Hoxc13基因在绒山羊皮肤中的表达规律及体外功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绒山羊是重要的毛用经济动物,其绒毛的生长发育受多种因素影响。Hoxc13已被证实可以直接调控两类毛发组成蛋白(角蛋白与角蛋白关联蛋白)的表达,且Hoxc13功能的获得和缺失都会形成脱毛型小鼠。本论文主要研究了绒山羊毛囊发育不同阶段,皮肤中Hoxc13的表达规律;同时研究了过表达Hoxc13基因对体外培养的皮肤细胞中HFDRGs的影响;另外通过分析埋植/添加褪黑激素与对照组之间HFDRGs的表达变化情况,了解褪黑激素对HFDRGs的作用。
     本研究共得到以下几点结论:
     1、本研究克隆了绒山羊Hoxc13基因,序列长7.2 kb,包含2个外显子、1个内含子,基因登录号EU839660,CDS长990 bp,共编码330个氨基酸。通过分析3个纲17个目的28个脊椎动物Hoxc13基因及其推定的氨基酸序列,发现Hoxc13基因在非哺乳动物向哺乳动物进化过程中出现了1次基因插入,插入序列为富含甘氨酸的低复杂区域(Low-Complexity Region,LCR),该区域的长度在哺乳动物中发生了分化(10-28个氨基酸的变异)。哺乳动物Hoxc13基因出现了适应性进化,可能与被毛的起源有关。
     2、绒山羊皮肤中Hoxc13基因的表达量与胎儿时期皮肤厚度的变化趋势相一致;在成年绒山羊皮肤中,Hoxc13基因的表达量与次级毛囊活性周期显著相关(R=0.837, p<0.001);埋植褪黑激素可以提前绒山羊皮肤中Hoxc13的表达,且显著上调8-10月份皮肤中Hoxc13的表达量。在体外,褪黑激素对绒山羊皮肤细胞中Hoxc13基因的诱导表达效果不同,下调了成纤维细胞中Hoxc13的表达,却上调了角质化细胞中Hoxc13的表达量。
     3、过表达Hoxc13基因可能导致角质化细胞分化死亡,未能获得稳定表达Hoxc13基因的角质化细胞克隆,但获得了稳定表达Hoxc13基因的成纤维细胞系;皮肤成纤维细胞过表达Hoxc13,可促进TgfβrII、Rorα2、Nanog、Wnt10b和PdgfrA的表达,抑制Bmp2、Msx2、Ntrk3和Detal基因的表达。
     总之,Hoxc13基因在哺乳动物被毛的起源过程中发生了适应性进化,体内外研究表明Hoxc13在绒山羊皮肤毛囊形态发生、周期性生长过程中扮演重要角色。该论文为今后进一步研究绒山羊及其他毛用动物的毛囊发育机理奠定了理论基础。
Cashmere goat is a very important economic animals provided wool and cashmere. Coat hair growth can be affected by many factors. Hoxc13 has an important role in controlling hair formation through regulating keratin differentiation-specific genes. Hoxc13 deficient and overexpressing mice exhibit severe hair growth and patterning defects. Therefore, we detected the expression level of Hoxc13 in cashmere goat skin from different developmental phases of hair follicle; and investigated the effect and interaction relations for over-expression Hoxc13 and other HFDRGs of skin cells in vitro; and clarified the role of melatonin with relation to HFDRGs by analyzing the changes of HFDRGs expressing between melatonin implant/add and control.
     The following conclusions were obtained from the study.
     1. In this study, the Hoxc13 gene of cashmere goat was cloned (Assession number: EU839660), The gene spans 7.2 kilobases (kb) and has two exon which seperated by a relatively large intron, which has a coding sequence of 990 nucleotides that putative 330 amino acids. By analyzing the protein sequence of Hoxc13 in 28 species of vertebrates which belonged to 3 classes and 17 orders, we found that an insertion of low complexity region(LCR) in N teminal of Hoxc13 during the divergence of the therapsid lineage (leading to mammals) from the sauropsid lineage (reptiles, birds). The divergence of length of the LCR occurs in mammal(10-28Aa). Our results implicate adaptive evolution of Hoxc13 genes occurs in the origin and diversification of the mammals.
     2. The changes of the Hoxc13 gene expression and thickness of skin have a similar trend during hair follicle morphogenesis. In adult goat, the expression level of Hoxc13 in skin associated with the follicle activity. Melatonin may get to expression cycle of Hoxc13 in cashmere goat skin in advance, and the expression level of the Hoxc13 was significantly increased during 8-10 month. In vitro, melatonin has a diversity effect to fibroblasts and keratinocytes. It could increase the expression level of Hoxc13 in keratinocytes, while inhibit the Hoxc13 expression in fibroblasts.
     3. Overexpression Hoxc13 in keratinocytes could result in differentiation or die. Thus, we did not obtain the cell line that stablily expressed Hoxc13. However, a fibroblast cell lines with stable gene expression Hoxc13 was established. Overexpression Hoxc13 in fibroblasts of cashmere goat skin up-regulated TgfβrII, Rorα2, Nanog, Wnt10b and PdgfrA, and down-regulated Bmp2, Msx2, Ntrk3 and Detal.
     In summary, adaptive evolution of Hoxc13 gene occurred in the origin and diversification of the mammalian coat hair. And Hoxc13 played an impotant role in goat skin and hair follicle morphogenesis/cycle by in vivo and in vitro researching. This study lay a fundation to further research on cashmere goats and other wool animals for developing mechanism of the hair follicle.
引文
1 Maderson PFA. When? Why? And How?: Some speculations on the evolution of the vertebrate integument[J]. American Zoologist 1972:159-71.
    2 Maderson PF. Mammalian skin evolution: a reevaluation[J]. Exp Dermatol 2003;12 (3):233-6.
    3 Dhouailly D, Maderson PFA. Ultrastructural Observations on the Embryonic-Development of the Integument of Lacerta-Muralis (Lacertilia, Reptilia)[J]. Journal of Morphology 1984;179 (3):203-28.
