SOX2在乳腺癌转移和血管新生中调控及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是在女性患者中发病率排名第一的恶性肿瘤,占女性新发恶性肿瘤的30%。据统计结果显示,在北京、天津、上海等大城市里,乳腺癌是最常见的女性恶性肿瘤,同时其发病率是逐年上升的。前列腺癌是一种在欧美等发达国家和地区常见的恶性肿瘤,死亡率列在第二位,在发展中国家的发病率也呈逐年递增的趋势[2]。
     肿瘤转移是评估肿瘤患者预后的关键因素,同时由转移引发的肿瘤患者的死亡占所有死亡病例的90%。肿瘤转移是由多个步骤依次发生而引发的综合性结果,其中包括一些肿瘤细胞获得从原发灶散布到初始转移位置的能力、浸润到周围正常的组织以及转移到远端的转移组织或者器官等。其中,任何一个过程的失败都会影响整个转移的过程。因为肿瘤的转移是肿瘤致死的主要病因,所以如果能更清楚的了解肿瘤转移发生过程中的潜在的分子机制将有助于找到有效治疗肿瘤的靶点,为临床有效防治肿瘤的转移以及提高患者的预后提供可能。
     血管生成在肿瘤的发生中起到了重要的作用,也是伴随肿瘤转移的一个必要的过程。传统的观点认为,肿瘤的新生血管系统是肿瘤细胞通过招募骨髓来源的内皮祖细胞(endothelial progenitor cells (EPCs) from the bone marrow)而形成的[9]。近年的研究表明肿瘤可能是起源于一小部分肿瘤起始细胞,这样的小部分细胞表现出干细胞特性,同时具有多向分化、自我更新等胚胎干细胞的特征。SOX (sry-related high-mobility-group box-containing)基因家族是一类具有HMG特征性结构的编码转录因子的基因,它最早是由Gubbay等在Y染色体缺失小鼠中发现的[12]。其中转录因子SOX2是SOX基因家族的一个重要成员。近年许多研究表明SOX2与肿瘤的发生以及肿瘤干细胞的调控密不可分[13]。一些研究表明,在许多肿瘤组织中证实SOX2具有促进肿瘤转移的作用[14],然而其潜在的分子机制尚有待深入探讨。
     为了明确SOX2在肿瘤病因中所起到的作用,我们利用体内体外一系列实验方法,研究SOX2与肿瘤发生及发展的关系,进而研究了SOX2参与肿瘤转移及新生血管生成调控的分子机制,为探讨更好的临床治疗肿瘤新靶点提供了理论基础。
     首先我们利用免疫组织化学染色的方法对乳腺癌组织中的SOX2进行检测,明确SOX2在乳腺癌发生及发展中的作用;其次利用体外实验进一步证实SOX2对肿瘤细胞转移特性的影响并进一步探讨了潜在的分子机制,其中包括运用划痕实验和Transwell实验检测细胞的迁移能力、利用ELISA和蛋白印迹以及免疫荧光等实验方法检测了SOX2过表达或低表达肿瘤细胞中转移相关蛋白及细胞因子的分泌水平的变化;然后运用双荧光报告系统和CHIP方法证明SOX2对目的基因的转录调控方式;最后利用小鼠原位接种及转移模型对其调控作用进行了体内实验的验证。
     另外,我们在BAL/C小鼠的乳腺癌细胞株4T1中建立沉默SOX2的稳定细胞系,并在体内成瘤,建立荷瘤小鼠模型,取小鼠肿瘤组织进行切片制作,通过免疫荧光方法染色检测沉默SOX2之后肿瘤组织中的CD31和LYVE的表达变化。
     我们利用小鼠骨髓移植的方法,将带有红色荧光的小鼠的骨髓细胞移植给经过放射线照射并被破坏造血系统的正常C57小鼠体内,并使其造血系统重建。再利用荷瘤小鼠模型,给小鼠接种带有绿色荧光的E0771细胞,这样收取肿瘤组织做荧光染色分析可以发现肿瘤的新生血管系统的来源,即来源于宿主骨髓来源的内皮祖细胞,还是来源于肿瘤细胞的自分化。
     我们通过对50例正常乳腺或癌旁组织和269例肿瘤组织中SOX2的表达检测,我们发现,SOX2对乳腺癌的发生有促进作用,乳腺癌组织中SOX2的表达水平与其临床分期和病理分级呈正相关。
     通过对66例正常淋巴组织和49例乳腺癌转移淋巴结的SOX2表达的免疫组化染色检测及统计学分析发现,SOX2在有乳腺癌细胞转移的淋巴结中明显高表达。
     通过利用划痕实验和tranwell细胞侵袭实验对乳腺癌细胞系MDA-MB-231和前列腺癌细胞系DU145的运动能力检测,我们发现SOX2对细胞的迁移和侵袭能力有明显的促进作用。
     利用沉默SOX2的MCF-7细胞和分别过表达SOX2的MCF-7和DU145细胞,通过对EMT相关标志物E-钙粘蛋白和α-肌动蛋白在肿瘤细胞蛋白表达水平的检测,发现SOX2促进肿瘤细胞发生EMT的过程。
     通过ELISA检测前列腺癌和乳腺癌细胞上清中TGF-β1和TGF-β2的分泌水平,以及在这两种肿瘤细胞中检测其它TGF-β通路相关基因的表达发现SOX2对EMT的调控不是通过TGF-β通路进行的。
     SOX2是通过与WNT/β-catenin信号通路的经典途径对EMT产生作用,主要目的基因是β-catenin。并且是通过直接结合到β-catenin启动子序列的方式对其转录进行调控。并且能影响WNT/β-catenin信号通路相关基因DKK3、 DVL1和DVL3的表达。
     SOX2对肿瘤细胞的促转移作用不仅仅体现在体外实验中,同样也发生在小鼠乳腺癌原位荷瘤模型中。
     SOX2可以通过促进肿瘤细胞对肿瘤微环境中骨骼来源内皮祖细胞的招募作用促进肿瘤的血管新成过程。
     SOX2促进肿瘤细胞中CD31、LYVE和VEGF的高表达,说明肿瘤组织SOX2基因不仅能够修饰肿瘤微环境,而且同时促进肿瘤细胞和骨髓来源的内皮祖细胞共同参与肿瘤新生血管的生成。
     通过以上实验,我们得到主要结论如下:
     SOX2与乳腺癌的发生、临床指标特别是转移显著相关。
     SOX2能通过调控WNT/β-catenin信号通路对肿瘤细胞的EMT过程起到促进作用。
     SOX2能通过直接结合于β-catenin启动子序列的方法激活其表达,同时促进其入核。
     SOX2调节WNT/β-catenin信号通路中DKK3,DVL1和DVL3的表达水平。
     SOX2促进肿瘤细胞和骨髓来源的内皮祖细胞共同参与肿瘤新生血管的生成。
     SOX2可以直接结合于VEGFB和LYVE启动子附近区域,进而对这两个基因的转录进行调控。
Breast cancer is the first high incidence of malignant tumor in female patients, accounting for30%of new-onset malignant tumors for female. The statistics show that breast cancer is the most common malignant tumor for female and its incidence is increasing year by year in Beijing, Tianjin, Shanghai and other big cities. Prostate cancer is one of the common malignant tumors in Europe, the United States and other developed countries and regions. The mortality ranks in the second and the incidence is also increasing in the developing countries every year[2].
