分散式养猪废水处理技术工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分散式养猪废水是指规模较小的散养猪户养猪废水,猪舍设在农户庭院中,其养殖规模在200头以下。由于缺乏经济可行的处理技术,大量未经有效处理的分散养猪废水排入地表水体,造成较大的污染,成为新农村建设过程中亟需解决的问题。
     本论文以南方丘陵地区典型分散式养猪废水为研究对象,首先对存栏小于200头猪的农村分散式养猪的污染源排放特征进行了深入研究;其次在掌握其污染物排放特征的基础上,结合流体力学、化学反应工程学原理,研发了间歇式交错流液液分离装置,有效降低被处理废水的污染物负荷,并在污染源头处实现了污染物的资源化利用。针对农村分散式养猪废水,结合流体力学、化学反应动力学、生物学原理和生态学原理,同时考虑经济性和易操作管理性,研发了源分离技术-NBSFAOSP-人工湿地的耦合集成工艺;优化了集成工艺中NBSFAOSP段中厌氧处理单元HABR的水力学参数和NBSFAOSP运行参数,研究了人工湿地的配水均匀性和利用当地廉价易得材料红壤和钢渣作为人工湿地基质的效果;通过采用离子色谱法、荧光光谱分析法、紫外光谱法等手段分析了分散式养猪废水处理集成工艺过程中的DOM的迁移转化规律,对集成工艺处理农村分散式养猪废水技术工艺性能进行了初步探讨。
     本论文主要研究结论简述如下:
     (1)湖南省分散式养猪较少使用标准饲料喂养,多数采用潲水及自制饲料进行喂养,养猪废水一般采用水泡粪工艺排放,废水水质COD为8000~18650mg/L、pH为7.0~8.7、TN为720~1470 mg/L、TP为35.4~165.7 mg/L。
     (2)在基本掌握了分散式养猪的污染源排放特征,采用干清粪工艺后,通过实施污染源固液分离技术、液液分离技术,污染物资源化利用等源分离技术的集成措施,实现粪、尿分离,尿液与冲洗水分离,有效降低被处理废水的负荷,实现了污染物的原位资源化利用。采用源分离技术后,分散式养猪废水平均值为:COD 1200~1800mg/L、pH 7.0~8.7、TN 280~420 mg/L、TP18~28 mg/L。
     (3)通过对NBSFAOSP厌氧段反应器构造研究发现:厌氧段HABR反应器总体呈现推流式流态,构造性能优良,物理死区率为9%左右。但随着隔室数的增多,反应器内部流速增加,从而导致水力死区有上升趋势。结合经济因素并考虑HABR反应器效能和有效容积利用率,确定3格的HABR反应器作为NBSFAOSP工艺的起始段厌氧生物处理单元。
     (4)NBSFAOSP厌氧段反应单元HABR在常温、HRT为36h的条件下,以实际分散式养猪废水的冲洗分离水为进水,需要4周左右才能完成启动。HABR反应器稳定运行后,出水COD、SS等指标基本能达到规模化《畜禽养殖业污染物排放标准》(GB18596-2001)的排放标准,但对营养元素N、P的去除效能较差,出水不能够达标。同时,对反应器的抗冲击试验研究表明,添加填料后,反应器对污染物负荷冲击缓冲能力增强,填料能够很好的起到稳定废水中生物量的作用。
     (5)NBSFAOSP工艺运行100天结果显示:平均出水COD达到193 mg/L,平均出水NH_4~+-N达到68 mg/L,平均出水TP达到13 mg/L,SS为15 mg/L;COD、NH_4~+-N和SS低于规模化养殖《畜禽养殖业污染物排放标准》(GB18596-2001)的排放标准。除磷和进一步稳定处理效果还需后续处理工艺保证。单因素试验研究表明:在单一水质运行工况下,控制好养区内合理的溶解氧浓度是脱氮技术的关键问题。研究还发现:受污水水质C/N和废水投配比是决定TN去除效率的另外一个关键要素。NH_4~+-N去除率要与最后一级的废水投配比有关。结果表明:分散式养猪废水处理溶解氧宜取2.5 mg/L,C/N大于5,最后一级的配水比以不超过15%为宜。
     (6)人工湿地运行研究表明:湿地基质红壤和钢渣具有较强的磷吸附能力,可以优先作为南方丘陵地区湿地基质。采用红壤和钢渣构成的潜流湿地总磷去除效率较高,出水TP可以控制在5mg/L以下。水温变化对总磷的去除没有明显影响。
     (7)源分离技术-NBSFAOSP工艺-人工湿地集成工艺运行结果表明出水COD、NH_4~+-N、TP及SS均优于《畜禽养殖业污染物排放标准》(GB18596-2001)的排放标准。离子色谱分析表明:小分子有机酸在NBSFAOSP工艺厌氧反应段2h有机酸产生的总量达到最高,此时丙酸含量最高,随着反应时间的增长,乙酸含量逐渐增多。小分子有机酸进入好氧段后被快速降解。荧光光谱结果显示,同步荧光277nm处的峰强度与厌氧水解阶段有机酸浓度总量呈现显著相关关系;厌氧阶段污水中有机物主要以类蛋白物质为主;好氧阶段微生物对简单有机质降解速率较快,污水中类富里酸物质增多。SUVA254、E253/E203变化表明污水中溶解性有机物的芳香性和不饱和性随着水解时间增长而增加,芳环上取代基种类和数量也增多,芳环物质的稳定性变差有利于后续好氧过程对有机物的去除。
The dispersed swine wastewater is the wastewater produced by smale scale hoggery, where the pigsty is built in the farmer’s yard and the scale of raising scale is less than 200 pigs.
