中国四个牛品种VISFATIN、RBP4基因多态性及其与生长性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用PCR-SSCP、PCR-RFLP和DNA测序等技术,检测了秦川牛、南阳牛、郏县红牛和中国荷斯坦牛4个品种共818个个体的内脏脂肪素(Visfatin)和视黄醇结合蛋白4(RBP4)基因9个基因座的遗传变异,分析了其遗传结构和遗传多样性。同时利用SPSS(16.0)软件,运用最小二乘拟合线性模型等方法对秦川牛、南阳牛和郏县红牛3个黄牛品种在上述基因座中的多态性与生长性状进行了关联分析,分析了这些基因多态性对黄牛生长发育的遗传效应,以期发现对我国部分牛品种重要经济性状具有显著效应的遗传标记,为高效选育提供遗传学依据。本试验研究获得了以下结果:
     1. 4个牛品种Visfatin基因多态性分析
     本试验共检测了Visfatin基因7个基因座(V1~V7),包含外显子2、4、5、6、8、9和外显子11以及部分内含子。在所研究的7个基因座中,仅V2和V4基因座发现多态性。在秦川牛、南阳牛和郏县红牛中,V2基因座首次在内含子4区域发现长度为35 bp插入突变现象(NW_001494891:g14438-14439 Ins ACT GGA ATT CTA GTT TAA AAA TTG CTA CTA ATG AA),但在中国荷斯坦牛中未发生相关突变。在这4个牛品种中,V4基因座首次在内含子5区域发现长度为6 bp缺失突变现象(NW_001494891:g19768-19773 Del TAA AAA)。同时,该6 bp缺失突变导致了1个DraI内切酶酶切位点的缺失。
     卡方检验显示:在V2和V4基因座,4个品种均处于Hardy-Weinberg平衡状态。在V2和V4基因座中,秦川牛、南阳牛、郏县红牛和中国荷斯坦牛4个品种的群体遗传多态指数Ne/PIC/He分别为: 1.60/0.30/0.37 , 1.99/0.37/0.50 , 1.90/0.36/0.47 ,1.00/0.00/0.00;1.12/0.10/0.11,1.16/0.13/0.14,1.08/0.07/0.07,1.02/0.02/0.02。基因型分布的卡方独立性检验显示:在V2基因座中除郏县红牛与南阳牛之间差异不显著外,其余品种间均差异极显著(P<0.01);在V4基因座中除秦川牛与南阳牛、郏县红牛之间差异不显著外,其余品种间均差异显著或极显著(P<0.05或P<0.01)。结果说明,V2基因座在这3个黄牛品种中(秦川牛、南阳牛和郏县红牛)多态信息含量较丰富,选择潜力较大;V4基因座在这4个品种中多态信息含量较贫乏,选择潜力较小。
     2. Visfatin基因多态性与秦川牛、南阳牛和郏县红牛生长性状的关联分析
     在牛Visfatin基因V2基因座中检测出WW、WI、II型3种基因型,其中WW型为野生型。在秦川牛的体重、体高、坐骨端宽、胸围方面,在南阳牛的初生重、18月龄体重和日增重方面,在郏县红牛的体高、坐骨端宽和管围方面,WW型均极显著大于II型(P<0.01)。在V4基因座中检测出WW、WD型2种基因型,其中WW型为野生型。在郏县红牛中该基因座不同基因型与其生长性状无显著性影响;在秦川牛的体重和胸围方面以及在南阳牛的初生重、6月龄和12月龄的体重和平均日增重方面,WW型均极显著大于WD型(P<0.01)。结果说明,V2基因座不同基因型与秦川牛、南阳牛和郏县红牛品种体尺和体重存在相关,V4基因座不同基因型与秦川牛和南阳牛品种的体尺和体重存在相关。
     3. 4个牛品种RBP4基因多态性分析
     本试验共检测RBP4基因2个基因座(R1和R2),包含外显子2和3以及部分内含子。在这2个位点上,秦川牛、南阳牛和郏县红牛中均表现多态,而中国荷斯坦牛中均表现为1种带型。首次在R1基因座内含子2区域发现1处SNP位点(NC_007327:g443C>T),该处突变导致1个Hin6I内切酶酶切位点的缺失;在R2基因座上内含子2区域发现4 bp缺失突变,外显子3区域发现1处SNP位点(NC_007327:g3486-3489 Del TCTG;g3571C>G/T),其中3571C>G/T分别导致RBP4蛋白第3外显子中第15位氨基酸由Pro突变为Arg/Leu,且研究发现这2处突变完全连锁。
     卡方检验显示:在R1和R2基因座中,4个品种均处于Hardy-Weinberg平衡状态。在R1和R2基因座中,秦川牛、南阳牛、郏县红牛和中国荷斯坦牛的群体遗传多态指数Ne/PIC/He分别为1.63/0.31/0.39,1.87/0.35/0.46,1.90/0.36/0.47,1.00/0.00/0.00;1.51/0.28/0.34,1.66/0.32/0.40,1.52/0.28/0.34,1.00/0.00/0.00。基因型分布的卡方独立性检验显示:在R1基因座中4个牛品种间均差异极显著(P<0.01);在R2基因座中,除郏县红牛与秦川牛和南阳牛之间差异不显著外,其余品种间均差异极显著(P<0.01)。结果说明,R1和R2基因座在3个黄牛品种中(秦川牛、南阳牛和郏县红牛)多态信息含量较丰富,选择潜力较大。