    4 Alibardi L. Ultrastructural localization of tritiated histidine in down feathers of the chick[J]. Cells Tissues Organs 2006;182 (1):35-47.
    5 Bernot KM, Lee CH, Coulombe PA. A small surface hydrophobic stripe in the coiled-coil domain of typeⅠkeratins mediates tetramer stability[J]. The Journal of cell biology 2005;168 (6):965.
    6 Langbein L, Rogers MA, Praetzel-Wunder S, B ckler D, Schirmacher P, Schweizer J. Novel typeⅠhair keratins K39 and K40 are the last to be expressed in differentiation of the hair: completion of the human hair keratin catalog[J]. Journal of Investigative Dermatology 2007;127 (6):1532-5.
    7 Rogers MA, Winter H, Langbein L, Bleiler R, Schweizer J. The human typeⅠkeratin gene family: characterization of new hair follicle specific members and evaluation of the chromosome 17q21. 2 gene domain[J]. Differentiation 2004;72 (9‐10):527-40.
    8 Hillier LDW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, Bork P, Burt DW, Groenen MAM, Delany ME. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution[J]. Nature 2004;432 (7018):695-716.
    9 Zimek A, Weber K. Terrestrial vertebrates have two keratin gene clusters; striking differences in teleost fish[J]. European journal of cell biology 2005;84 (6):623-35.
    10 Alibardi L, Toni M, Dalla Valle L. Hard cornification in reptilian epidermis in comparison to cornification in mammalian epidermis[J]. Experimental dermatology 2007;16 (12):961-76.
    11 Toni M, Dalla Valle L, Alibardi L. Hard (Beta-) keratins in the epidermis of reptiles: composition, sequence, and molecular organization[J]. Journal of Proteome Research 2007;6 (9):3377-92.
    12 Eckhart L, Valle LD, Jaeger K, Ballaun C, Szabo S, Nardi A, Buchberger M, Hermann M, Alibardi L, Tschachler E. Identification of reptilian genes encoding hair keratin-like proteins suggests a new scenario for the evolutionary origin of hair[J]. Proceedings of the National Academy of Sciences 2008;105 (47):18419.
    13 Wu DD, Irwin DM, Zhang YP. Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair[J]. BMC Evolutionary Biology 2008;8 (1):241.
    14 Alibardi L. Adaptation to the land: The skin of reptiles in comparison to that of amphibians and endotherm amniotes[J]. Journal of Experimental Zoology PartB-Molecular and Developmental Evolution 2003;298B (1):12-41.
    15 Alibardi L. Dermo-epidermal interactions in reptilian scales: Speculations on the evolution of scales, feathers, and hairs[J]. Journal of Experimental Zoology Part B-Molecular and Developmental Evolution 2004;302B (4):365-83.
    16 Alibardi L. Structural and immunocytochemical characterization of keratinization in vertebrate epidermis and epidermal derivatives[J]. International Review of Cytology - a Survey of Cell Biology, Vol 253 2006;253:177-+.
    17 Dhouailly D. Dermo-epidermal interactions between birds and mammals: differentiation of cutaneous appendages[J]. Journal of Embryology and Experimental Morphology 1973;30 (3):587.
    18 Dhouailly D. Formation of cutaneous appendages in dermo-epidermal recombinations between reptiles, birds and mammals[J]. Development Genes and Evolution 1975;177 (4):323-40.
    19 Ferraris C, Chevalier G, Favier B, Jahoda CA, Dhouailly D. Adult corneal epithelium basal cells possess the capacity to activate epidermal, pilosebaceous and sweat gland genetic programs in response to embryonic dermal stimuli[J]. Development 2000;127 (24):5487-95.
    20 Qiang J, Currie PJ, Norell MA, Shu-An J. Two feathered dinosaurs from northeastern China[J]. Nature 1998;393 (6687):753-61.
    21 Meng J, Wyss AR. Multituberculate and other mammal hair recovered from Palaeogene excreta[J]. 1997.
    22 Wu P, Hou LH, Plikus M, Hughes M, Scehnet J, Suksaweang S, Widelitz RB, Jiang TX, Chuong CM. Evo-Devo of amniote integuments and appendages[J]. International Journal of Developmental Biology 2004;48 (2-3):249-70.
    23 Dhouailly D. A new scenario for the evolutionary origin of hair, feather, and avian scales[J]. Journal of Anatomy 2009;214 (4):587-606.
    24 Stenn KS, Zheng Y, Parimoo S. Phylogeny of the hair follicle: the sebogenic hypothesis[J]. J Invest Dermatol 2008;128 (6):1576-8.
    25 Wu P, Hou L, Plikus M, Hughes M, Scehnet J, Suksaweang S, Widelitz RB, Jiang TX, Chuong CM. Evo-Devo of amniote integuments and appendages[J]. International Journal of Developmental Biology 2004;48:249-70.
    26 Oftedal OT. The origin of lactation as a water source for parchment-shelled eggs[J]. J Mammary Gland Biol Neoplasia 2002;7 (3):253-66.
    27 Oftedal OT. The mammary gland and its origin during synapsid evolution[J]. J Mammary Gland Biol Neoplasia 2002;7 (3):225-52.
    28 Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, van de Wetering M, van den Born M, Begthel H, Vries RG, Stange DE, Toftgard R, Clevers H. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin[J]. Science 2010;327 (5971):1385-9.
    29 Kamimura J, Lee D, Baden HP, Brissette J, Dotto GP. Primary mouse keratinocyte cultures contain hair follicle progenitor cells with multiple differentiation potential[J]. J Invest Dermatol 1997;109 (4):534-40.
    30 Cotsarelis G, and Botchkarev, V.A. Biology of hair follicles. In: K. Wollf LAG, S.I. Katz, B.A. Gilchrest, A.S. Paller, and D.J. Leffell, eds., editor. In Fitzpatrick’s Dermatology in General Medicine. New York: McGraw Hill, 2008. pp. 739–49.