     Due to the lack of economic treatment techniques, large amount of hoggery wastewater is drained to surface water body without any efficient treatment, thus resulting in severe water pollution. This issue has become cruisal on the way of developing the new countryside.
     This research studied the typical dispersed hoggery wastewater of the southern hilly area, firstly, deeply investigated the characteristics of drainage of the dispersed hoggery of which raising scale is less than 200 pigs. Secondly, based on the understanding of the disperse characteristic of the pollutants, combining with the fluid mechanics,the principles of chemical reaction engineering, developed the device of Intermittent crisscross flow liquid-liquid separation,efficiently decreased the loads of pollutants in the wastewater,realized the resource-oriented untility of pollutants at their source.
     Focusing on the wastewater produced by dispersed hoggery in rural area, integrated with the principles of fluid mechanics, biology and ecology , considering the feasiblility of the economy, operation and management, developed the integrated process composed of source separation technology-NBSFAOSP-constructed wetland.
     Optimized the parameters of hydraulic and the NBSFAOSP operation for the anaerobic unit in NBSFAOSP of the integrating processing, studied the even distribution of the manmade wetlands and the results using red soil and steel slag which are cheap and easy to get at local market as the substrate of the manmade wetlands.
     Adopting some methods such as ion chromatography、Fluorescent Spectromet、ultraviolet spectrometry, analyzed the rules of migration and transformation of DOM in the integrated treatment processing of the dispersed hoggery, initiated the discussion of the capabilities of the integrated treatment processing of the dispersed hoggery.
     The conclusions of this research are as the following:
     (1)In Hunan Province, hogwash and home-made forage is adopted by the dispersed hoggery to feed the pigs, rather than the standard forage. The water quality parameters of the wastewater are: COD is 8000~18650mg/L、pH is 7.0~8.7、TN is 720~1470 mg/L、TP is 35.4~165.7 mg/L.
     (2)Based on the understanding of the discharging characteristics of the source pollutants of the dispersed hoggery, adopted the processing of dry cleaning manure, decreased the loading of the treated wastewater efficiently by adopting the pollutants’source separating techniques, such as solid-liquid separation,liquid liquid separation, resourse utilization of pollutant,etc. realized the resource-oriented utility of the pollutants. Treated by the pollutants’source separating techniques, the water quality parameters of the dispersed hoggery wastewater are: COD 1200~1800mg/L、pH 7.0~8.7、TN 280~420 mg/L、TP18~28 mg/L.
     (3)The findings of study the configuration of anaerobic reactor of NBSFAOSP are:Pushing flow regime is presented generally in the anaerobic unit of HABRreactor, The capabilities of the cofiguation are excellent,The percentage of physical dead corner is about 9%, However, the the increasing of the isolated units, the flow rate in the reactor has increased, therefore, results in the increasing of the dhydraulic dead corner. Integrated the economic factors and considered the energy efficiency and effective capacity utilization, HABR reactor with three units has been adopted as the initiated anaerobic treatment unit of the NBSFAOSP processing.
     (4)Under normal temperature and 36h HRT, if the inlet water is real dispersed hoggery wastewater, it will take anaerobic unit,HABR, of NBSFAOSP 4 weeks to finish the initiative operation. When the operation is stable,the index such as COD, SS and so on, can meet the discharge standard of《mass Disharge standard of pollutants for livestock and poultry breeding》(GB18596-2001), but the efficiencies of removing nutrition elements, such as N and P, are not ideal,can not meet the standard. Furthermore, the impact resistance of the reactor shows that the capability of the cushion of pollutant load of the 3 reactors has increased, the filling could stablize the biomass in the wastewater very well.
     (5)After 100 days operation of the NBSFAOSP processing, the operation results reveal: Average values of the discharge are: COD 100 mg/L、NH_4~+-N 66mg/L、TP is 13 mg/L、SS 15 mg/L. The values of COD、NH_4~+-N and SS are lower than the discharge standard for the mass breeding《Disharge standard of pollutants for livestock and poultry breeding》(GB18596-2001). Phosphor removing and advanced stable treatment will need support of the successing treatment processing. Single factor experiment results show: under the operating of the single water quality, controlling the concentration of the dissolved oxegen within a reasonable range is the crucial factor of the N removal technique. Meanwhile, the study also finds: the other two key factors affecting the removal efficiency of TN are the C/N of receiving water body and the adding ratio of wastewater. The experiment results are: the concentration of the dissolved oxgen of the dispersed hoggery wastewater should be 2.4 mg/L, the C/N should not less than 6,water distribution ratio of the last step should not over 15%.
     (6)The operation of constructed wetlands presents: As the substrate of the wetlands, the red soil and steel slag have great absorptivity of phosphor, so they could be the prior choice for the hilly area of southern China. Using subsurface flow constructed wetland formed by red soil and steel slag, TP in effluent can be below the 5mg/L. TP removal rate wasn’t obviously influenced with the change of water temperature. Assist to artificially supply oxygen, the nitrogen removal capabilities of wetlands can be increased by 15%.