     4. RBP4基因多态性与秦川牛、南阳牛和郏县红牛生长性状的关联分析
     在RBP4基因R1基因座中检测出CC、CT、TT型3种基因型,其中CC型为野生型。在秦川牛的体重、腰角宽、胸围和坐骨端宽方面,TT型均显著大于CC型(P<0.05)。在南阳牛的18月龄坐骨端宽方面,CT型显著大于CC型(P<0.05);在24月龄体斜长方面,TT型显著大于CT型(P<0.05)。在郏县红牛的体高方面,TT型显著大于CC型(P<0.05)。
     在R2基因座中检测出CC、CG、CT、GG和GT型5种基因型,其中CC型为野生型。在秦川牛的体重、体高、十字部高和胸围方面,CC型均显著或极显著大于GT和GG型(P<0.05或P<0.01);在南阳牛的初生重以及6月龄、12月龄、18月龄、24月龄的平均日增重方面,CC型均显著或极显著大于CT和GT型(P<0.05或P<0.01);在郏县红牛的体高、十字部高方面,CC型均显著或极显著大于CT和GT型(P<0.05或P<0.01)。结果说明,R1和R2基因座不同基因型均与秦川牛、南阳牛和郏县红牛品种的体尺和体重存在相关性。
Genetic variations of Visfatin and RBP4 genes were detected by PCR-SSCP, PCR-RFLP and DNA sequencing techniques in 818 individuals from four cattle breeds (Qinchuan, Nanyang, Jiaxian Red cattle and Chinese Holstein), and their genetic structure and diversity were analyzed; meanwhile, association analysis were carried out by using SPSS software and Least Square Analysis method on growth traits at the candidate genes of the three Chinese cattle breeds (Qinchuan, Nanyang and Jiaxian Red cattle). The objects were to discovery the hereditary characteristics of these cattle breeds, to explore genetic markers with significant effects on economic important traits for efficient selection, and to provide genetic information for the cattle breeding program. The results were as follows:
     1. Polymorphisms of Visfatin gene in four breeds of cattle
     The variations of seven loci (V1~V7) in Visfatin gene were detected. These loci contained exon2, exon4, exon5, exon6, exon8, exon9, exon11 and partial introns. One 35 bp insertion mutation (ref. NW_001494891: g14438-14439 Ins ACT GGA ATT CTA GTT TAA AAA TTG CTA CTA ATG AA) was detected at V2 locus in intron 4 for the first time in three cattle populations (Qinchuan, Nanyang, and Jiaxian Red cattle). This mutation was not found in Chinese Holstein breed. A 6 bp deletion mutation (ref. NW_001494891: g19768-19773 Del TAA AAA) was detected in intron 5 for the first time at V4 locus in these four cattle breeds. Interestingly, this deletion mutation caused the lost of a DraI cutting site. The results illustrated that V2 locus contained more abundant polymorphic information than V4 locus, and V2 locus has more selection potential.