    31 Cotsarelis G. Epithelial stem cells: a folliculocentric view[J]. J Invest Dermatol 2006;126 (7):1459-68.
    32 Legue E, Nicolas JF. Hair follicle renewal: organization of stem cells in the matrix and the role of stereotyped lineages and behaviors[J]. Development 2005;132 (18):4143-54.
    33 Stenn KS, Paus R. Controls of hair follicle cycling[J]. Physiol Rev 2001;81 (1):449-94.
    34 Paus R, Foitzik K. In search of the "hair cycle clock": a guided tour[J]. Differentiation 2004;72 (9-10):489-511.
    35 Rendl M, Lewis L, Fuchs E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle[J]. PLoS Biol 2005;3 (11):e331.
    36 Nakamura M, Sundberg JP, Paus R. Mutant laboratory mice with abnormalities in hair follicle morphogenesis, cycling, and/or structure: annotated tables[J]. Exp Dermatol 2001;10 (6):369-90.
    37 Stenn KS, Paus R. Controls of hair follicle cycling[J]. Physiological Reviews 2001;81 (1):449-94.
    38 Muller-Rover S, Handjiski B, van der Veen C, Eichmuller S, Foitzik K, McKay IA, Stenn KS, Paus R. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages[J]. J Invest Dermatol 2001;117 (1):3-15.
    39 Kratochwil K, Dull M, Farinas I, Galceran J, Grosschedl R. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development[J]. Genes Dev 1996;10 (11):1382-94.
    40 Wilson N, Hynd PI, Powell BC. The role of BMP-2 and BMP-4 in follicle initiation and the murine hair cycle[J]. Exp Dermatol 1999;8 (4):367-8.
    41 Botchkarev VA, Sharov AA. BMP signaling in the control of skin development and hair follicle growth[J]. Differentiation 2004;72 (9-10):512-26.
    42 O'Shaughnessy RF, Christiano AM, Jahoda CA. The role of BMP signalling in the control of ID3 expression in the hair follicle[J]. Exp Dermatol 2004;13 (10):621-9.
    43 Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche[J]. Cell 2004;116 (6):769-78.
    44 Plikus MV, Mayer JA, de la Cruz D, Baker RE, Maini PK, Maxson R, Chuong CM. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration[J]. Nature 2008;451 (7176):340-4.
    45 Kulessa H, Turk G, Hogan BL. Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle[J]. EMBO J 2000;19 (24):6664-74.
    46 Botchkarev VA, Botchkareva NV, Sharov AA, Funa K, Huber O, Gilchrest BA. Modulation of BMP signaling by noggin is required for induction of the secondary (nontylotrich) hair follicles[J]. J Invest Dermatol 2002;118 (1):3-10.
    47 Kobielak K, Pasolli HA, Alonso L, Polak L, Fuchs E. Defining BMP functions in thehair follicle by conditional ablation of BMP receptor IA[J]. J Cell Biol 2003;163 (3):609-23.
    48 Rendl M, Polak L, Fuchs E. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties[J]. Genes Dev 2008;22 (4):543-57.
    49 Sharov AA, Fessing M, Atoyan R, Sharova TY, Haskell-Luevano C, Weiner L, Funa K, Brissette JL, Gilchrest BA, Botchkarev VA. Bone morphogenetic protein (BMP) signaling controls hair pigmentation by means of cross-talk with the melanocortin receptor-1 pathway[J]. Proc Natl Acad Sci U S A 2005;102 (1):93-8.
    50 Su R, Zhang WG, Sharma R, Chang ZL, Yin J, Li JQ. Characterization of BMP2 gene expression in embryonic and adult Inner Mongolia Cashmere goat (Capra hircus) hair follicles[J]. Canadian Journal of Animal Science 2009;89 (4):457-62.
    51吴江鸿,张文广,李金泉,闫祖威.内蒙古绒山羊毛囊发育不同时期皮肤中BMP4基因的表达[J].黑龙江畜牧兽医2009;12:35-6.
    52 Gat U, DasGupta R, Degenstein L, Fuchs E. De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin[J]. Cell 1998;95 (5):605-14.
    53 Kajino Y, Yamaguchi A, Hashimoto N, Matsuura A, Sato N, Kikuchi K. beta-Catenin gene mutation in human hair follicle-related tumors[J]. Pathol Int 2001;51 (7):543-8.
    54 Tsuji H, Ishida-Yamamoto A, Takahashi H, Iizuka H. Nuclear localization of beta-catenin in the hair matrix cells and differentiated keratinocytes[J]. J Dermatol Sci 2001;27 (3):170-7.
    55 Ridanpaa M, Fodde R, Kielman M. Dynamic expression and nuclear accumulation of beta-catenin during the development of hair follicle-derived structures[J]. Mech Dev 2001;109 (2):173-81.
    56 Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W. beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin[J]. Cell 2001;105 (4):533-45.
    57 DasGupta R, Rhee H, Fuchs E. A developmental conundrum: a stabilized form of beta-catenin lacking the transcriptional activation domain triggers features of hair cell fate in epidermal cells and epidermal cell fate in hair follicle cells[J]. J Cell Biol 2002;158 (2):331-44.
    58 Van Mater D, Kolligs FT, Dlugosz AA, Fearon ER. Transient activation of beta -catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice[J]. Genes Dev 2003;17 (10):1219-24.
    59 Fiuraskova M, Brychtova S, Kolar Z, Kucerova R, Bienova M. Expression of beta-catenin, p63 and CD34 in hair follicles during the course of androgenetic alopecia[J]. Arch Dermatol Res 2005;297 (3):143-6.
    60 Estrach S, Ambler CA, Lo Celso C, Hozumi K, Watt FM. Jagged 1 is a beta-catenin target gene required for ectopic hair follicle formation in adult epidermis[J]. Development 2006;133 (22):4427-38.