     Tumor metastasis is the key factor that compromises the prognosis of tumor patients and accounts for90%of tumor death. Metastasis is a multistep process by which a percentage of primary tumor cells acquire the ability to spread from their initial site to the surrounding normal tissues in the local areas or to secondary tissues/organs. Failure at any one of these steps can block the entire metastatic process. Since tumor metastasis is responsible for the majority of deaths for cancer patients, a better understanding of the molecular mechanism involved in tumor spreading process is important for preventing tumor metastasis and improving the prognosis of tumor patents.
     Angiogenesis plays an important role during the development of cancer. Traditional theory defines that tumor vasculatures are mainly developed through sprouting from pre-existing vessels by recruiting of endothelial progenitor cells (EPCs) from the bone marrow[9]. Recent study revealed that tumor may developed from a small population of tumor initiation cells that possesses "sternness" properties which shares the pluripotency, self-renewal as embryonic stern cells.
     SOX (sry-related high-mobility-group box-containing) gene family is a kind of gene of encoding transcription factor with HMG structure. It was firstly found by Gubbay et al in the mouse with Y chromosome deletion. The transcription factor SOX2is one of important members of SOX gene family. In recent years, many studies indicate that SOX2is inseparable with the tumorigenesis and the regulation of tumor stem cells. Some research prove that SOX2can promote tumor metastasis in many tumor tissues, but the underlying molecular mechanism remains unclear.
     To clarify SOX2's effect in tumorigenesis, we used a series of experiments in vitro and in vivo to study the relationship between SOX2and tumorigenesis and the progression of tumor, and further investigated the underlying mechanism.
     Firstly, we tested the expression of SOX2in breast cancer tissues by immunohistochemical staining to elucidtate the effect of SOX2on tumorigenesis of human breast carcinoma. Secondly, we confirmed the effect of SOX2on tumor cell physiological functions and possible molecular mechanisms by in vitro experiments, including scratch assay and transwell chamber assay to test the migration ability of the cancer cells, ELISA, Western bloting and immunofluorescence methods to test the change of sectetion levels of metastasis associated protein and cytokines after overexpression or knockdown of SOX2. Then the transcriptional regulation ettect of SOX2on the target gene was proved by dual luciferase report system and CHIP methods. Finally, these results were verified in vivo.
     We established stable mouse breast cancer cell line4T1with Sox2down regulation (4T1-shSox2), immunofluorescence staining of CD31and LYVE of the xenografted tumor in situ showed that down-regulation of Sox2significantly reduces angiogenesis and lymphogenesis of tumor. By transplanting the bone marrow derived endothelial progenitor cells (MDEPCs) to BALB/C mice, we revealed that Sox2in the tumor cells promotes the recruitmrnt of this cells.
     By examing the expression of SOX2in50cases of normal breast or adjacent tissues and269cases of tumor tissues, we found that the expression level of SOX2is correlated with tumorigenesis of breast cancer, and the TNMstage and pathological grade.
     By examing the expression of SOX2in66cases of normal lymphoid tissues and49cases of lymph node metastasized with breast cancer cells, we found that SOX2is overexressed in the metastatic lymph nodes.
     By using scratch and tranwell test to detect the movements of breast cancer cell line MDA-MB-231and prostate cancer cell line DU145, we found that SOX2significantly promotes migration ability of tumor cells.
     By down-regulating or overexpressng SOX2in MCF-7and DU145cellsrespectively, we found that SOX2can promote the process of EMT in tumor cells by regulatingthe expression of EMT relative markers, such as E-cadherin and a-smooth actin.
     We detected the secretion level of TGF-βin supernatant of prostate cancer and breast cancer cells by ELISA and also detected the genes expression levels relative to TGF-P pathway in these two kinds of tumor cells by Western blotting. We found the regulation effect of SOX2on EMT is unrelated with TGF-β pathway.
     SOX2affects EMT through the classical WNT/β-catenin signal pathway. The main target gene is β-catenin. SOX2regulates the transcription by bining with the promoter sequence of β-catenin directly and also affects the expression of DKK3, DVL1and DVL3in WNT/β-catenin signal pathway.
     The promotion effect of SOX2on tumor cell metastasis was observed both in vitroand in the tumor bearing mice in vivo.
     Down-regulation of SOX2significantly reduced angiogenesis and lymphogenesis of breast cancer.
     SOX2promotes the expression of CD311, VEGF and LYVE in the xenografted tumor cells in situ. These results revealed that SOX2gene enhances tumor angioegenesis by regulateing tumor microenviroment via recruiting bone marrow derived endothelial progenitor cells as well as promoting tumor cells to form vessels.
     In summary, the conclusions are:
     The expression of SOX2is significantly correlated with clinical stage and pathological grade of breast cancer.
     SOX2may promote EMT process of tumor cells by regulation of WNT/β-catenin signal pathway.
     SOX2promotes the protein transportation to the nucleus to cause the transcription activation of downstream genes by binding with P-catenin promoter region directly to activiate its expression.
     SOX2regulates the expression of DKK3, DVL1and DVL3in WNT/β-catenin signal pathway.
     SOX2in tumor cells promotes angiogenesis by modulating the tumor microenvironment and promoting both tumor cells and MDEPCs to form vessels.
     ChIP assay further demonstrated the binding of SOX2protein to the region around the promoter of VEGF and LYVE, disclosing the underlying molecular mechanism for the regulatory effect of SOX2on angiogenesis.
引文
[1]GROTENHUIS B A, KLEM T M, VRIJLAND W W. Treatment outcome in breast cancer patients with ipsilateral supraclavicular lymph node metastasis at time of diagnosis:a review of the literature [J]. Eur J Surg Oncol,2013,39(3):207-12.
    [2]OUDARD S. Progress in emerging therapies for advanced prostate cancer [J]. Cancer Treat Rev,2013,39(3):275-89.
    [3]CHRISTOFORI G. New signals from the invasive front [J]. Nature,2006,441(7092): 444-50.
    [4]HANAHAN D, WEINBERG R A. The hallmarks of cancer [J]. Cell,2000,100(1):57-70.
    [5]FIDLER I J. The pathogenesis of cancer metastasis:the 'seed and soil' hypothesis revisited [J]. Nat Rev Cancer,2003,3(6):453-8.
    [6]WEISS L. Metastasis of cancer:a conceptual history from antiquity to the 1990s [J]. Cancer Metastasis Rev,2000,19(3-4):I-XI,193-383.
    [7]MOSERLE L, CASANOVAS O. Anti-angiogenesis and metastasis:a tumour and stromal cell alliance [J]. J Intern Med,2013,273(2):128-37.