     Chi-square test results were as follows: both V2 and V4 locus were in Hardy-Weinberg equilibrium in the four breeds. Genetic diversity indexes (Ne/PIC/He) in Qinchuan, Nanyang, Jiaxian Red cattle and Chinese Holstein were 1.60/0.30/0.37, 1.99/0.37/0.50, 1.90/0.36/0.47, and 1.00/0.00/0.00 respectively at V2 locus and 1.12/0.10/0.11, 1.16/0.13/0.14, 1.08/0.07/0.07 and 1.02/0.02/0.02 respectively at V4 locus. The Chi-square independence tests, which detect the differences between/ among the four breeds, showed that there were significant differences between/among the four cattle populations in genotype distribution (P<0.01), except the results between Nanyang and Jiaxian Red cattle at V2 locus. At V4 locus, there were significant differences between/among the four cattle breeds in genotype distribution (P<0.05 or P<0.01), except the results between Qinchuan and Nanyang, as well as Qinchuan and Jiaxian Red cattle breeds.
     2. Relationships between genetic variation of Visfatin gene and growth traits in Qinchuan, Nanyang and Jiaxian Red cattle
     Three genotypes (WW, WI and II) were found at V2 locus in Visfatin gene. Genotype WW was the wild genotype. In Qinchuan cattle population, the individuals with genotype WW had significantly greater body weight, withers height, hucklebone width and heart girth than the ones with genotype II (P<0.01); in Nanyang cattle population, the animals with genotype WW had significantly greater birth weight, 18-month weight and average daily gain than the ones with genotype II (P<0.01); in Jiaxian Red cattle breed, the individuals with genotype WW owned significant greater withers height, hucklebone width and heart girth than the ones owned genotype II (P<0.01). Two genotypes (WW and WD) were detected at V4 locus. The genotype WW was the wild genotype. In Qinchuan cattle breed, the individuals with genotype WW had significantly greater body weight and heart girth than the ones with genotype WD (P<0.01); in Nanyang cattle breed, the animals with genotype WW had significantly greater birth weight, 6-month body weight, 12-month body weight and average daily gain than the ones with genotype WD (P<0.01); there was no significant influence in Jiaxian Red cattle. The results illustrated that different genotypes has different relationships with growth traits in Qinchuan, Nanyang, and Jiaxian Red cattle at V2 locus; meanwhile, different genotypes has different relationships with growth traits in Qinchuan, and Nanyang cattle at V4 locus.
     3. Polymorphisms of RBP4 gene in four breeds of cattle
     Two loci (R1, R2) were detected at RBP4 gene, which include exon 2, exon 3 and partial introns. Except the Chinese Holstein breed, mutations were detected at the two loci in the other three breeds. One SNP was firstly found in intron 2 at R1 locus (NC_007327: g443C>T); meanwhile, this SNP caused the lost of a Hin6I restriction site. A SNP and a 4-bp deletion were found for the first time at R2 locus (NC_007327: g443C>T; g 3486-3489 Del TCTG; g3571C>G/T). This SNP (g3571C>G/T) caused the animo acid changed from Pro to Arg/Leu respectively. These two mutations were complete linkage.
     Chi-square test results were as follows: R1 and R2 locus were both in Hardy-Weinberg equilibrium in the four breeds. Genetic diversity indexes of Ne/PIC/He in Qinchuan, Nanyang, Jiaxian Red cattle and Chinese Holstein were 1.63/0.31/0.39, 1.87/0.35/0.46, 1.90/0.36/0.47, and 1.00/0.00/0.00 respectively at R1 locus and 1.51/0.28/0.34, 1.66/0.32/0.40, 1.52/0.28/0.34 and 1.00/0.00/0.00 respectively at R2 locus. The Chi-square independence tests showed that there were significant differences between/among the four cattle populations in genotype distribution (P<0.01) at R1 and R2 locus except the results between Qinchuan and Jiaxian Red breed, as well as Nanyang and Jiaxian Red cattle. The results illustrated that both the R1 and R2 loci owned abundant polymorphic information, and both of them has strong selection potential.
     4. Relationships between genetic variation of RBP4 gene and growth traits in Qinchuan, Nanyang and Jiaxian Red cattle
     Three genotypes (CC, CT and TT) were found at R1 locus in RBP4 gene. The CC genotype was the wild genotype. In Qinchuan cattle breed, the individuals with genotype TT had greater body weight, hip width, heart girth and hucklebone width than the ones with CC genotype (P<0.05); in Nanyang cattle breed, the animals with genotype CT had greater 18-month hucklebone width than the ones with genotype CC, and the animals with genotype TT had longer 24-month body length than the ones with genotype CT (P<0.05). In Jiaxian Red cattle breed, the ones with genotype TT had greater withers height than the ones with genotype CC (P<0.05).