    61 Narhi K, Jarvinen E, Birchmeier W, Taketo MM, Mikkola ML, Thesleff I. Sustained epithelial beta-catenin activity induces precocious hair development but disruptshair follicle down-growth and hair shaft formation[J]. Development 2008;135 (6):1019-28.
    62 Zhang Y, Andl T, Yang SH, Teta M, Liu F, Seykora JT, Tobias JW, Piccolo S, Schmidt-Ullrich R, Nagy A, Taketo MM, Dlugosz AA, Millar SE. Activation of beta-catenin signaling programs embryonic epidermis to hair follicle fate[J]. Development 2008;135 (12):2161-72.
    63 Suzuki K, Yamaguchi Y, Villacorte M, Mihara K, Akiyama M, Shimizu H, Taketo MM, Nakagata N, Tsukiyama T, Yamaguchi TP, Birchmeier W, Kato S, Yamada G. Embryonic hair follicle fate change by augmented beta-catenin through Shh and Bmp signaling[J]. Development 2009;136 (3):367-72.
    64 Zhang Y, Tomann P, Andl T, Gallant NM, Huelsken J, Jerchow B, Birchmeier W, Paus R, Piccolo S, Mikkola ML, Morrisey EE, Overbeek PA, Scheidereit C, Millar SE, Schmidt-Ullrich R. Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction[J]. Dev Cell 2009;17 (1):49-61.
    65 Enshell-Seijffers D, Lindon C, Kashiwagi M, Morgan BA. beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair[J]. Dev Cell 2010;18 (4):633-42.
    66 Enshell-Seijffers D, Lindon C, Wu E, Taketo MM, Morgan BA. {beta}-Catenin activity in the dermal papilla of the hair follicle regulates pigment-type switching[J]. Proc Natl Acad Sci U S A 2010.
    67 Haub O, Goldfarb M. Expression of the fibroblast growth factor-5 gene in the mouse embryo[J]. Development 1991;112 (2):397-406.
    68 Haub O, Drucker B, Goldfarb M. Expression of the murine fibroblast growth factor 5 gene in the adult central nervous system[J]. Proc Natl Acad Sci U S A 1990;87 (20):8022-6.
    69 Grose R, Fantl V, Werner S, Chioni AM, Jarosz M, Rudling R, Cross B, Hart IR, Dickson C. The role of fibroblast growth factor receptor 2b in skin homeostasis and cancer development[J]. EMBO J 2007;26 (5):1268-78.
    70 Rosenquist TA, Martin GR. Fibroblast growth factor signalling in the hair growth cycle: expression of the fibroblast growth factor receptor and ligand genes in the murine hair follicle[J]. Dev Dyn 1996;205 (4):379-86.
    71 9Hamada K, Ozawa K, Itami S, Yoshikawa K. Human fibroblast growth factor 10 expression in dermal papilla cells, outer root sheath cells and keratinocytes[J]. Exp Dermatol 1999;8 (4):347-9.
    72 Ohuchi H, Tao H, Ohata K, Itoh N, Kato S, Noji S, Ono K. Fibroblast growth factor 10 is required for proper development of the mouse whiskers[J]. Biochem Biophys Res Commun 2003;302 (3):562-7.
    73 Kawano M, Komi-Kuramochi A, Asada M, Suzuki M, Oki J, Jiang J, Imamura T. Comprehensive analysis of FGF and FGFR expression in skin: FGF18 is highly expressed in hair follicles and capable of inducing anagen from telogen stage hair follicles[J]. J Invest Dermatol 2005;124 (5):877-85.
    74 Kawano M, Suzuki S, Suzuki M, Oki J, Imamura T. Bulge- and basal layer-specific expression of fibroblast growth factor-13 (FHF-2) in mouse skin[J]. J Invest Dermatol 2004;122 (5):1084-90.
    75 Nakatake Y, Hoshikawa M, Asaki T, Kassai Y, Itoh N. Identification of a novel fibroblast growth factor, FGF-22, preferentially expressed in the inner root sheath of the hair follicle[J]. Biochim Biophys Acta 2001;1517 (3):460-3.
    76 Beyer TA, Werner S, Dickson C, Grose R. Fibroblast growth factor 22 and its potential role during skin development and repair[J]. Exp Cell Res 2003;287 (2):228-36.
    77 du Cros DL. Fibroblast growth factor and epidermal growth factor in hair development[J]. J Invest Dermatol 1993;101 (1 Suppl):106S-13S.
    78 Suzuki S, Kato T, Takimoto H, Masui S, Oshima H, Ozawa K, Imamura T. Localization of rat FGF-5 protein in skin macrophage-like cells and FGF-5S protein in hair follicle: possible involvement of two Fgf-5 gene products in hair growth cycle regulation[J]. J Invest Dermatol 1998;111 (6):963-72.
    79 Ozeki M, Tabata Y. Promoted growth of murine hair follicles through controlled release of basic fibroblast growth factor[J]. Tissue Eng 2002;8 (3):359-66.
    80 Hébert JM, Rosenquist T, G tz J, Martin GR. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations[J]. Cell 1994;78 (6):1017-25.
    81 Guo L, Yu QC, Fuchs E. Targeting expression of keratinocyte growth factor to keratinocytes elicits striking changes in epithelial differentiation in transgenic mice[J]. EMBO J 1993;12 (3):973-86.
    82 Guo L, Degenstein L, Fuchs E. Keratinocyte growth factor is required for hair development but not for wound healing[J]. Genes Dev 1996;10 (2):165-75.
    83 Booth C, Potten CS. Keratinocyte growth factor increases hair follicle survival following cytotoxic insult[J]. J Invest Dermatol 2000;114 (4):667-73.
    84 Jang JH. Stimulation of human hair growth by the recombinant human keratinocyte growth factor-2 (KGF-2)[J]. Biotechnol Lett 2005;27 (11):749-52.