     (7)The operation results of the processing which integrated source separating technique, NBSFAOSP processing and constructed wetlands reveal that the index of COD、NH_4~+-N、TP and SS in the discharge are better than the discharge standard of《Disharge standard of pollutants for livestock and poultry breeding》(GB18596-2001) The analysis of ion chromatography.hows that the total amount of organic acid as reached the highest point at NBSFAOSP process anaerobic stage 2h, at this point, the content of propionic acid reach the highest point too. With the proceding of the reaction, the content of acetic acid has gradually increased. Small molecular organic acids will be degradated rapidly in the aerobic stage.
     The anlalysis of fluorescence spectrum presents that there are apparent correlationship between the peak intensity of Synchronous flourimetry 277nm and the concentration of organic acid in Anaerobic hydrolysis stage; plastein are the predominant organics in the wastewater in anaerobic phase; microorganism can degradate the organics rapidly in aerobic phrase, fulvic like in the wastewater will increase at the same time. The changes of SUVA254、E253/E203 present that the aromaticity and unsaturation of the dissolved organics in the wastewater will increase with the increasing of the hydration time, the species and amount of the substituents of the aromatic ring will increase too. The decreasing of the stability of aromatic ring material will benefit the removal of organicsin in the succesding aerobic phrase.
引文
[1] Sarah Atkinson, Lucilia. Prevention and Promotion in Decen2 tralized Rural Health Systems: a Comparative Study from North 2 east Brazil [ J ]. Health Policy and Planning, 2005, 20 ( 2 ) :69 - 79.
    [2] Mark A Shannon, PaulW Bohn, Menachem Elimelech, et al.Science and Technology for Water Purification in the Coming Decades [ J ]. Nature, 2008 (452) : 301 - 320.
    [3]李远.我国规模化畜禽养殖业存在的环境问题与防治对策[J].上海环境科学,2002,21(1)597-599.
    [4]于爱芝.中国生猪饲养业比较优势分析[J].农业技术经济,2005(1):40- 44.
    [5]中国新闻网. 2011.1.12.
    [6]陈诗波,王亚静,李崇光.中国生猪生产效率及影响因素分析[J].农业现代化研究,2008,29 (1):
    [7]邓蓉,张存根.我国畜牧业生产规模分析[J].现代化农业,2004,12:13-16
    [8]赵永宏,邓祥征,战金艳,等我国农业面临的现状与控制技术研究[J].安徽农业科学,2010,38(5):2548~2552.
    [9] Cao Y L, Jin M G, Liu Y F. Experimental study on nitrate nitrogen transfer and transformation in saline soil under the irrigation drainage condition in arid inland basin [C ] / The 2nd International Conference on Bioinformatics and Biomedic al Engineering. Piscataway: IEEE, 2008: 316123165.
    [10] Hellstrom D, Jonsson L. Evaluation of SmallWastewater Treatment Systems [ J ]. Water Science and Technology, 2003, 48(11) : 61 - 68.
    [11] May A.Massoud,Akram Tarhini,and Joumana A.Nasr. Decentralized approaches to wastewater treatment and management; Applicability in developing countries. J. Environ.Manage.,2009,90(1):652-659
    [12]王琳.发展中国家污水处理工艺原理与技术.英国:国际水协会出版社(IWA),2005
    [13]王琳,王宝贞.《分散式污水处理与回用》.北京:化学工业出版社,2003
    [14] GeenensD. Cost - efficiency and Performance of Individual and Small Scale Treatment Plants [ J ]. Water Science and Technology, 2000, 41 (1) : 21 - 25.
    [15]蒋克斌,彭松,张小海等.农村生活污水分散式处理技术及应用【M】.2009
    [16] Piet lens, Grietje Zeeman, Gatze Lettinga编,王晓昌,黄廷林等译.分散式污水处理和再利用[M].化学工业出版社,2004.3.
    [17] Hellstrom D, Jonsson L. Evaluation of small wastewater treatment systems [ J ]. Water Science and Technology,2003, 48 (11 - 12) : 61 - 68.
    [18] Timothy B Parkin , Edwin C Berry. Microbial nitrogen transformations in earthworm burrows [J]. Soil Biology and Biochemistry, 1999,31(3):1765~1771.
    [19]黄进良,蔡述明.湿地分类探讨-中国湿地研究.长春:吉林科学技术出版社,1995,p.42-47.
    [20] Pride R E,Nohretedt J S&Benefield L D.Utilization of created wetlands to upgrade small municipal wastewater treatment systems.Water Air Soil Pollution, 1990, 50(12):371-385
    [21]刘红玉等.中国湿地资源及其保护研究.资源科学,1999,21(6):34-37.
    [22]夏汉平等.人工湿地处理污水的机理与效率.生态学杂志,2002,21(4):51-59.
    [23]张毅敏,张永春.利用人工湿地治理太湖流域小城镇生活污水可行性探讨.农业环境保护, 1998,17(5):232-234
    [24] LIN, Y.F., JING, S.R., LEE, D.Y., and WANG, T.W. (2002a). Removalof solids and oxygen demand from aquaculture wastewaterwith a constructed wetland system in the start-up phase.Water Environ. Reserch. 74, 136.