     CC, CG, CT, GG and GT genotypes were found at R2 locus. Genotype CC was the wild genotype. In Qinchuan cattle breed, the individuals with genotype CC had greater body weight, withers height, height at hip cross and heart girth than the individuals with genotype GT or GG (P<0.05 or P<0.01). In Nanyang cattle breed, the cattle with genotype CC had greater birth weight, 6-month, 12-month, 18-month and 24-month average daily gain than the ones with genotype CT or GT (P<0.05 or P<0.01). In Jiaxian Red cattle breed, the animals with genotype CC had greater withers height and height at hip cross than the ones with genotype CT or GT (P<0.05 or P<0.01). The results illustrated that different genotypes has different relationships with growth traits in Qinchuan, Nanyang, and Jiaxian Red cattle at both R1 and R2 locus.
引文
[1]张英汉.论牛的肉用、役用经济类型划分的意义和方法(BPI指数) [J].黄牛杂志, 2001, 72 (2): 1-5.
    [2]许尚忠,魏伍川,杨章平,等.试论中国黄牛优质肉用新品种选育的发展战略[A].全国养牛科学研讨会暨中国畜牧兽医学会养牛学分会第六届会员代表大会, 2005.
    [3]陈宏.我国肉牛产业中的种源问题[J].中国牛业科学, 2006, 32 (增刊): 250-253.
    [4]张英汉.关于中国畜牧生产结构与肉牛经济的几个问题[J].黄牛杂志, 2002, 29 (2): 4-8
    [5]孙少华.中国肉牛业的牛源现状和对策—兼论中国良种黄牛退役后的出路[J].中国牛业科学, 2006, 32 (增刊): 29-32.
    [6] Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat hat mimics the effects of insulin [J]. Science, 2005, 307 (8): 426-430.
    [7] Berndt J, Kloting N, Kralisch S, et al. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans [J]. Diabetes, 2005, 54 (10): 2911-2916.
    [8] Samal B, Sun Y, Stearns G, et al. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor [J]. Mol Cell Biol, 1994, 14 (2): 1431-1437.
    [9] Rongvaux A, Shea R J, Mulks M H, et al. pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolicenzyme involved in NAD biosynthesis [J]. Eur J Immunol, 2002, 32 (11): 3225-3234.
    [10] Sethi J K, Vidal-Puig A. Visfatin: the missing link between intra-abdominal obesity and diabetes? [J]. Trends Mol Med, 2005, 11 (8): 344-347.
    [11] Zhang Y Y, Gottardo L, Thompson R, et al. A visfatin promoter polymorphism is associated with low-grade inflammation and type 2 diabetes [J]. Obesity, 2006, 14 (12): 2119-2126.
    [12] Wang T, Zhang X, Bheda P, et al. Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme [J]. Nat Struct Mol Biol, 2006, 13 (7): 661-662.
    [13] Chen M P, Chung F M, Chang D M, et al. Elevated plasma level of visfatin/Pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus [J]. J Clin Endocrinol Metab, 2006, 91: 295-299.
    [14] Noy N. Retinoid-binding proteins: mediators of retinoid action [J]. Biochem J, 2000, 348 (3): 481-495.
    [15]金磊,孟伟,龚学忠,等.尿NAG、RBP的变化在肾功能正常的肾病患者中的应用[J].现代检验医学杂志, 2004, 19 (5): 48-49.
    [16]梁学颖,徐琪寿.视黄醇结合蛋白的分子生物学[J].生理科学进展, 2000, 3 (31): 277-279.
    [17] Colantuoni V, Romano V, Bensi G, et al. Cloning and sequencing of a full length cDNA coding for human retinol binding protein [J]. Nucleic Acids Res, 1983, 11 (22): 7769-7776.
    [18] Messer L, Wang L, Legault C, et al. Mapping and investigation of candidate gene for litter size in French Large White pigs [J]. Anim Gene, 1996, 27 (Suppl.2): 114.