    85 Braun S, Krampert M, Bodo E, Kumin A, Born-Berclaz C, Paus R, Werner S. Keratinocyte growth factor protects epidermis and hair follicles from cell death induced by UV irradiation, chemotherapeutic or cytotoxic agents[J]. J Cell Sci 2006;119 (Pt 23):4841-9.
    86 Schlake T. FGF signals specifically regulate the structure of hair shaft medulla via IGF-binding protein 5[J]. Development 2005;132 (13):2981-90.
    87 Huang J, Dattilo LK, Rajagopal R, Liu Y, Kaartinen V, Mishina Y, Deng CX, Umans L, Zwijsen A, Roberts AB, Beebe DC. FGF-regulated BMP signaling is required for eyelid closure and to specify conjunctival epithelial cell fate[J]. Development 2009;136 (10):1741-50.
    88 Xu R-H. FGF, BMP, and TGFβsignaling together control human embryonic stem cell fates[J]. Cell Research 2008;18 (s29):119.
    89 Carter TC. Wavy-coated mice: phenotypic interactions and linkage tests between rex and (a) waved-1,(b) waved-2[J]. Journal of Genetics 1951;50 (2):268-76.
    90 Luetteke NC, Qiu TH, Peiffer RL, Oliver P, Smithies O, Lee DC. TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice[J]. Cell 1993;73 (2):263-78.
    91 Nixon AJ, Broad L, Saywell DP, Pearson AJ. Transforming growth factor-alpha immunoreactivity during induced hair follicle growth cycles in sheep and ferrets[J]. J Histochem Cytochem 1996;44 (4):377-87.
    92 Staecker H, Dazert S, Malgrange B, Lefebvre PP, Ryan AF, Van de Water TR. Transforming growth factor alpha treatment alters intracellular calcium levels in hair cells and protects them from ototoxic damage in vitro[J]. Int J Dev Neurosci 1997;15 (4-5):553-62.
    93 Soma T, Tsuji Y, Hibino T. Involvement of transforming growth factor-beta2 in catagen induction during the human hair cycle[J]. J Invest Dermatol 2002;118 (6):993-7.
    94 Foitzik K, Paus R, Doetschman T, Dotto GP. The TGF-beta2 isoform is both a required and sufficient inducer of murine hair follicle morphogenesis[J]. Dev Biol 1999;212 (2):278-89.
    95 Mori O, Hachisuka H, Sasai Y. Effects of transforming growth factor beta 1 in the hair cycle[J]. J Dermatol 1996;23 (2):89-94.
    96 Foitzik K, Lindner G, Mueller-Roever S, Maurer M, Botchkareva N, Botchkarev V, Handjiski B, Metz M, Hibino T, Soma T, Dotto GP, Paus R. Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo[J]. FASEB J 2000;14 (5):752-60.
    97 Soma T, Dohrmann CE, Hibino T, Raftery LA. Profile of transforming growth factor-beta responses during the murine hair cycle[J]. J Invest Dermatol 2003;121 (5):969-75.
    98 Jamora C, Lee P, Kocieniewski P, Azhar M, Hosokawa R, Chai Y, Fuchs E. A signaling pathway involving TGF-beta2 and snail in hair follicle morphogenesis[J]. PLoS Biol 2005;3 (1):e11.
    99 Foitzik K, Spexard T, Nakamura M, Halsner U, Paus R. Towards dissecting the pathogenesis of retinoid-induced hair loss: all-trans retinoic acid induces premature hair follicle regression (catagen) by upregulation of transforming growth factor-beta2 in the dermal papilla[J]. J Invest Dermatol 2005;124 (6):1119-26.
    100 Peters EM, Hansen MG, Overall RW, Nakamura M, Pertile P, Klapp BF, Arck PC, Paus R. Control of human hair growth by neurotrophins: brain-derived neurotrophic factor inhibits hair shaft elongation, induces catagen, and stimulates follicular transforming growth factor beta2 expression[J]. J Invest Dermatol 2005;124 (4):675-85.
    101 Sasajima M, Moriwaki S, Hotta M, Kitahara T, Takema Y. trans-3,4'-Dimethyl-3-hydroxyflavanone, a hair growth enhancing active component, decreases active transforming growth factor beta2 (TGF-beta2) through control of urokinase-type plasminogen activator (uPA) on the surface of keratinocytes[J]. Biol Pharm Bull 2008;31 (3):449-53.
    102 Plasari G, Edelmann S, Hogger F, Dusserre Y, Mermod N, Calabrese A. Nuclear factor I-C regulates TGF-{beta}-dependent hair follicle cycling[J]. J Biol Chem 2010;285 (44):34115-25.
    103 Lefever T, Pedersen E, Basse A, Paus R, Quondamatteo F, Stanley AC, Langbein L, Wu X, Wehland J, Lommel S, Brakebusch C. N-WASP is a novel regulator of hair-follicle cycling that controls antiproliferative TGF{beta} pathways[J]. J Cell Sci 2009;123 (Pt 1):128-40.
    104 Aranda A, Pascual A. Nuclear hormone receptors and gene expression[J]. Physiological Reviews 2001;81 (3):1269-304.
    105 McBroom LD, Flock G, Giguere V. The nonconserved hinge region and distinct amino-terminal domains of the ROR alpha orphan nuclear receptor isoforms are required for proper DNA bending and ROR alpha-DNA interactions[J]. Mol Cell Biol 1995;15 (2):796-808.
    106 Chauvet C, Bois-Joyeux B, Danan JL. Retinoic acid receptor-related orphan receptor (ROR) alpha4 is the predominant isoform of the nuclear receptor RORalpha in the liver and is up-regulated by hypoxia in HepG2 human hepatoma cells[J]. Biochem J 2002;364 (Pt 2):449-56.
    107 Osaki F, Takata H, Suehiro T, Inoue M, Arii K, Ikeda Y, Kumon Y, Hashimoto K. Transcriptional regulation of retinoic acid receptor-related orphan receptor alpha 4[J]. Atherosclerosis Supplements 2006;7 (3):254-.