    [25] LLOYD, J., KLESSA, D., PARRY, D., BUCK, P., and BROWN,N. (2004). Stimulation of microbial sulfate reduction in a constructedwetland: microbiological and geochemical analysis,Water Reserch. 38, 1822.
    [26] RAN, N., AGAMI, M., and ORON, G. (2004). A pilot study of constructed wetlands using duckweed for treatment of domestic primary effluent in Israel. Water Reserch. 38, 2241.
    [27] HuangJ.,Reneau R.B.,Hagedorn C. Nitrogen removal in constructed wetlands employed To treat domestic wastewater[J].Water Research,2000,34(9):2582-2588
    [28] Steer D.,Fraser L.,Boddy J.,Seibert B. Efficiency of small constructed wetlands for Subsurface treatmet of single-family domestic effluent[J]. Ecological Engineering ,2002,18(4):429-440
    [29] Hench K.R.,Bissonnette G. K.,Sexstone A.J.,et al. Fate of physical,chemical and microbial contaminants in domestic wastewater followmg treatment by small construeted weflands[J]WaterResearch, 2003,37(4):921-927
    [30]刘霞,陈洪斌.村镇及小区污水的生态处理技术[J].中国给水排水, 2003, 19(12):32-35
    [31] Reddy K.R., et al. Biogeochemical indicators to evaluate pollutant removal efficiency inconstructed wetlands. Water Science and Technology,1997,35
    [32] Tennesse Valley Authority. River Basin Operations for Treatment of Municipal Wastewater.Monitory Report for the period:March 1988 to October 1989:5.
    [33]国家环境保护局科技司.城市污水土地处理技术指南.北京:中国环境科学出版社,1997.12.
    [34]吴晓磊.人工湿地废水处理机理.环境科学,1995,16(3):83-86.
    [35]沈耀良,王宝贞.人工湿地系统的除污机理.江苏环境科技,l997,10(3):1-6.
    [36]丁疆华,舒强.人工湿地在处理污水中的应用.农业环境保护2000,19(5):320.
    [37]籍国东,倪晋仁.人工湿地废水生态处理系统的作用机制.环境污染治理技术与设备,2004,5(6):71-75.
    [38] Block A,Kelana Centre Point Jalan.The use of Constructed Wetlands for Wastewater Treatment,Wetlands Internatinonal-Malaysia office,Malaysia,2003
    [39]张虎成,等.人工湿地生态系统污水净化研究进展.环境污染治理技术和设备,2004.2:11-15.
    [40]谢龙,汪德耀.花叶芦竹潜流人工湿地处理生活污水的研究[J].中国给水排水,2009, 25(5): 89~91
    [41]石雷,杨璇.人工湿地植物量及其对净化效果影响的研究[J].生态环境学报, 2010, 19(1): 28~33
    [42]张翔凌.不同机质对垂直流人工湿地处理效果及堵塞影响[D],中国科学院,2007
    [43] Van Oostrom A J.Nitrogen removal in constructed wetlands treating nitrified meat processing effluent. Water Sci.Technol.1995,32:137-147.
    [44] Drizo A, Reddy K.R.,Moore P.A.. Solubility of inorganic P in stream water as influenced by pH and Ca concentration. Wat. Res.,1994,28:1755-1763
    [45]李林锋,年跃刚,蒋高明.植物吸收在人工湿地脱氮除磷中的贡献[J].环境科学研究,2009, 22(3): 337~342
    [46]黄中子,吴晓芙,赵芳,等.红壤对磷的吸附特性及其影响因素[J].中国给水排水, 2009, 25(21): 91~94
    [47] Julie K Cronk. Constructed wetlands to treat wastewater from dairy and swine operations [J]. Agriculture Ecosystems and Environment,1996, 58:97~114
    [48]郑向勇,严立,王崇等.地下渗滤污水处理系统的工艺类型[J].中国给水排水, 2006, 22(6): 11~14
    [50]张建,黄霞,施汉昌等.掺加草炭的地下渗滤系统处理生活污水[J].中国给水排水, 2004, 20(6): 41~43
    [51] Zhang Jian, Huang Xia, Liu Chaoxiang et al,Nitrogen removal enhanced by intermittent operation in a subsurface wastewater infiltration system[J].Ecological Engineering, 2005, 25: 419~428
    [52]白永刚,吴浩汀.滴滤池-人工湿地组合工艺处理农村生活污水[J].中国给水排水, 2007, 23(17): 55~57
    [53] Arve Heistad, Adam M Paruch, Lasse Vrale et al,A high–performance compact filter system treating domestic wastewater [J].Ecological engineering , 2006, 28:374~379
    [54] Liang Hanwen, Gao Min, Liu Junxin et al,A novel integrated step-feed biofilm process for the treatment of decentralized domestic wastewater in rural areas of China[J]. Journal of Environmental Sciences, 2010, 22(3): 321~327
    [55]邓良伟.规模化畜禽养殖废水处理技术现状探析[J].中国生态农业学报,2006,14(2):23~26
    [56]潘碌亭,罗华飞.猪场养殖废水处理新工艺[J].工业水处理,2008,28(2):72~74.
    [57]于金莲,阎宁.牲畜养殖废水处理方法探讨[J].给水排水,2000,26(9):44~46
    [58]李远.我国规模化畜禽养殖业存在的环境问题与防治对策[J].上海环境科学,2002,21(10): 597~599
    [59]彭里,王定勇.猪场废水的生物处理技术及其效果[J].家畜生态,2003,24(2):67-69.