    [8]ZHANG Y, HONG H, NAYAK T R, et al. Imaging tumor angiogenesis in breast cancer experimental lung metastasis with positron emission tomography, near-infrared fluorescence, and bioluminescence [J]. Angiogenesis,2013,
    [9]FERRARI N, GLOD J, LEE J, et al. Bone marrow-derived, endothelial progenitor-like cells as angiogenesis-selective gene-targeting vectors [J]. Gene Ther,2003,10(8):647-56.
    [10]HAN J S, CROWE D L. Tumor initiating cancer stem cells from human breast cancer cell lines [J]. Int J Oncol,2009,34(5):1449-53.
    [11]HUANG S D, YUAN Y, TANG H, et al. Tumor cells positive and negative for the common cancer stem cell markers are capable of initiating tumor growth and generating both progenies [J]. PLoS One,2013,8(1):e54579.
    [12]GUBBAY J, COLLIGNON J, KOOPMAN P, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes [J]. Nature,1990,346(6281):245-50.
    [13]LIU K, LIN B, ZHAO M, et al. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis [J]. Cell Signal,2013,25(5):1264-71.
    [14]XIANG R, LIAO D, CHENG T, et al. Downregulation of transcription factor SOX2 in cancer stem cells suppresses growth and metastasis of lung cancer [J]. Br J Cancer,2011,104(9): 1410-7.
    [15]GUINAN P, SAFFRIN R, STUHLDREHER D, et al. Renal cell carcinoma:comparison of the TNM and Robson stage groupings [J]. J Surg Oncol,1995,59(3):186-9.
    [16]SOLAL-CELIGNY P. Rituximab as first-line mono therapy in low-grade follicular lymphoma with a low tumor burden [J]. Anticancer Drugs,2001,12 Suppl 2(S11-4.
    [17]GERSHENWALD J E, FIDLER I J. Cancer. Targeting lymphatic metastasis [J]. Science, 2002,296(5574):1811-2.
    [18]PADERA T P, KADAMBI A, DITOMASO E, et al. Lymphatic metastasis in the absence of functional intratumor lymphatics [J]. Science,2002,296(5574):1883-6.
    [19]ECCLES S, PAON L, SLEEMAN J. Lymphatic metastasis in breast cancer:importance and new insights into cellular and molecular mechanisms [J]. Clin Exp Metastasis,2007,24(8): 619-36.
    [20]FESSLER E, DIJKGRAAF F E, DE SOUSA E M F, et al. Cancer stem cell dynamics in tumor progression and metastasis:Is the microenvironment to blame? [J]. Cancer Lett,2012,
    [21]MALANCHI I, SANTAMARIA-MARTINEZ A, SUSANTO E, et al. Interactions between cancer stem cells and their niche govern metastatic colonization [J]. Nature,2012,481(7379): 85-9.
    [22]MANI S A, GUO W, LIAO M J, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells [J]. Cell,2008,133(4):704-15.
    [23]SHERIDAN C, KISHIMOTO H, FUCHS R K, et al. CD44+/CD24-breast cancer cells exhibit enhanced invasive properties:an early step necessary for metastasis [J]. Breast Cancer Res, 2006,8(5):R59.
    [24]MICHIFURI Y, HIROHASHI Y, TORIGOE T, et al. High expression of ALDH1 and SOX2 diffuse staining pattern of oral squamous cell carcinomas correlates to lymph node metastasis [J]. Pathol Int,2012,62(10):684-9.
    [25]TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors [J]. Cell,2006,126(4):663-76.
    [26]THIELG How Sox2 maintains neural stem cell identity [J]. Biochem J,2013,450(3):e1-2.
    [27]CHEN Y, SHI L, ZHANG L, et al. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer [J]. J Biol Chem,2008,283(26):17969-78.
    [28]POLYAK K, WEINBERG R A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits [J]. Nat Rev Cancer,2009,9(4):265-73.
    [29]JIANG J, TANG Y L, LIANG X H. EMT:a new vision of hypoxia promoting cancer progression [J]. Cancer Biol Ther,2011,11(8):714-23.
    [30]TIWARI N, GHELDOF A, TATARI M, et al. EMT as the ultimate survival mechanism of cancer cells [J]. Semin Cancer Biol,2012,22(3):194-207.
    [31]XU J, LAMOUILLE S, DERYNCK R. TGF-beta-induced epithelial to mesenchymal transition [J]. Cell Res,2009,19(2):156-72.
    [32]BURGESS D J. Breast cancer:Circulating and dynamic EMT [J]. Nat Rev Cancer,2013, 13(3):148.
    [33]BRYANT D M, STOW J L. The ins and outs of E-cadherin trafficking [J]. Trends Cell Biol, 2004,14(8):427-34.
    [34]FURUSE M, HIRASE T, ITOH M, et al. Occludin:a novel integral membrane protein localizing at tight junctions [J]. J Cell Biol,1993,123(6 Pt 2):1777-88.
    [35]IKENOUCHI J, MATSUDA M, FURUSE M, et al. Regulation of tight junctions during the epithelium-mesenchyme transition:direct repression of the gene expression of claudins/occludin by Snail [J]. J Cell Sci,2003,116(Pt 10):1959-67.
    [36]THIERY J P, LIM C T. Tumor dissemination:an EMT affair [J]. Cancer Cell,2013,23(3): 272-3.
    [37]ANSDEAU S. EMT in breast cancer stem cell generation [J]. Cancer Lett,2012,
    [38]BRABLETZ T. EMT and MET in metastasis:where are the cancer stem cells? [J]. Cancer Cell,2012,22(6):699-701.
    [39]MENG F, WU G The rejuvenated scenario of epithelial-mesenchymal transition (EMT) and cancer metastasis [J]. Cancer Metastasis Rev,2012,31(3-4):455-67.
    [40]STRAUSS R, LI Z Y, LIU Y, et al. Analysis of epithelial and mesenchymal markers in ovarian cancer reveals phenotypic heterogeneity and plasticity [J]. PLoS One,2011,6(1):el 6186.
    [41]ITOH M, FURUSE M, MORITA K, et al. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins [J]. J Cell Biol,1999, 147(6):1351-63.
    [42]GRUNERT S, JECHLINGER M, BEUG H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis [J]. Nat Rev Mol Cell Biol,2003,4(8):657-65.
    [43]SHOOK D, KELLER R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development [J]. Mech Dev,2003,120(11):1351-83.
    [44]SANCHEZ-TELLO E, LIU Y, DE BARRIOS O, et al. EMT-activating transcription factors in cancer:beyond EMT and tumor invasiveness [J]. Cell Mol Life Sci,2012,69(20):3429-56.
    [45]VELPULA K K, DASARIV R, TSUNG A J, et al. Cord blood stem cells revert glioma stem cell EMT by down regulating transcriptional activation of Sox2 and Twistl [J]. Oncotarget,2011, 2(12):1028-42.