    108 Lechtken A, Honig M, Werz O, Corvey N, Zodorf I, Dingermann T, Brandes R, Steinhilber D. Extracellular signal-regulated kinase-2 phosphorylates ROR [alpha] 4 in vitro[J]. Biochemical and biophysical research communications 2007;358 (3):890-6.
    109 Thompson CC. Hairless is a nuclear receptor corepressor essential for skin function[J]. 2009;7:1-11.
    110 Shibata H, Spencer TE, O–ate SA, Jenster G, Tsai SY, Tsai MJ, O'Malley BW. Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action[J]. Recent progress in hormone research 1997;52:141-64.
    111 Wiesenberg I, Missbach M, Kahlen JP, Schrader M, Carlberg C. Transcriptional activation of the nuclear receptor RZR {alpha} by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand[J]. Nucleic acids research 1995;23 (3):327.
    112 Fischer TW, Slominski A, Tobin DJ, Paus R. Melatonin and the hair follicle[J]. changes 2007;10:11.
    113 Fujieda H, Bremner R, Mears AJ, Sasaki H. Retinoic acid receptor-related orphan receptor alpha regulates a subset of cone genes during mouse retinal development[J]. Journal of Neurochemistry 2009;108 (1):91-101.
    114 Fisher GJ, Voorhees JJ. Molecular mechanisms of retinoid actions in skin[J]. FASEB J 1996;10 (9):1002-13.
    115 Viallet JP, Dhouailly D. Retinoic acid and mouse skin morphogenesis. I. Expression pattern of retinoic acid receptor genes during hair vibrissa follicle, plantar, and nasal gland development[J]. J Invest Dermatol 1994;103 (1):116-21.
    116 Imakado S, Bickenbach JR, Bundman DS, Rothnagel JA, Attar PS, Wang XJ, Walczak VR, Wisniewski S, Pote J, Gordon JS, et al. Targeting expression of a dominant-negative retinoic acid receptor mutant in the epidermis of transgenic mice results in lossof barrier function[J]. Genes Dev 1995;9 (3):317-29.
    117 Xie Z, Komuves L, Yu QC, Elalieh H, Ng DC, Leary C, Chang S, Crumrine D, Yoshizawa T, Kato S, Bikle DD. Lack of the vitamin D receptor is associated with reduced epidermal differentiation and hair follicle growth[J]. J Invest Dermatol 2002;118 (1):11-6.
    118 Kong J, Li XJ, Gavin D, Jiang Y, Li YC. Targeted expression of human vitamin d receptor in the skin promotes the initiation of the postnatal hair follicle cycle and rescues the alopecia in vitamin D receptor null mice[J]. J Invest Dermatol 2002;118 (4):631-8.
    119 Amor KT, Rashid RM, Mirmirani P. Does D matter? The role of vitamin D in hair disorders and hair follicle cycling[J]. Dermatol Online J;16 (2):3.
    120 Demay MB, MacDonald PN, Skorija K, Dowd DR, Cianferotti L, Cox M. Role of the vitamin D receptor in hair follicle biology[J]. J Steroid Biochem Mol Biol 2007;103 (3-5):344-6.
    121 Palmer HG, Anjos-Afonso F, Carmeliet G, Takeda H, Watt FM. The vitamin D receptor is a Wnt effector that controls hair follicle differentiation and specifies tumor type in adult epidermis[J]. PLoS One 2008;3 (1):e1483.
    122 Credille KM, Slater MR, Moriello KA, Nachreiner RF, Tucker KA, Dunstan RW. The effects of thyroid hormones on the skin of beagle dogs[J]. J Vet Intern Med 2001;15 (6):539-46.
    123 Billoni N, Buan B, Gautier B, Gaillard O, Mahe YF, Bernard BA. Thyroid hormone receptor beta1 is expressed in the human hair follicle[J]. Br J Dermatol 2000;142 (4):645-52.
    124 Aoki N, Ito K, Ito M. mu-Crystallin, thyroid hormone-binding protein, is expressed abundantly in the murine inner root sheath cells[J]. J Invest Dermatol 2000;115 (3):402-5.
    125 Safer JD, Fraser LM, Ray S, Holick MF. Topical triiodothyronine stimulates epidermal proliferation, dermal thickening, and hair growth in mice and rats[J]. Thyroid 2001;11 (8):717-24.
    126 Karstila T, Rechardt L, Honkaniemi J, Gustafsson JA, Wikstroms AC, Karppinen A, Pelto-Huikko M. Immunocytochemical localization of glucocorticoid receptor in rat skin[J]. Histochemistry 1994;102 (4):305-9.
    127 Perez P, Page A, Bravo A, Del Rio M, Gimenez-Conti I, Budunova I, Slaga TJ, Jorcano JL. Altered skin development and impaired proliferative and inflammatory responses in transgenic mice overexpressing the glucocorticoid receptor[J]. FASEB J 2001;15 (11):2030-2.
    128 Hayman JA, Danks JA, Ebeling PR, Moseley JM, Kemp BE, Martin TJ. Expression of parathyroid hormone related protein in normal skin and in tumours of skin and skin appendages[J]. J Pathol 1989;158 (4):293-6.
    129 Panteleyev AA, Paus R, Christiano AM. Patterns of hairless (hr) gene expression in mouse hair follicle morphogenesis and cycling[J]. Am J Pathol 2000;157 (4):1071-9.
    130 Beaudoin GM, 3rd, Sisk JM, Coulombe PA, Thompson CC. Hairless triggers reactivationof hair growth by promoting Wnt signaling[J]. Proc Natl Acad Sci U S A 2005;102 (41):14653-8.