    [60] Soyoung L Maniquiz MC, Kim LH. Characteristics of contaminants in water and sediment of a constructed wetland treating piggery wastewater effluent[J]. Journal of Environmental Sciences 2010, 22(6) 940–945
    [61] Harrington C, Scholz M. Assessment of pre-digested piggery wastewater treatment operations with surface flow integrated constructed wetland systems[J]. Bioresource Technology 101 (2010) 7713–7723
    [62] Obaja D, Mace S, Mata-Alvarez J. Biological nutrient removal by a sequencing batch reactor (SBR) using an internal organic carbon source in digested piggery wastewater[J]. Bioresource Technology 2005 (96): 7–14.
    [63] Stone KC, Poach ME, Hunt PG, et.al. Marsh-pond-marsh constructed wetland design analysis for swine lagoon wastewater treatment [J]. Ecological Engineering,2004(23): 127–133.
    [64] Kornboonraksa T, Lee HS, Lee SH. Application of chemical precipitation and membrane bioreactor hybrid processfor piggery wastewater treatment[J]. Bioresource Technology,2009(100): 1963–1968
    [65]李淑兰,猪场废水厌氧消化及后处理技术研究,中南林学院硕士论文,2003
    [66]陈蕊,高怀友,傅学起等.畜禽养殖废水处理技术的研究与应用[J].农业环境科学学报2006,25(增刊):374- 377
    [67]季明,吴长征.集约化养殖对环境危害与预放措施[J].环境科学与技术,1999,(2):32-34.
    [68]张明峰.日益严重的畜牧污染问题[J].世界农业,1996,(1):27-30.
    [69] Barber WP, Stuckey DC. The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a review [J]. Water Research,1999,33(7):1559~1578.
    [70] Zhang RH, Yin Y, Sung Y, et. al. Anaerobic treatment of swine waste by the anaerobic sequencing batch reactor[J]. Transactions of the ASABE,1997,40(3):761-767.
    [71] Angenent LT, Sung S, Raskin L. Methanogenic population dynamics during startup of a full- scale anaerobic sequencing batch reactor treating swine waste[J]. Water Research,2002, 36(18): 4648-4654.
    [72]肖东生.规模化养殖场粪污水处理和利用的研究北京,中国农业大学,2002.
    [73]赵军.规模化化养猪场粪污处理实例[J].可再生能源,2003(4):39-40.
    [74]邓良伟,陈铬铭.IC工艺处理猪场废水试验研究[J].中国沼气,2001,19(2):12-15.
    [75] Kameoka T, Kagi T, Sakimoto M, et al. Characteristics of concentrated wastewater treatment of swine by the rotating disc system [J]. Jpn. J. zootechnol. Sci,1986,57: 209-215.
    [76]许景文.猪舍污水的处理技术[J].上海环境科学,1993,12(3):35-37.
    [77]陈梅雪、杨敏,贺泓.日本畜禽产业排泄物处理与循环利用的现状与技术[J].环境污染治理技术与设备,2005,6(3):5-11.
    [78] Honda A, Ito H, Kawakita T. Treatment of the wastewater from animal housing by oxidation ditch system. Technical Report No.3 (Research Council secretariat), Ministry of Agriculture, Forestry and Fishe;ries, 1974.
    [79]徐洁泉,杨可俊,刘膺虎等.集约化猪场粪便污水沼气发酵综合处理系统的生产试验[J].中国沼气,1997,3:26-29.
    [80] Takashi Osada, Kiyyonri Ha.ga,Yasuo Harada. Removal of nitrogen and phoshorus from swine wastewater by the activated sludge units with intermittent aeration process [J]. Water. Research. 1991,25(11):1377-1388.
    [81]王建龙.现代环境生物技术[M].北京:清华大学出版社,2001:257-258.
    [82] JH Kim, M Chen, N Kishida, et al. Integrated real-time control strategy for nitrogen removalin swine wastewater treatment using sequencing batch reactors. Water Research 2004,38(14-15):3340–3348.
    [83] Obaja D, MacéS, Costa J, Sans C, et al. Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor. Bioresource Technology, 2003 ,87(1):103-11.
    [84]邓良伟,郑平,陈子爱. Anarwia工艺处理猪场废水的技术经济性研究[J].浙江大学学报(农业与生命科学版), 2004,30(6):628-630.
    [85] Waki M, Yokoyama H, Ogino A, et al. Nitrogen removal from purified swine wastewater using biogas by semipartitioned reactor [J]. Bioresource Technology,2007,99(13):5335-5340.
    [86] Yamamoto T, Takaki K, Koyama T, et al. Long-term stability of partial nitritation of swine wastewater digester liquor and its sub-sequent treatment by Anammox[J]. Bioresources Technology,2007.
    [87] Dapena-Mora A, Campos J I, Mosquera-Corral A, et al. Stability of the ANAMMOX process in a gas-lift reactor and a SBR[J]. Biotechnology,2004,110:159-170.
    [88] Ikuo T, Yuj O, Tomonori K, et al. Development of high-rate anaerobic ammonium-oxidizing (Anammox) biofilm reactors[J].Water Research,2007,41:1623-1634.
