 459, 717–721 (2009).
    [54] Kato, M. et al. Frequent inactivation of A20 in B-cell lymphomas. Nature 459, 712–716 (2009).
    [55] Ryan D Morin1, Nathalie A Johnson, Tesa M Severson1, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nature Genetics 17 January 2010; doi:10.1038/ng.518
    [56] R R Singh, J E Kim, Y Davuluri, E Drakos, J H Cho-Vega, H M Amin and F Vega. Hedgehog signaling pathway is activated in diffuse large B-cell lymphoma and contributes to tumor cell survival and proliferationLeukemia 24, 1025-1036 (May 2010) | doi:10.1038/leu.2010.35
    [57] Craig Moskowitz. Is it time to stop treating subsets of DLBCL with R-CHOP? blood 1 June 2006 107;4207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700