    [46]ZHENG X, VITTAR N B, GAI X, et al. The transcription factor GLI1 mediates TGFbetal driven EMT in hepatocellular carcinoma via a SNAI1-dependent mechanism [J]. PLoS One,2012, 7(11):e49581.
    [47]HELDIN C H, VANLANDEWIJCK M, MOUSTAKAS A. Regulation of EMT by TGFbeta in cancer [J]. FEBS Lett,2012,586(14):1959-70.
    [48]GAL A, SJOBLOM T, FEDOROVA L, et al. Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis [J]. Oncogene,2008,27(9):1218-30.-
    [49]CESI V, CASCIATI A, SESTI F, et al. TGFbeta-in'duced c-Myb affects the expression of EMT-associated genes and promotes invasion of ER+breast cancer cells [J]. Cell Cycle,2011, 10(23):4149-61.
    [50]MIYAZONO K. TGF-beta signaling by Smad proteins [J]. Cytokine Growth Factor Rev, 2000,11(1-2):15-22.
    [51]MIYAZONO K. TGF-beta/SMAD signaling and its involvement in tumor progression [J]. Biol Pharm Bull,2000,23(10):1125-30.
    [52]MASSAGUE J, WOTTON D. Transcriptional control by the TGF-beta/Smad signaling system [J]. EMBO J,2000,19(8):1745-54.
    [53]JIA L, JIN H, ZHOU J, et al. A potential anti-tumor herbal medicine, Corilagin, inhibits ovarian cancer cell growth through blocking the TGF-beta signaling pathways [J]. BMC Complement Altem Med,2013,13(33.
    [54]DE RIDDER M, VAN DEN BERGE D L, VEROVSKI V N, et al. NF-kappaB inhibition impairs the radioresponse of hypoxic EMT-6 tumour cells through downregulation of inducible nitric oxide synthase [J]. Br J Cancer,2003,88(1):120-4.
    [55]LORENZATTI G, HUANG W, PAL A, et al. CCN6 (WISP3) decreases ZEB1-mediated EMT and invasion by attenuation of IGF-1 receptor signaling in breast cancer [J]. J Cell Sci,2011, 124(Pt 10):1752-8.
    [56]ANASTAS J N, MOON R T. WNT signalling pathways as therapeutic targets in cancer [J]. Nat Rev Cancer,2013,13(1):11-26.
    [57]SHAPIRO M, AKIRI G, CHIN C, et al. Wnt pathway activation predicts increased risk of tumor recurrence in patients with stage I nonsmall cell lung cancer [J]. Ann Surg,2013,257(3): 548-54.
    [58]LOH Y N, HEDDITCH E L, BAKER L A, et al. The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer [J]. BMC Cancer,2013,13(174.
    [59]SUGIOKA K, MIZUMOTO K, SAWA H. Wnt regulates spindle asymmetry to generate asymmetric nuclear beta-catenin in C. elegans [J]. Cell,2011,146(6):942-54.
    [60]CAMPS J, PITT J J, EMONS G, et al. Genetic Amplification of the NOTCH Modulator LNX2 Upregulates the WNT/beta-Catenin Pathway in Colorectal Cancer [J]. Cancer Res,2013, 73(6):2003-13.
    [61]FORD C E, JARY E, MA S S, et al. The Wnt gatekeeper SFRP4 modulates EMT, cell migration and downstream Wnt signalling in serous ovarian cancer cells [J]. PLoS One,2013, 8(1):e54362.
    [62]VINCAN E, BARKER N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression [J]. Clin Exp Metastasis, 2008,25(6):657-63.
    [63]KWAN H T, CHAN D W, CAI P C, et al. AMPK activators suppress cervical cancer cell growth through inhibition of DVL3 mediated Wnt/beta-catenin signaling activity [J]. PLoS One, 2013,8(1):e53597.
    [64]HOLLAND J D, KLAUS A, GARRATT A N, et al. Wnt signaling in stem and cancer stem cells [J]. Curr Opin Cell Biol,2013,25(2):254-64.
    [65]AKIYAMA T. Wnt/beta-catenin signaling [J]. Cytokine Growth Factor Rev,2000,11(4): 273-82.
    [66]BRABLETZ T, JUNG A, SPADERNA S, et al. Opinion:migrating cancer stem cells-an integrated concept of malignant tumour progression [J]. Nat Rev Cancer,2005,5(9):744-9.
    [67]FIDLER I J, ELLIS L M. The implications of angiogenesis for the biology and therapy of cancer metastasis [J]. Cell,1994,79(2):185-8.
    [68]PENCHEVA N, TRAN H, BUSS C, et al. Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis [J]. Cell,2012,151(5): 1068-82.
    [69]ELMASRI H, GHELFI E, YU C W, et al. Endothelial cell-fatty acid binding protein 4 promotes angiogenesis:role of stem cell factor/c-kit pathway [J]. Angiogenesis,2012,15(3): 457-68.
    [70]LI J, STUHLMANN H. In vitro imaging of angiogenesis using embryonic stem cell-derived endothelial cells [J]. Stem Cells Dev,2012,21(2):331-42.
    [71]SUN J, SHA B, ZHOU W, et al. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain [J]. Biochem Biophys Res Commun,2010, 394(1):146-52.
    [72]ERIKSSON U, ALITALO K. VEGF receptor 1 stimulates stem-cell recruitment and new hope for angiogenesis therapies [J]. Nat Med,2002,8(8):775-7.
    [73]CSERNIG, BORIR, MARAZ R, et al. Multi-institutional comparison of non-sentinel lymph node predictive tools in breast cancer patients with high predicted risk of further axillary metastasis [J]. Pathol Oncol Res,2013,19(1):95-101.
    [74]LIOTTA L A, STEEG P S, STETLER-STEVENSON W G. Cancer metastasis and angiogenesis:an imbalance of positive and negative regulation [J]. Cell,1991,64(2):327-36. [75] LI Z, LIAO W, ZHAO Q, et al. Angiogenesis and bone regeneration by allogeneic mesenchymal stem cell intravenous transplantation in rabbit model of avascular necrotic femoral head [J].JSurg Res,2012,
    [76]DELISSER H M, CHRISTOFDDOU-SOLOMIDOU M, STRIETER R M, et al. Involvement of endothelial PECAM-1/CD31 in angiogenesis [J]. Am J Pathol,1997,151(3):671-7.
    [77]TACHEZY M, REICHELT U, MELENBERG T, et al. Angiogenesis index CD 105 (endoglin)/CD31 (PECAM-1) as a predictive factor for invasion and proliferation in intraductal papillary mucinous neoplasm (IPMN) of the pancreas [J]. Histol Histopathol,2010,25(10): 1239-46.
    [78]KASPRZAK A, SURDACKA A, TOMCZAK M, et al. Expression of angiogenesis-stimulating factors (VEGF, CD31, CD105) and angiogenetic index in gingivae of patients with chronic periodontitis [J]. Folia Histochem Cytobiol,2012,50(4):554-64.
    [79]BANERJI S, NI J, WANG S X, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan [J]. J Cell Biol,1999,144(4):789-801.