    [89] Hwang T S, Min K S, Choi E, et al. Resoures recovery and nitrogen removal from piggery waste using the combined anaerobic processes[J]. Water Science and Technology, 2007,54 (8):229-236.
    [90]汪敏等.五里塘生态农场有机废弃物的资源化生态工艺[J].城市环境与城市生态.1993,6(3): 21-24
    [91] Choudhary M, Bailey LD, Grant CA. Review of use of swine manure in crop production: effects on yield and composition and on soil and water quality [J]. Waste Management & Research, 1996,14:581~595
    [92]段妮娜,董滨,何群彪等.规模化养猪废水处理模式现状和发展趋势[J].净水技术,2008,27(4):9-15.
    [93]潘学峰,付泽田,Burtom C. H..发达国家畜禽废物处理技术与立法[J].农业工程学报,1995,11(3):108-113.
    [94]江立方,顾剑新.上海市畜禽粪便综合治理的实践与启示[J].家畜生态,2002, 23 (1):1-4.
    [95] Vanotti M B, Szogi A A, Hunt P G, et al. Development of environmentally superior treatment 3184-3194.2004,20(12):
    [96] Vanotti M B, Szogi A A, Vives C A. Greenhouse gas emission reduction and environmental quality improvement from implementation of aerobic waste treatment systems in swine farms [J]. Waste Management,2008,28(4):759-766.
    [97] Knight R L, PayneJr. V W E, Borer R E, et al. Constructed wetland for livestock wastewater management [J]. Ecological Engineering, 2000, 15:41-55.
    [98] Kern J, Idler C. Treatment of domestic and agricultural wastewater by reed bed systems [J]. Ecolo. Eng.,1999,12 ( 1~2 ):13~25
    [99] Langergraber G, Haberl R, Laber J, et al. Evaluation of substrate clogging processes in vertical flow construeted wetlands [M]. Proeeedings of the Eighth International Conference on Wetland Systems for water pollution Control,vol.1,Tanzania; Aiusha:2002,214-228.
    [100] Zhao Y Q, Sun G, Allen S J. Anti-sized reed bed system for animal wastewater treatment: a comparative study[J].Water Research,2004,38:2907-2917.
    [101]廖新弟,骆世明.人工湿地对猪场废水有机物处理效果的研究[J].应用生态学报,2002,13 (1):113-117.
    [102]何连生,朱迎波,席北斗.循环强化垂直流人工湿地处理猪场污水[J].中国给水排水,2007, 20(12):5~8
    [103]温东辉,唐孝炎.异养硝化及其在污水脱氮中的作用[J].环境污染与防治,2003, 25(5): 283-285.
    [104]王一明,彭光浩.异养硝化微生物的分子生物学研究进展[J].土壤,2003,35(5): 378-386.
    [105]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社2004.
    [106]赵旭涛,顾国维.硝化作用特性分析及讨论[J].环境科学研究,1995,8(1):45~47.
    [107] H. J. Lee, J.H. Bae, K. M. Cho. Simultaneous nitrification and denitrification in a mixed methanotrophic culture [J]. Biotechnol, Lett. 2001, 23:935~941
    [108] Hellinga C, Schellen AAJC, et al. The Sharon-process: an innovative method for nitrogen removal from ammoniumrich wastewater. Water Science and Technology, 1998,37(9).
    [109]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006.
    [110] Khin T, Annachhatre A P. Novel microbial nitrogen removal processes[J]. Biotech- nol Adv,2004,22:519~532.
    [111] Schmidt I, Sliekers O, Schmid M, et al. New concepts of microbial treatment proce- sssses for the nitrogen removal in wastewater[J].FEMS Microbiol Rev,2003,27: 481~492.
    [112] Turk O, Mavinci DS. Selective inhibition: a novel of nitrogen from highly nitrogenouswastewaters [J]. Environ. Technol. Lett.1987,8:419~426.
    [113] Hellinga C, Schellen AAJC, Mulder JW, et al. The SHARON process: an innova- tive method for nitrogen removal from ammonium-rich wastewater. Water Sci. Tcchnol.1998,37:135~142.
    [114] Verstraete VM, Philips. Nitrification-Denitrification Process and Technologies in New Contexts[J]. Environmental Pollution, 1998,102(1):717~726.
    [115] H. Yoo. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification via nitrite in an intermittently-aerated reactor.Water Res. 1999,33 (1):146152.
    [116]高大文,彭永臻,土淑莹.高氮豆制品废水的亚硝酸型同步硝化反硝化生物脱氮工艺.化工学报.2005, 56(4):699-704.
    [117] K. Pochana, J. Keller, P. Lant. Model development for simultaneousNitrification and denitrify- ication. Water Sci. Technol. 1999, 39(1):235-243.
    [118] Bruce ER, Wayne EL. Simultaneous denitrification with nitrification in single channel oxidation ditches. Journal WPCF,1985,57(4):300~308.
    [119] Watanabe Y, et al. Simultaneous nitrification and denitrification in micro-aerobic biofilms. Wat. Sci. Tech.,1992,26(3/4):511~522
    [120] Carrio L, Streett F,Mahoney K. Practical consideration for design of a step feed biological nutrient removal system[A ]. Proceedings of 73 rd Annual Conference and Exposition[C ]. USA:Anaheim, California, 2000.