    [19] Harney J P, Ali M, Vedeckis W V, et al. Porcine conceptus and endometrial retinol-binding proteins [J]. Reprod Fertil, 1994, 6: 211-219.
    [20] Roberts R M, Xie S, Trout W E. Embryo-uterine interaction in pigs during week 2 of pregnancy [J]. Reprod fertile, 1993 (suppl.48): 171-186.
    [21]杨龙,张冬杰,汪晓鸿,等.猪的RBP4基因部分序列的克隆及多态性分析[A].华北农学报, 2007, 22 (2): 11-13.
    [22]吴海娅,贾伟平,魏丽,等.高脂或高糖饮食对大鼠附睾脂肪组织视黄醇结合蛋白4 (RBP4)表达的影响,上海医学, 2007, 30 (6): 446-449.
    [23] Zanotti G, Berni R, Monaca H L. Crystal structure of liganded and unliganded forms of bovine plasma retinol binding protein [J]. J Biol Chem, 1993, 268 (3): 10728-10738.
    [24] Wang X F, Wang A G, Fu J L, et al. Effects of ESR1, FSHB and RBP4 genes on litter size in a Large White and a Landrace herd [J]. Arch Tierz Dummerstorf, 2006, 1: 64-70.
    [25] Mastroianni A, Regalia E F, Svhrtti G, et al. Increased retinol binding protein in the sera of patients with severe is dhem icdamage of the liver after transplantation [J]. Clin Bio Chem, 1998, 31 (2): 113-114.
    [26] Benabdeslam H, Garcia I, Brllon G, et al. Bio-chemicalasment of the nutritional status of cystic fibrosis patient streated with pancreatic enzyme extracts [J]. Am J Clin Nutr, 1998, 67 (5): 912-913.
    [27] Qin yang, Timothy E, Graham, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes [J]. Nature, 2005, 436 (4): 356-362.
    [28] Vanitallie T B. Frailty in the elderly: contributions of sarcopenia and visceral protein depletion [J]. Metabolism, 2003, 52 (2): 22-26.
    [29]夏文财,鲁绍雄.牛遗传图谱的研究进展[J].吉林畜牧兽医, 2008, 242 (5): 14-16.
    [30] Womack J. E. Advances in livestock genomics opening the barn door [J]. Genome Res, 2005, 15 (12): 1699-1705.
    [31]孙永巧,刘庆友.牛基因组研究进展[J].中国牛业科学, 2007, 33 (2): 14-19.
    [32]吴常信.畜禽遗传育种的分子生物学基础研究[J].中国畜牧杂志, 1998, 34 (3): 52-54.
    [33] Roberta Ciampolini, Kata youn, Moazami-Goudarzi, et al. Individual multilocus genotypes using microsatellite polymorphisms to permit the analysis of the genetic variability within and between Italian beef cattle breeds [J]. J Anim Sci, 1995, 73 (1): 3259-3268.
    [34] Kantanen J, Vilkki J, Elo K, et al. Random amplified polymorphic DNA in cattle and sheep: application for detecting genetic variation [J]. Anim Gene, 1995, 26 (2): 315-320.
    [35] Gramal R. The use of genetic-relationships among cattle breeds in the formulation of reltional breeding policies-a reexamination of the example of the south devon and the gelbvieh [J]. 1981, Anim blood Groups and Bio-chem between Genet, 15 (2): 173-180.
    [36]刘荣宗,施启顺.中国动物遗传育种研究进展[M].北京:中国农业科技出版社, 1997, p: 28-32.
    [37]欧江涛. DNA分子标记与动物育种[J].西南民族学院学报, 2002, 28 (4): 524-529.
    [38]兰旅涛,董希慧,郑国华,等.分子标记技术在现代猪育种中的应用现状与前景[J].江西农业学报, 2004, 16 (2): 46-50.
    [39]张细权,李加琪,杨关福.动物遗传标记[M].北京:中国农业大学出版社, 1997, p: 171-177.
    [40] Larde R, Thomp sonR. Efficiency of marker assisted in the improvement of quantitative t rait s [J]. Genetics, 1990, 124: 743-765.
    [41] Welsh J, Mmclelland M. Fingerprinting genomes using PCR with arbitrary primers [J]. Nucleic Acid Res, 1990, 18 (22): 7213-7218.