    [80]OZMEN F, OZMEN M M, OZDEMIR E, et al. Relationship between LYVE-1, VEGFR-3 and CD44 gene expressions and lymphatic metastasis in gastric cancer [J]. World J Gastroenterol, 2011,17(27):3220-8.
    [81]CHOI Y K, FALLERT JUNECKO B A, KLAMAR C R, et al. Characterization of cells expressing lymphatic marker LYVE-1 in macaque large intestine during simian immunodeficiency virus infection identifies a large population of nonvascular LYVE-1(+)/DC-SIGN(+) cells [J]. Lymphat Res Biol,2013,11(1):26-34.
    [82]RAMANI P, DUNGWA J V, MAY M T. LYVE-1 upregulation and lymphatic invasion correlate with adverse prognostic factors and lymph node metastasis in neuroblastoma [J]. Virchows Arch,2012,460(2):183-91.
    [83]PLATONOVA N, MIQUEL G, REGENFUSS B, et al. Evidence for the interaction of fibroblast growth factor-2 with the lymphatic endothelial cell marker LYVE-1 [J]. Blood,2013, 121(7):1229-37.
    [84]GLEN K, LUU N T, ROSS E, et al. Modulation of functional responses of endothelial cells linked to angiogenesis and inflammation by shear stress:differential effects of the mechanotransducer CD31 [J]. J Cell Physiol,2012,227(6):2710-21.
    [85]SAARISTO A, KARPANEN T, ALITALO K. Mechanisms of angiogenesis and their use in the inhibition of tumor growth and metastasis [J]. Oncogene,2000,19(53):6122-9.
    [86]JOHN A, TUSZYNSKI G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis [J]. Pathol Oncol Res,2001,7(1):14-23.
    [87]ROGALA E, SKOPINSKA-ROZEWSKA E, SOMMER E, et al. Assessment of the VEGF, bFGF, aFGF and IL8 angiogenic activity in urinary bladder carcinoma, using the mice cutaneous angiogenesis test [J]. Anticancer Res,2001,21(6B):4259-63. [88] HUANG S, MILLS L, MIAN B, et al. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma [J]. Am J Pathol,2002,161(1):125-34.
    [89]SAHARINEN P, EKLUND L, PULKKI K, et al. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis [J]. Trends Mol Med,2011,17(7):347-62.
    [90]TARGFR J, MOSER C, HELLERBRAND C, et al. Targeting FGFR/PDGFR/VEGFR impairs tumor growth, angiogenesis, and metastasis by effects on tumor cells, endothelial cells, and pericytes in pancreatic cancer [J]. Mol Cancer Ther,2011,10(11):2157-67.
    [91]SMITH R J. They Have More EMT Than We [J]. Science,1982,216(4541):32.
    [92]HUANG C, YANG G, JIANG T, et al. The effects and mechanisms of blockage of STAT3 signaling pathway on IL-6 inducing EMT in human pancreatic cancer cells in vitro [J]. Neoplasma,2011,58(5):396-405.
    [93]COOKE V G, LEBLEU V S, KESKIN D, et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway [J]. Cancer Cell,2012,21 (1):66-81.
    [94]WANG L, WU Y, LIN L, et al. Metastasis-associated in colon cancer-1 upregulation predicts a poor prognosis of gastric cancer, and promotes tumor cell proliferation and invasion [J]. Int J Cancer,2013,
    [95]HAN X, FANG X, LOU X, et al. Silencing SOX2 induced mesenchymal-epithelial transition and its expression predicts liver and lymph node metastasis of CRC patients [J]. PLoS One,2012, 7(8):e41335.
    [96]NEUMANN J, BAHR F, HORST D, et al. SOX2 expression correlates with lymph-node metastases and distant spread in right-sided colon cancer [J]. BMC Cancer,2011,11 (518.
    [97]KORMISH J D, SINNER D, ZORN A M. Interactions between SOX factors and Wnt/beta-catenin signaling in development and disease [J]. Dev Dyn,2010,239(1):56-68.
    [98]POSADAS E M, FIGLIN R A. Understanding the role of MET kinase in cancer therapy [J]. J Clin Oncol,2013,31(2):169-70.
    [99]THOMPSON E W, HAVIV I. The social aspects of EMT-MET plasticity [J]. Nat Med,2011, 17(9):1048-9.
    [100]CHEN J, HAN Q, PEI D. EMT and MET as paradigms for cell fate switching [J]. J Mol Cell Biol,2012,4(2):66-9.
    [101]AGATHOCLEOUS M, IORDANOVA I, WILLARDSEN M I, et al. A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina [J]. Development,2009,136(19):3289-99.
    [102]SAIGUSA S, TANAKA K, TOIYAMA Y, et al. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy [J]. Ann Surg Oncol,2009,16(12):3488-98.
    [103]FAKHREJAHANI E, TOI M. Tumor angiogenesis:pericytes and maturation are not to be ignored [J]. J Oncol,2012,2012(261750.
    [104]RIBATTI D. Cancer stem cells and tumor angiogenesis [J]. Cancer Lett,2012,321(1): 13-7.
    [105]HIELSCHER A C, GERECHT S. Engineering approaches for investigating tumor angiogenesis:exploiting the role of the extracellular matrix [J]. Cancer Res,2012,72(23): 6089-96.
    [106]MAZZIERI R, PUCCI F, MOI D, et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells [J]. Cancer Cell,2011,19(4):512-26.
    [107]PING Y F, YAO X H, JIANG J Y, et al. The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling [J]. J Pathol,2011,224(3):344-54.
    [108]BENEDITO R, ROCHA S F, WOESTE M, et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling [J]. Nature,2012, 484(7392):110-4.
    [109]CARMELIET P, JAIN R K. Angiogenesis in cancer and other diseases [J]. Nature,2000, 407(6801):249-57.
    [110]FANG J H, ZHOU H C, ZENG C, et al. MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression [J]. Hepatology, 2011,54(5):1729-40.
    [111]TAKANO S. Glioblastoma angiogenesis:VEGF resistance solutions and new strategies based on molecular mechanisms of tumor vessel formation [J]. Brain Tumor Pathol,2012,29(2): 73-86.
    [112]ZHANG J, YE J, MA D, et al. Cross-talk between leukemic and endothelial cells promotes angiogenesis by VEGF activation of the Notch/D114 pathway [J]. Carcinogenesis,2013, 34(3):667-77.
    [113]TUGUES S, HONJO S, KONIG C, et al. Tetraspanin CD63 promotes VEGF receptor-2 /b1 integrin complex formation, thereby regulating activation and downstream signaling in endothelial cells in vitro and in vivo [J]. J Biol Chem,2013,
    [114]LOUPAKIS F, RUZZO A, SALVATORE L, et al. Retrospective exploratory analysis of VEGF polymorphisms in the prediction of benefit from first-line FOLFIRI plus bevacizumab in metastatic colorectal cancer [J]. BMC Cancer,2011,11(247.