    131 Wen Y, Liu Y, Xu Y, Zhao Y, Hua R, Wang K, Sun M, Li Y, Yang S, Zhang XJ, Kruse R, Cichon S, Betz RC, Nothen MM, van Steensel MA, van Geel M, Steijlen PM, Hohl D, Huber M, Dunnill GS, Kennedy C, Messenger A, Munro CS, Terrinoni A, Hovnanian A, Bodemer C, de Prost Y, Paller AS, Irvine AD, Sinclair R, Green J, Shang D, Liu Q, Luo Y, Jiang L, Chen HD, Lo WH, McLean WH, He CD, Zhang X. Loss-of-function mutations of an inhibitory upstream ORF in the human hairless transcript cause Marie Unna hereditary hypotrichosis[J]. Nat Genet 2009;41 (2):228-33.
    132 Panteleyev AA, van der Veen C, Rosenbach T, Muller-Rover S, Sokolov VE, Paus R. Towards defining the pathogenesis of the hairless phenotype[J]. J Invest Dermatol 1998;110 (6):902-7.
    133 Potter GB, Beaudoin GM, 3rd, DeRenzo CL, Zarach JM, Chen SH, Thompson CC. The hairless gene mutated in congenital hair loss disorders encodes a novel nuclear receptor corepressor[J]. Genes Dev 2001;15 (20):2687-701.
    134 Jones JM, Elder JT, Simin K, Keller SA, Meisler MH. Insertional mutation of the hairless locus on mouse chromosome 14[J]. Mamm Genome 1993;4 (11):639-43.
    135 Hsieh JC, Sisk JM, Jurutka PW, Haussler CA, Slater SA, Haussler MR, Thompson CC. Physical and functional interaction between the vitamin D receptor and hairless corepressor, two proteins required for hair cycling[J]. J Biol Chem 2003;278 (40):38665-74.
    136 Hsieh JC, Slater SA, Whitfield GK, Dawson JL, Hsieh G, Sheedy C, Haussler CA, Haussler MR. Analysis of hairless corepressor mutants to characterize molecular cooperation with the vitamin D receptor in promoting the mammalian hair cycle[J]. J Cell Biochem 2010;110 (3):671-86.
    137 Skorija K, Cox M, Sisk JM, Dowd DR, MacDonald PN, Thompson CC, Demay MB. Ligand-independent actions of the vitamin D receptor maintain hair follicle homeostasis[J]. Mol Endocrinol 2005;19 (4):855-62.
    138 Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E. Defining the epithelial stem cell niche in skin[J]. Science 2004;303 (5656):359-63.
    139 Alonso L, Fuchs E. Stem cells in the skin: waste not, Wnt not[J]. Genes Dev 2003;17 (10):1189-200.
    140 Zarach JM, Beaudoin GMJ, Coulombe PA, Thompson CC. The co-repressor hairless has a role in epithelial cell differentiation in the skin[J]. Development 2004;131 (17):4189.
    141 Pun KK, Arnaud CD, Nissenson RA. Parathyroid hormone receptors in human dermal fibroblasts: structural and functional characterization[J]. J Bone Miner Res 1988;3 (4):453-60.
    142 Swarthout JT, D'Alonzo RC, Selvamurugan N, Partridge NC. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells[J]. Gene 2002;282 (1-2):1-17.
    143 Lalonde M, Li B, Kline L, Pang P, Karpinski E. Modulation of L-type Ca2+ channelsin UMR 106 cells by parathyroid hormone-related protein[J]. Life Sci 2001;70 (5):503-15.
    144 Tovar Sepulveda VA, Shen X, Falzon M. Intracrine PTHrP protects against serum starvation-induced apoptosis and regulates the cell cycle in MCF-7 breast cancer cells[J]. Endocrinology 2002;143 (2):596-606.
    145 Wysolmerski JJ, Broadus AE, Zhou J, Fuchs E, Milstone LM, Philbrick WM. Overexpression of parathyroid hormone-related protein in the skin of transgenic mice interferes with hair follicle development[J]. Proc Natl Acad Sci U S A 1994;91 (3):1133-7.
    146 Abdalkhani A, Sellers R, Gent J, Wulitich H, Childress S, Stein B, Boissy RE, Wysolmerski JJ, Foley J. Nipple connective tissue and its development: insights from the K14-PTHrP mouse[J]. Mech Dev 2002;115 (1-2):63-77.
    147 Foley J, Longely BJ, Wysolmerski JJ, Dreyer BE, Broadus AE, Philbrick WM. PTHrP regulates epidermal differentiation in adult mice[J]. J Invest Dermatol 1998;111 (6):1122-8.
    148 Schilli MB, Ray S, Paus R, Obi-Tabot E, Holick MF. Control of hair growth with parathyroid hormone (7-34)[J]. J Invest Dermatol 1997;108 (6):928-32.
    149 Su HY, Hickford JG, Bickerstaffe R, Palmer BR. Insulin-like growth factor 1 and hair growth[J]. Dermatol Online J 1999;5 (2):1.
    150 Rudman SM, Philpott MP, Thomas GA, Kealey T. The role of IGF-I in human skin and its appendages: morphogen as well as mitogen?[J]. J Invest Dermatol 1997;109 (6):770-7.
    151 Su HY, Hickford JG, The PH, Hill AM, Frampton CM, Bickerstaffe R. Increased vibrissa growth in transgenic mice expressing insulin-like growth factor 1[J]. J Invest Dermatol 1999;112 (2):245-8.
    152 Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r)[J]. Cell 1993;75 (1):59-72.
    153 Blok GJ, de Boer H, Gooren LJ, van der Veen EA. Growth hormone substitution in adult growth hormone-deficient men augments androgen effects on the skin[J]. Clin Endocrinol (Oxf) 1997;47 (1):29-36.
    154 Burren CP, Woods KA, Rose SJ, Tauber M, Price DA, Heinrich U, Gilli G, Razzaghy-Azar M, Al-Ashwal A, Crock PA, Rochiccioli P, Yordam N, Ranke MB, Chatelain PG, Preece MA, Rosenfeld RG, Savage MO. Clinical and endocrine characteristics in atypical and classical growth hormone insensitivity syndrome[J]. Horm Res 2001;55 (3):125-30.