    [42] Zebeau M, Vos R. Selective restriction fragment amplification: a general method for DNA fingerprinting [P]. Eur Pat Appl, 1993: 534-535.
    [43] Liu X C, Wu X L, Lin R Z, et a1. Predicting leterosis through biochememical and RAPD markers in animal species [J]. Anim Biotechnol Bull, 1998, 6 (1): 77-83.
    [44] Larsen N J, Apa I. CfoI polymorphisms in the porcine growth hormone gene [J]. Anim Genet, 1993, 24 (1): 71-73.
    [45] Kemp S J, Teale J J. RandomLy primed PCR amplification of pooled DNA reveals polymorphism in a ruminant repetitive DNA sequence which differentiates Bos indicus and Bos Taurus [J]. Anim Genet, 1994, 25 (2): 83-88.
    [46]李祥龙.我国主要地方山羊品种遗传多样性及其起源分化研究[D].四川农业大学博士学位论文, 1997.
    [47]陈永久,张亚平,齐军,等.中国貉随机扩增多态DNA及其亚种分化关系[J].遗传学报, 1998, 25 (1): 16-21.
    [48]贾永红,史宪伟,简承松,等.贵州四个山羊品种mtDNA多态性及起源分化[J].动物学研究, 1999, 20 (2): 88-92.
    [49]陈宏, F Leibenguth.五个畜种线粒体DNA的RFLP研究.中国动物遗传育种研究进展[M].北京:中国农业科技出版社, 2001, 10: 436-440.
    [50]蓝贤勇.西农萨能奶山羊经济性状的DNA分子标记及5个山羊品种DNA多态性研究[D].陕西杨凌,西北农林科技大学: 2004.
    [51] Grodzicker T, Anderson C, Sharp P A, Sambrook J. Conditional lethal mutants of adenovirus 2-simian virus 40 hybrids, host range mutants of Ad2+ND1 [J]. Virol, 1974, 13 (6):1237-1244
    [52] Mullis K. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction [J]. Methods Enzgmol, 1985, 155 (2): 338-350.
    [53] Lander E S, Botsten D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics, 1989, 121 (2): 185-199.
    [54] Jeffreys A. Hyper variable minisatellite region in human DNA [J]. Nature, 1985, 314: 67-73.
    [55] Skinner D M. The sequence of a hermit crab satellite DNA is (TAGG)n-(ATCC)n [J]. Biochem, 1984, 13 (1): 3930-3937.
    [56] Schafer M. Three random loci in human genome with base pair change polymorphisms [J]. Cytogenet cell genet, 1982, 13 (2): 314-315.
    [57] Epplen T T. A simple repeated GATA/GACA sequence in animal genome [J]. Heredity, 1988, 79 (2): 409-416.
    [58] Nakamura Y. Variable number of tandem repeat markers for human gene mapping [J]. Science, 1987, 135 (2): 1616-1622.
    [59] Vassar G. A sequence in 13 phages detects hyper variable minisatellites I human and animal DNA [J]. Science, 1987, 235 (2): 683-684.
    [60] Orita M K, Suzuki Y K, et al. Rapid and sensitive detection of mutations and DNA polymorphisms using the polymerase chain reaction [J]. Genomics, 1989, 5: 8741-8743.
    [61] Williams J, Kubelik A, Livak J R, et a1. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acid Res, 1990, 18 (22): 6531-6535.
    [62] Chee M, Yang R, Hubbell E, et al. Accessing genetic information with high density DNA arrays [J]. Science, 1996, 274 (87): 610-614.
    [63] Guptu M, Chyi Y S. Amplification of DNA markers from evolutionary diverse genome using single primers of simple-sequence repeats [J]. Theor Appl Genet, 1994, 89 (3): 998-1006.
    [64] Ziethiewisz E, Rafalski A, Labuda D, et al. Genome fingerprinting by simple sequence repeats (SSR) anchored polymerase chain reaction amplification [J]. Genomics, 1994, 20 (2): 176-183.
    [65] Martinez A Z, Delgado J V, Rodero A, et al. Genetic structure of the Iberian pig breed using microsatellites [J]. Anim Genet, 2000, 30 (3): 295-301.