    [115]RUSOVICI R, SAKHALKAR M, CHALAM K V. Evaluation of cytotoxicity of bevacizumab on VEGF-enriched comeal endothelial cells [J]. Mol Vis,2011,17(3339-46.
    [116]HASSAN S, FERRARIO C, SARAGOVI U, et al. The influence of tumor-host interactions in the stromal cell-derived factor-1/CXCR4 ligand/receptor axis in determining metastatic risk in breast cancer [J]. Am J Pathol,2009,175(1):66-73.
    [117]DEWAN M Z, AHMED S, IWASAKI Y, et al. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer [J]. Biomed Pharmacother,2006,60(6):273-6.
    [118]HOFFMANN A C, MORI R, VALLBOHMER D, et al. High expression of HIFla is a predictor of clinical outcome in patients with pancreatic ductal adenocarcinomas and correlated to PDGFA, VEGF, and bFGF [J]. Neoplasia,2008,10(7):674-9.
    [119]STEINGRIMSSON E, COPELAND N G, JENKINS N A. Melanocyte stem cell maintenance and hair graying [J]. Cell,2005,121(1):9-12.
    [120]NISHIMURA E K, JORDAN S A, OSHIMA H, et al. Dominant role of the niche in melanocyte stem-cell fate determination [J]. Nature,2002,416(6883):854-60.
    [121]KAPUR R, EVERETT E T, UFFMAN J, et al. Overexpression of human stem cell factor impairs melanocyte, mast cell, and thymocyte development:a role for receptor tyrosine kinase-mediated mitogen activated protein kinase activation in cell differentiation [J]. Blood, 1997,90(8):3018-26.
    [122]JOSHI K, BANASAVADI-SIDDEGOWDA Y, MO X, et al. MELK-dependent FOXM1 Phosphorylation is Essential for Proliferation of Glioma Stem Cells [J]. Stem Cells,2013,
    [123]HO I A, TOH H C, NG W H, et al. Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis [J]. Stem Cells,2013, 31(1):146-55.
    [124]LEHNUS K S, DONOVAN L K, HUANG X, et al. CD 133 glycosylation is enhanced by hypoxia in cultured glioma stem cells [J]. Int J Oncol,2013,42(3):1011-7.
    [125]TEPEKOYLU C, WANG F S, KOZARYN R, et al. Shock wave treatment induces angiogenesis and mobilizes endogenous CD31/CD34-positive endothelial cells in a hindlimb ischemia model:Implications for angiogenesis and vasculogenesis [J]. J Thorac Cardiovasc Surg, 2013,
    [126]BIEBACK K, VINCI M, ELVERS-HORNUNG S, et al. Recruitment of human cord blood-derived endothelial colony-forming cells to sites of tumor angiogenesis [J]. Cytotherapy, 2013,15(6):726-39.
    [1]GUBBAY J, COLLIGNON J, KOOPMAN P, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes [J]. Nature,1990,346(6281):245-50.
    [2]SCHEPERS G E, TEASDALE R D, KOOPMAN P. Twenty pairs of sox:extent, homology, and nomenclature of the mouse and human sox transcription factor gene families [J]. Dev Cell, 2002,3(2):167-70.
    [3]WEGNER M. From head to toes:the multiple facets of Sox proteins [J]. Nucleic Acids Res, 1999,27(6):1409-20.
    [4]WILSON M, KOOPMAN P. Matching SOX:partner proteins and co-factors of the SOX family of transcriptional regulators [J]. Curr Opin Genet Dev,2002,12(4):441-6.
    [5]BOWLES J, SCHEPERS G, KOOPMAN P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators [J]. Dev Biol,2000,227(2): 239-55.
    [6]LIU K, LIN B, ZHAO M, et al. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis [J]. Cell Signal,2013,25(5):1264-71.
    [7]MICHIFURI Y, HIROHASHIY, TORIGOE T, et al. High expression of ALDH1 and SOX2 diffuse staining pattern of oral squamous cell carcinomas correlates to lymph node metastasis [J]. Pathol Int,2012,62(10):684-9.
    [8]TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors [J]. Cell,2006,126(4):663-76.
    [9]XIANG R, LIAO D, CHENG T, et al. Downregulation of transcription factor SOX2 in cancer stem cells suppresses growth and metastasis of lung cancer [J]. Br J Cancer,2011,104(9): 1410-7.
    [10]THIEL G. How Sox2 maintains neural stem cell identity [J]. Biochem J,2013,450(3):e1-2.
    [11]CHEN Y, SHI L, ZHANG L, et al. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer [J]. J Biol Chem,2008,283(26):17969-78.
    [12]POLYAK K, WEINBERG R A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits [J]. Nat Rev Cancer,2009,9(4):265-73.
    [13]AVILION A A, NICOLIS S K, PEVNY L H, et al. Multipotent cell lineages in early mouse development depend on SOX2 function [J]. Genes Dev,2003,17(1):126-40.
    [14]KAMACHI Y, UCHIKAWA M, TANOUCHI A, et al. Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development [J]. Genes Dev, 2001,15(10):1272-86.
    [15]KAMACHI Y, UCHIKAWA M, COLLIGNON J, et al. Involvement of Sox 1,2 and 3 in the early and subsequent molecular events of lens induction [J]. Development,1998,125(13): 2521-32.
    [16]WANG S, CHANDLER-MILITELLO D, LU G, et al. Prospective identification, isolation, and profiling of a telomerase-expressing subpopulation of human neural stem cells, using sox2 enhancer-directed fluorescence-activated cell sorting [J]. JNeurosci,2010,30(44):14635-48.
    [17]JIA X, LI X, XU Y, et al. SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell [J]. J Mol Cell Biol,2011,3(4):230-8.
    [18]LI X, XU Y, CHEN Y, et al. SOX2 promotes tumor metastasis by stimulating epithelial-to-mesenchymal transition via regulation of WNT/beta-catenin signal network [J]. Cancer Lett,2013,
    [19]CHEN S, XU Y, CHEN Y, et al. SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells [J]. PLoS One,2012,7(5): e36326.
    [20]SCHMITZ M, TEMME A, SENNER V, et al. Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy [J]. Br J Cancer, 2007,96(8):1293-301.
    [21]GANGEMI R M, GRIFFERO F, MARUBBI D, et al. SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity [J]. Stem Cells,2009, 27(1):40-8.
    [22]ZHANG X, YU H, YANG Y, et al. SOX2 in gastric carcinoma, but not Hathl, is related to patients'clinicopathological features and prognosis [J]. J Gastrointest Surg,2010,14(8):1220-6.
    [23]BASS A J, WATANABE H, MERMEL C H, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas [J]. Nat Genet,2009,41(11): 1238-42.
    [24]CAI Y R, ZHANG H Q, ZHANG Z D, et al. Detection of MET and SOX2 amplification by quantitative real-time PCR in non-small cell lung carcinoma [J]. Oncol Lett,2011,2(2):257-64.
    [25]LAGA A C, ZHAN Q, WEISHAUPT C, et al. SOX2 and nestin expression in human melanoma:an immunohistochemical and experimental study [J]. Exp Dermatol,2011,20(4): 339-45.