    [121]邱慎初,丁堂堂.分段进水生物除磷脱氮工艺.中国给水排水, 2003, 19 (4) : 32~36
    [122]高俊发,王骊,关江,等.分段进水多级A/O生物脱氮工艺设计研究,2007,25(6):11-13
    [125]祝贵兵,彭永臻,吴淑云,等,分段进水生物脱氮工艺的优化控制运行研究[J].中国给水排水,2006,22(21):1-5
    [126] Peng Y. Z. , Zhu G. B. , Wang S. Y. Evaluation of nitrogen removal in step2feed biological nitrogen removal p rocess.The First International Conference on Environmental Science and Techonlogy. New Orleans, Louisiana, USA, January 23~26, 2005
    [127] Peng Y. Z. , Zhu G. B. , Wang S. Y. Use of C /N ratio as fuzzy control parameter for imp roved nitrogen removal in step-feed biological nitrogen removal p rocess. ISEIS 2004.International Conference Environmental Informatics. Regina, Saskatchewan, Canada, August 25~27, 2004
    [128] ShigeoFujii.Theoretical Analysis on Nitrogen Removal of the step-feed Anoxieoxie AetivatedSludge Process an its APPlication of rthe Optimal Operation[J].Water Seieneeand Technology. 1996,34(1-2):459-466
    [129] Kitaya M, Hasuno T, Kitayama M. Operation conditionsfor step denitrifyication method and its effect[A ]. Proc of Japan Sewerage Work Association [ C ]. Japan: Tokyo
    [130] Lotter,L.H.,WentzelM C,Loewenhal R.e.,eatl. Isolated from activated sludge in anaerobic/anoxic/aerobic system, Water SA,1986,12:203-208
    [131] Kirsch,D.P. Autotrophy : concepts of lithotrophic bacterial and their organic metabolism.Anual review of Microbiology,1971,25,177-120
    [132] Bond, Philip L., Keller, Jürg, Blackall,Linda L. Characterization of enhanced biological phosphorus removal activated sludges with dissimilar phosphorus removal performances[J]. Water Science and Technology,1998,37(Issue: 4-5):567-571
    [133] Niandong Wanga , Jian Pengb, Gordon Hillc,Biochemical model of glucose induced enhanced biological phosphorus removal under anaerobic condition[J].Water Research,2002,36(1):49-58
    [134] Wentzel M.C., Lotter,L.H.,Leowanthal R.E. eatl. Metabolic behavior of Acinetobacter ssp .in enhanced biological phosphorus removal-A biochemical model. Water SA,1986,12,209-224
    [135] Wentzel M.C., Lotter,L.H.,EkamaG.A.,eatl. Evaluation of biochemical models for biological excess phosphorus removal [J]. Water Science and Technology,1998,37 ( Issue: 4-5):567-571
    [136]于金莲,阎宁.牲畜养殖废水处理方法探讨[J].给水排水,2000,26(9): 44-46.
    [137]邓喜红.规模化养殖场粪污治理概述[J].农业环境与发展,1999,(2):42- 46
    [138]张兆伯,刘刚,于国霞等.畜禽废水处理技术探讨[J].山东环境,2001, (6): 35
    [139]崔理华,朱夕珍,陈智营.国内外规模化猪场废水处理组合工艺进展[J].农业环境保护,2000,19(3):188-191
    [140]杨朝晖,曾光明,高锋等.固液分离UASB-SBR工艺处理养猪场废水的试验研究[J].湖南大学学报(自然科学版),2002,29(6):95-99.
    [141]赵恒斗,规模化养猪的污水产生冶理与综合利用[J].中国沼气,1996,24(3):30-32
    [142]廖新俤 ,骆世明.人工湿地对猪场废水有机物处理效果的研究[J].应用生态学报,2002,13(1):113-117
    [143]张国治,姚爱莉.藻类对猪粪厌氧废液的净化作用[J].西南农业学报,2000,13(增刊):105-112
    [144]彭军,吴分苗,唐耀武.组合式稳定塘工艺处理养猪废水设计[J].工业用水与废水,2003,(6): 44-46
    [145]孙群荣,徐彬彬,张雁峰.氨吹脱-A2/O工艺处理高浓度养殖废水[J].给水排水, 2005,31(3):55-57.
    [146]猪粪水特性的研究安徽农业科学2008, 36(4):1578-1578
    [147]养猪场废水处理工艺研究环境污染与防治2000, 22(1):24-27
    [148]畜禽养殖废水的混合处理工艺环境工程2006, 24(4):29-30,33
    [149] ASBR-SBR工艺处理养猪废水重庆环境科学2003, 25(4):36-38
    [150] CSTR-SBR工艺在畜禽废水处理中的应用环境工程2003, 21(3):13-15
    [151]养猪场粪污水生物处理工艺技术研究农业环境科学学报2004, 23(3):599-603
    [152]北京市规模化畜禽养殖场污染调查与防治对策研究农村生态环境2002, 18(2):24-28
    [153]固液分离-UASB-SBR工艺处理养猪场废水的试验研究湖南大学学报(自然科学版)2002,29(6):95-99
    [154]养猪废水治理工程设计和运行内蒙古水利2008(4):134-136
    [155] UASB与接触氧化反应器在养殖废水处理工程中的应用中国沼气, 2008,26(2):21-24
    [156]高浓度畜禽养殖废水处理新工艺及调试运行家畜生态学报,2009, 30(3):82-85
    [157]猪场养殖废水处理新工艺工业水处理,2008,28(2):72-74
    [158]组合式稳定塘工艺处理养猪废水设计工业用水与废水,2003,34(3):44-46
    [159]国家环境保护局,水和废水监测分析方法[M ].第4版,北京:中国环境科学出版社, 2002: 10.