    [66] Welsh J, Chada K, Dalal S S, et al. Arbitrarily primed PCR finger printing of RNA [J]. Nucleic Acid Res, 1992, 20 (2): 4965-4970.
    [67] Caetano A. DNA amplification finger printing using very short arbitrary oligo nucleotide primers [J]. Biotechnol, 1991, 9 (2): 553-557.
    [68] Yiping Z, John R, Stommel, et al. Development of SCAR and CAPs markers linked to the beta-gene in tomato [J]. Crop Sci, 2001, 41 (3): 160-167.
    [69] Paran I, Michelmore R W. Development of PCR-based markers linked to downy mildew resistance in lettuce [J]. Theor Appl Genet, 1993, 85 (3): 985-993.
    [70] Primmer C R, Borge T, Lindell J, et al. Single nucleotide polymorphism characterization in species with limited available sequence information: GH nucleotide diversity revealed in the avian genome [J]. Mol Ecol, 2002, 11 (2): 603-612.
    [71] Hatey F, Tosser klopp G. Clouscard martinaco C, et al. Expressed sequence tags for genes [J]. Genet Sel Evol, 1998, 30 (5): 521-541.
    [72] Etscheid M, Riesner D, Karp A, et al. Molecular Tools f or Screening [J]. Biodivers, 1998: 133-156.
    [73] Alfons Ginel, H Sedler. Plant transposable elements and gene tagging [J]. Plant Mol Biol, 1992, 19 (3): 39-49.
    [74] Vora G J, Meador C E, Stenger D A, et al. Nucleic acid amplification strategies for DNA Microarray based pathogen detection [J]. Appl Environ Microbiol, 2004, 70 (5): 3047-3054.
    [75]崔静,倪鹏生.单核苷酸多态[J].国外医学遗传分册, 2000, 23 (2): 80-82.
    [76] Orita M, Suzuki Y, Swkiya T, et al. Rapid and sensitive detection of point mutations and genetic polymorphism using polymerase chain reaction [J]. Genomics, 1989, 5 (2): 874-879.
    [77] Hartmut R K, Lan K M, Ack I E, et al. Fish species identification in canned tuna by PCR-SSCP validation by a collaborative study and investigation of intra species variability of the DNA patterns [J]. Food Chem, 1999, 64 (2): 263-268.
    [78] Girsh P S, Anjaneyulu A S R, Viswas K N, et al. Sequence analysis of mitochondrial 12SrRNA gene can identify meat species [J]. Meat Sci, 2004, 66 (2): 5551-5561.
    [79] Chung E R, Kim W T, Kim Y S. Identification of Hanwoo meat using PCR-RFLP marker of MC1R gene associated with bovine coat color[J]. Anim Sci Technol, 2000, 42 (1): 3790-3801.
    [80]杜荣骞,主编.生物统计学(第二版) [M].高等教育出版社: 2004, p: 37-69.
    [81] Beck B A, Burlet R, Bazin J P, et al. Elevated neuropeptide-Y in the arcuate nucleus of young obese Zucker rats may contribute to the development of their overeating [J]. J Nutr, 1993, 123 (2): 1168-1172.
    [82] Dryden S, Pickavance L, Frankish H M, et al. Increased neuropeptide-Y secretion in the hypothalamic paraventricular nucleus of obese Zucker rats [J]. Brain Res, 1995, 690 (3): 185-188.
    [83]马小军,王立贤,刘宗平. mRNA差异显示技术及其在动物科学研究中的应用[J].畜牧与兽医, 2005, 37 (4) : 51-54.
    [84] Ye S Q, Simon B A, Maloney J P, et al. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Respir Crit Care Med, 2005, 171 (4): 361-370.
    [85] Haider D G, Schindler G, et al. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after grastric banding [J]. J Clin Endocrinol Metab, 2006, 91 (47): 1578-1581.
    [86]吴海娅,贾伟平.肥胖及2型糖尿病患者血清视黄醇结合蛋白4水平的变化及其临床意义[J].中华内分泌代谢, 2006, 22 (3): 290-293.
    [87] Ost A, Danielsson A. Retinol-binding protein4 at tenuates insulin-induced phosphorylation of IRS1 and ERK1/2 in primary human adipocytes [J]. Faseb J, 2007, 15.
    [88] Kloting N, Graham T E. Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass [J]. Cell Metab, 2007, 6 (1): 79-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700