    [26]MATSUOKA J, YASHIRO M, SAKURAI K, et al. Role of the stemness factors sox2, oct3/4, and nanog in gastric carcinoma [J]. J Surg Res,2012,174(1):130-5.
    [27]SANADA Y, YOSHIDA K, OHARA M, et al. Histopathologic evaluation of stepwise progression of pancreatic carcinoma with immunohistochemical analysis of gastric epithelial transcription factor SOX2:comparison of expression patterns between invasive components and cancerous or nonneoplastic intraductal components [J]. Pancreas,2006,32(2):164-70.
    [28]LENGERKE C, FEHM T, KURTH R, et al. Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma [J]. BMC Cancer,2011,11(42.
    [29]SONG K, LI Q, JIANG Z Z, et al. Heparan sulfate D-glucosaminyl 3-O-sulfotransferase-3B1, a novel epithelial-mesenchymal transition inducer in pancreatic cancer. [J]. Cancer Biol Ther,2011, 12(5):388-98.
    [30]TIWARI N, GHELDOF A, TATARI M, et al. EMT as the ultimate survival mechanism of cancer cells [J]. Semin Cancer Biol,2012,22(3):194-207.
    [31]XU J, LAMOUILLE S, DERYNCK R. TGF-beta-induced epithelial to mesenchymal transition [J]. Cell Res,2009,19(2):156-72.
    [32]VERVOORT S J, LOURENCO A R, VAN BOXTEL R, et al. SOX4 mediates TGF-beta-induced expression of mesenchymal markers during mammary cell epithelial to mesenchymal transition [J]. PLoS One,2013,8(1):e53238.
    [33]ANSIEAU S. EMT in breast cancer stem cell generation [J]. Cancer Lett,2012,
    [34]BRABLETZ T. EMT and MET in metastasis:where are the cancer stem cells? [J]. Cancer Cell,2012,22(6):699-701.
    [35]MENG F, WU G. The rejuvenated scenario of epithelial-mesenchymal transition (EMT) and cancer metastasis [J]. Cancer Metastasis Rev,2012,31(3-4):455-67.
    [36]SANCHEZ-TILLO E, LIU Y, DE BARRIOS O, et al. EMT-activating transcription factors in cancer:beyond EMT and tumor invasiveness [J]. Cell Mol Life Sci,2012,69(20):3429-56.
    [37]VELPULA K K, DASARI V R, TSUNG A J, et al. Cord blood stem cells revert glioma stem cell EMT by down regulating transcriptional activation of Sox2 and Twist1 [J]. Oncotarget,2011, 2(12):1028-42.
    [38]ZHENG X, VITTAR N B, GAI X, et al. The transcription factor GLI1 mediates TGFbetal driven EMT in hepatocellular carcinoma via a SNAI1-dependent mechanism [J]. PLoS One,2012, 7(11):e49581.
    [39]FORD C E, JARY E, MA S S, et al. The Wnt gatekeeper SFRP4 modulates EMT, cell migration and downstream Wnt signalling in serous ovarian cancer cells [J]. PLoS One,2013, 8(1):e54362.
    [40]VINCAN E, BARKER N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression [J]. Clin Exp Metastasis, 2008,25(6):657-63.
    [41]BRYANT D M, STOW J L. The ins and outs of E-cadherin trafficking [J]. Trends Cell Biol, 2004,14(8):427-34.
    [42]SALNIKOV A V, LIU L, PLATEN M, et al. Hypoxia induces EMT in low and highly aggressive pancreatic tumor cells but only cells with cancer stem cell characteristics acquire pronounced migratory potential [J]. PLoS One,2012,7(9):e46391.
    [43]HAN X, FANG X, LOU X, et al. Silencing SOX2 induced mesenchymal-epithelial transition and its expression predicts liver and lymph node metastasis of CRC patients [J]. PLoS One,2012, 7(8):e41335.
    [44]OTSUBO T, AKIYAMA Y, YANAGIHARA K, et al. SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis [J]. Br J Cancer, 2008,98(4):824-31.
    [45]LIU X, HUANG J, CHEN T, et al. Yamanaka factors critically-regulate the developmental signaling network in mouse embryonic stem cells [J]. Cell Res,2008,18(12):1177-89.
    [46]BHATIA B, SINGHAL S, TADMAN D N, et al. SOX2 is required for adult human muller stem cell survival and maintenance of progenicity in vitro [J]. Invest Ophthalmol Vis Sci,2011, 52(1):136-45.
    [47]FERLETTA M, CAGLAYAN D, MOKVIST L, et al. Forced expression of Sox21 inhibits Sox2 and induces apoptosis in human glioma cells [J]. Int J Cancer,2011,129(1):45-60.
    [48]SUN H, ZHANG S. Arsenic trioxide regulates the apoptosis of glioma cell and glioma stem cell via down-regulation of stem cell marker Sox2 [J]. Biochem Biophys Res Commun,2011, 410(3):692-7.
    [49]KERAMARI M, RAZAVI J, INGMAN K A, et al. Sox2 is essential for formation of trophectoderm in the preimplantation embryo [J]. PLoS One,2010,5(11):e13952.
    [1]FOLKMAN J. Angiogenesis:an organizing principle for drug discovery? [J]. Nat Rev Drug Discov,2007,6(4):273-86.
    [2]CARMELIET P. Angiogenesis in health and disease [J]. Nat Med,2003,9(6):653-60.
    [3]SWIFT M R, WEINSTEIN B M. Arterial-venous specification during development [J]. Circ Res,2009,104(5):576-88.
    [4]WANG R, CHADALAVADA K, WILSHIRE J, et al. Glioblastoma stem-like cells give rise to tumour endothelium [J]. Nature,2010,468(7325):829-33.
    [5]MA L, LAI D, LIU T, et al. Cancer stem-like cells can be isolated with drug selection in human ovarian cancer cell line SKOV3 [J]. Acta Biochim Biophys Sin (Shanghai),2010,42(9): 593-602.
    [6]BERZ D, WANEBO H. Targeting the growth factors and angiogenesis pathways:small molecules in solid rumors [J]. J Surg Oncol,2011,103(6):574-86.
    [7]BOS P D, ZHANG X H, NADAL C, et al. Genes that mediate breast cancer metastasis to the brain [J]. Nature,2009,459(7249):1005-9.
    [8]OH Y M, KWON Y E, KIM J M, et al. Chfr is linked to tumour metastasis through the downregulation of HDAC1 [J]. Nat Cell Biol,2009,11(3):295-302.
    [9]YAO X H, PING Y F, BIAN X W. Contribution of cancer stem cells to tumor vasculogenic mimicry [J]. Protein Cell,2011,2(4):266-72.
    [10]BIRNBAUM T, HILDEBRANDT J, NUEBLING G, et al. Glioblastoma-dependent differentiation and angiogenic potential of human mesenchymal stem cells in vitro [J]. J Neurooncol,2011,
    [11]SCHMIDT D, TEXTOR B, PEIN O T, et al. Critical role for NF-kappaB-induced JunB in VEGF regulation and tumor angiogenesis [J]. EMBO J,2007,26(3):710-9.