    [160]国家环境保护局、国家质量监督检验检疫总局,畜禽养殖业污染物排放标准(GB18596-2001),北京:中国计划出版社, 2001: 11.
    [161] Tovea Larsen, Source Separation: Will We See a Paradigm Shift in Wastewater Handling. Environmental Science& Technology, 2009.9, 1: 6121~6125.
    [162]贺延龄.废水的厌氧生物处理)[M].北京, 1998
    [163]沈耀良,束琴霞,孙立柱. The effects of organic loading rates and divalent metal ions onanaerobic granular sludge characteristics and treatment efficiency ofanaerobic baffled reactor[J].苏州科技学院学报:工程技术版,2007,17(4):1-5·
    [164]杨百忍. ABR反应器颗粒污泥的培养及运行特性的研究)[D].青岛:中国海洋大学, 2005
    [165]金仁村,胡宝兰,郑平,等.厌氧胺氧化反应器性能的稳定性及其依据,化工学报,2006,57(5):1166-1168
    [166]夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志, 2002,21 (4): 51-59.
    [167] Brix H. Functions of macrophytes in constructed wetlands. Water Science and Technology, 1994, 19(4): 71-78.
    [168]王凯军.城市污水生物处理新技术开发与应用[M].北京:化学工业出版社, 2001.
    [169] Paul CooPer. A review of the design and performance of vertical flow and hybrid reed bedtreatment systems[J]. Water Science and Technology,1999,40 (3),129.
    [170] Reddy K. R., Connor G. A., Gale P M.. Phosphorus sorption capacities of wetland soils and stream sediments impacted by dairy effluent. Environmental Quality, l998,27(2):438-447.
    [171] Drizo A, Frost C. A., Smith K A., et al.. Phosphate and ammonium removal by constructed wetlands with horizontal subsueface flow, using shale as a substrate[J]. Water Science and Technology. 1997,35 (5): 95-102.
    [172] Haberl R, Perfler R,Mayer H. Constructed wetland in Europe[J]. Water Science and technology, 1995, 32(3): 306-315.
    [173]崔理华,朱夕珍,骆世明.煤渣-草炭基质垂直流人工湿地系统对城市污水的净化效果[J].应用生态学报, 2003,14 (4):597-600.
    [174] Greenway M,Wbolley A. Constructed wetlands in Queeniand: performance efficiency and Nutrient bioaccumulation. EcoL.Eng.,1999,12:39-55
    [175] Reddy K.R.,Kadlec R.H.,Flaig E.et al.. Phosphorus retention in streams and wetlands: a review. Crit. Rev.,Environ. Sei. Teehnol.,1999,29:83-146
    [176] K.Sakadevan, H.J.Bavor. Phosphate adsorption characteristics of soils, lags and zeolite be used as substrates in constructed wetland systems[J]. Water Research. ,1998,32(2):393-399.
    [177] K. R. Reddy. Fate of Nitrogen and Phosphorus in a wastewater Retention Reservoir Containing Aquatic Macrophytes[J]. Environ. Qual, 1983,12(1):137-141.
    [178] JL Liao, Y Su, DF Xu,et al. Substrate Screening and Application in Constructed WetlandEcological Engineering System[J]. Environment Sicence. 2008,31(8):125-128.
    [179] L Cui, O Ying, L Qian, et al. Removal of nutrients from wastewater with Canna indica L. under different vertical-flow constructed wetland conditions[J]. Ecological Engineering, 2010,36(8):1083-1088.
    [180] Mann R. Phosphorus adsorption and desorption characteristics of constructed wetland gravels and steelworks by-products[J]. Soil Resources 1997,35(2):375-384.
    [181] O Mahmut. Equilibrium and kinetic modeling of adsorption of phosphorus on calcinedalunite[J]. Adsorption, 2003,9:125-132.
    [182] U. Stottmeister, A. Wie?ner, P. Kuschk, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnology Advances, 2003,22(1-2): 93-117.
    [183] J.L Bankston. Degradation of trichloroethylene in wetland icrocosms containin broad-leabed cattail and eastern cottonwood[J]. Water Research,2002,36:1539-1546.
    [184]吴振斌,陈辉蓉,贺锋.人工湿地系统对污水磷的净化效果[J].水生生物学报, 2001,25(1):28-34.
    [185]廖新俤,骆世明.人工湿地对猪场废水有机物处理效果的研究[J].应用生态学报, 2002,13(1):113- 117.
    [186] J Vymazal. The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic 10 years experience[J]. Ecological Engineering,2002,18(5):633-646.
    [187]成水平,夏宜睁.香蒲、灯心草人工湿地的研究III-净化污水的机理[J].湖泊科学,1998,10 (2): 66-71.
    [188] MS Fennessy, JK Cronk, WJ Mitsch. Macrophyte productivity and community development in created freshwater wetlands under experimental hydrological conditions[J]. Ecological Engineering, 1994,3(4): 469-484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700