    [12]MORENO-MANZANO V, RODRIGUEZ-JIMENEZ F J, ACENA-BONILLA J L, et al. FM19G11, a new hypoxia-inducible factor (HIF) modulator, affects stem cell differentiation status [J]. J Biol Chem,2010,285(2):1333-42.
    [13]JAMES D, RABBANY S, RAFII S. Hitting the mother lode of tumor angiogenesis [J]. Nat Biotechnol,2008,26(7):769-70.
    [14]KIENAST Y, VON BAUMGARTEN L, FUHRMANN M, et al. Real-time imaging reveals the single steps of brain metastasis formation [J]. Nat Med,2010,16(1):116-22.
    [15]SOUCEK L, LAWLOR E R, SOTO D, et al. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors [J]. Nat Med,2007,13(10): 1211-8.
    [16]RIDGWAY J, ZHANG G, WU Y, et al. Inhibition of D114 signalling inhibits tumour growth by deregulating angiogenesis [J]. Nature,2006,444(7122):1083-7.
    [17]PHNG L K, GERHARDT H. Angiogenesis:a team effort coordinated by notch [J]. Dev Cell, 2009,16(2):196-208.
    [18]STOCKMANN C, DOEDENS A, WEIDEMANN A, et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis [J]. Nature,2008,456(7223):814-8.
    [19]LEE S, CHEN T T, BARBER C L, et al. Autocrine VEGF signaling is required for vascular homeostasis [J]. Cell,2007,130(4):691-703.
    [20]LANAHAN A A, HERMANS K, CLAES F, et al. VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis [J]. Dev Cell,2010,18(5):713-24.
    [21]JAIN R K, DUDA D G, WILLETT C G, et al. Biomarkers of response and resistance to antiangiogenic therapy [J]. Nat Rev Clin Oncol,2009,6(6):327-38.
    [22]BUYSSCHAERT I, SCHMIDT T, RONCAL C, et al. Genetics, epigenetics and pharmaco-(epi)genomics in angiogenesis [J]. J Cell Mol Med,2008,12(6B):2533-51.
    [23]DONG J, GRUNSTEIN J, TEJADA M, et al. VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis [J]. EMBO J,2004,23(14): 2800-10.
    [24]TVOROGOV D, ANISIMOV A, ZHENG W, et al. Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization [J]. Cancer Cell,2010,18(6):630-40.
    [25]HERBERT S P, HUISKEN J, KIM T N, et al. Arterial-venous segregation by selective cell sprouting:an alternative mode of blood vessel formation [J]. Science,2009,326(5950):294-8.
    [26]MATSUMOTO T, BOHMAN S, DIXELIUS J, et al. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis [J]. EMBO J,2005,24(13):2342-53.
    [27]FISCHER C, MAZZONE M, JONCKX B, et al. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? [J]. Nat Rev Cancer,2008,8(12):942-56.
    [28]CARMELIET P, MOONS L, LUTTUN A, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions [J]. Nat Med,2001,7(5):575-83.
    [29]VAN DE VEIRE S, STALMANS I, HEINDRYCKX F, et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease [J]. Cell,2010, 141(1):178-90.
    [30]BAIS C, WU X, YAO J, et al. PlGF blockade does not inhibit angiogenesis during primary tumor growth [J]. Cell,2010,141(1):166-77.
    [31]HAGBERG C E, FALKEVALL A, WANG X, et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake [J]. Nature,2010,464(7290):917-21.
    [32]BRY M, KIVELA R, HOLOPAINEN T, et al. Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation [J]. Circulation,2010,122(17):1725-33.
    [33]SCHWARTZ J D, ROWINSKY E K, YOUSSOUFIAN H, et al. Vascular endothelial growth factor receptor-1 in human cancer:concise review and rationale for development of IMC-18F1 (Human antibody targeting vascular endothelial growth factor receptor-1) [J]. Cancer,2010,116(4 Suppl):1027-32.
    [34]LICHTENBERGER B M, TAN P K, NIEDERLEITHNER H, et al. Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development [J]. Cell, 2010,140(2):268-79.
    [35]DUDA D G, JAIN R K. Premetastatic lung "niche":is vascular endothelial growth factor receptor 1 activation required? [J]. Cancer Res,2010,70(14):5670-3.
    [36]KAPLAN R N, RIBA R D, ZACHAROULIS S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche [J]. Nature,2005,438(7069):820-7.
    [37]FACCIABENE A, PENG X, HAGEMANN I S, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells [J]. Nature,2011,475(7355):226-30.
    [38]JAIN R K. Molecular regulation of vessel maturation [J]. Nat Med,2003,9(6):685-93.
    [39]HELLBERG C, OSTMAN A, HELDIN C H. PDGF and vessel maturation [J]. Recent Results Cancer Res,2010,180(103-14.
    [40]GAENGEL K, GENOVE G, ARMULIK A, et al. Endothelial-mural cell signaling in vascular development and angiogenesis [J]. Arterioscler Thromb Vasc Biol,2009,29(5):630-8.
    [41]QUAEGEBEUR A, SEGURA I, CARMELIET P. Pericytes:blood-brain barrier safeguards against neurodegeneration? [J]. Neuron,2010,68(3):321-3.
    [42]SONG S, EWALD A J, STALLCUP W, et al. PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival [J]. Nat Cell Biol,2005,7(9):870-9.
    [43]BERGERS G, SONG S, MEYER-MORSE N, et al. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors [J]. J Clin Invest,2003,111(9): 1287-95.
    [44]MCCARTY M F, SOMCIO R J, STOELTZING O, et al. Overexpression of PDGF-BB decreases colorectal and pancreatic cancer growth by increasing tumor pericyte content [J]. J Clin Invest,2007,117(8):2114-22.
    [45]PARDALI E, GOUMANS M J, TEN DIJKE P. Signaling by members of the TGF-beta family in vascular morphogenesis and disease [J]. Trends Cell Biol,2010,20(9):556-67.
    [46]PHNG L K, POTENTE M, LESLIE J D, et al. Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis [J]. Dev Cell,2009,16(1):70-82.
    [47]JAIN R K. Normalization of tumor vasculature:an emerging concept in antiangiogenic therapy [J]. Science,2005,307(5706):58-62.
    [48]ZHU Z. Targeted cancer therapies based on antibodies directed against epidermal growth factor receptor:status and perspectives [J]. Acta Pharmacol Sin,2007,28(9):1476-93.
    [49]PLOTKIN S R, STEMMER-RACHAMIMOV A O, BARKER F G,2ND, et al. Hearing improvement after bevacizumab in patients with neurofibromatosis type 2 [J]. N Engl J Med, 2009,361(4):358-67.
    [50]MAZZONE M, DETTORI D, LEITE DE OLIVEIRA R, et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization [J]. Cell, 2009,136(5):839-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700