    155 Rosenfield RL. Polycystic ovary syndrome and insulin-resistant hyperinsulinemia[J]. J Am Acad Dermatol 2001;45 (3 Suppl):S95-104.
    156 Gebbie FE, Forsyth IA, Arendt J. Effects of maintaining solstice light and temperature on reproductive activity, coat growth, plasma prolactin and melatonin in goats[J]. J Reprod Fertil 1999;116 (1):25-33.
    157 Craven AJ, Ormandy CJ, Robertson FG, Wilkins RJ, Kelly PA, Nixon AJ, Pearson AJ. Prolactin signaling influences the timing mechanism of the hair follicle: analysisof hair growth cycles in prolactin receptor knockout mice[J]. Endocrinology 2001;142 (6):2533-9.
    158 Nixon AJ, Ford CA, Wildermoth JE, Craven AJ, Ashby MG, Pearson AJ. Regulation of prolactin receptor expression in ovine skin in relation to circulating prolactin and wool follicle growth status[J]. J Endocrinol 2002;172 (3):605-14.
    159 Thompson DL, Jr., Hoffman R, DePew CL. Prolactin administration to seasonally anestrous mares: reproductive, metabolic, and hair-shedding responses[J]. J Anim Sci 1997;75 (4):1092-9.
    160 Glickman SP, Rosenfield RL, Bergenstal RM, Helke J. Multiple androgenic abnormalities, including elevated free testosterone, in hyperprolactinemic women[J]. J Clin Endocrinol Metab 1982;55 (2):251-7.
    161 Ma X, Idle JR, Krausz KW, Gonzalez FJ. Metabolism of melatonin by human cytochromes p450[J]. Drug Metabolism and Disposition 2005;33 (4):489.
    162 Fischer TW, Slominski A, Tobin DJ, Paus R. Melatonin and the hair follicle[J]. J Pineal Res 2008;44 (1):1-15.
    163 Slominski A, Pisarchik A, Semak I, Sweatman T, Wortsman J, Szczesniewski A, Slugocki G, McNulty J, Kauser S, Tobin DJ, Jing C, Johansson O. Serotoninergic and melatoninergic systems are fully expressed in human skin[J]. Faseb Journal 2002;16 (6):896-+.
    164 Slominski AT, Pisarchik A, Zbytek B, Wortsman J. Serotoninergic and melatoninergic systems expressed in the skin[J]. Journal of Investigative Dermatology 2003;121 (1):0753.
    165 Kobayashi H, Kromminga A, Dunlop TW, Tychsen B, Conrad F, Suzuki N, Memezawa A, Bettermann A, Aiba S, Carlberg C, Paus R. A role of melatonin in neuroectodermal-mesodermal interactions: the hair follicle synthesizes melatonin and expresses functional melatonin receptors[J]. Faseb Journal 2005;19 (9):1710-+.
    166 Nixon AJ, Choy VJ, Parry AL, Pearson AJ. Fiber growth initiation in hair follicles of goats treated with melatonin[J]. Journal of Experimental Zoology 2005;267 (1):47-56.
    167 Slominski A, Pisarchik A, Zbytek B, Tobin DJ, Kauser S, Wortsman J. Functional activity of serotoninergic and melatoninergic systems expressed in the skin[J]. Journal of Cellular Physiology 2003;196 (1):144-53.
    168 Slominski A, Fischer TW, Zmijewski MA, Wortsman J, Semak I, Zbytek B, Slominski RM, Tobin DJ. On the role of melatonin in skin physiology and pathology[J]. Endocrine 2005;27 (2):137-47.
    169 Fischer TW, Sweatman TW, Semak I, Sayre RM, Wortsman J, Slominski A. Melatonin metabolism in the skin[J]. Exp Dermatol 2006;15 (8):644-.
    170 Kobayashi H, Kromminga A, Dunlop TW, Tychsen B, Conrad F, Suzuki N, Memezawa A, Bettermann A, Aiba S, Carlberg C, Paus R. A role of melatonin in neuroectodermal-mesodermal interactions: the hair follicle synthesizes melatonin and expresses functional melatonin receptors[J]. Faseb J 2005;19 (12):1710-2.
    171 Dicks P, Morgan CJ, Morgan PJ, Kelly D, Williams LM. The localisation andcharacterisation of insulin-like growth factor-I receptors and the investigation of melatonin receptors on the hair follicles of seasonal and non-seasonal fibre-producing goats[J]. Journal of Endocrinology 1996;151 (1):55.
    172 Davidson D. The function and evolution of Msx genes: pointers and paradoxes[J]. Trends Genet 1995;11 (10):405-11.
    173 Walldorf U, Fleig R, Gehring WJ. Comparison of homeobox-containing genes of the honeybee and Drosophila[J]. Proc Natl Acad Sci U S A 1989;86 (24):9971-5.
    174 Jiang TX, Liu YH, Widelitz RB, Kundu RK, Maxson RE, Chuong CM. Epidermal dysplasia and abnormal hair follicles in transgenic mice overexpressing homeobox gene MSX-2[J]. J Invest Dermatol 1999;113 (2):230-7.
    175 Wang WP, Widelitz RB, Jiang TX, Chuong CM. Msx-2 and the regulation of organ size: epidermal thickness and hair length[J]. J Investig Dermatol Symp Proc 1999;4 (3):278-81.
    176 Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, Maeda T, Takano Y, Uchiyama M, Heaney S, Peters H, Tang Z, Maxson R, Maas R. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation[J]. Nat Genet 2000;24 (4):391-5.
    177 Ma L, Liu J, Wu T, Plikus M, Jiang TX, Bi Q, Liu YH, Muller-Rover S, Peters H, Sundberg JP, Maxson R, Maas RL, Chuong CM. 'Cyclic alopecia' in Msx2 mutants: defects in hair cycling and hair shaft differentiation[J]. Development 2003;130 (2):379-89.
    178 Cai J, Lee J, Kopan R, Ma L. Genetic interplays between Msx2 and Foxn1 are required for Notch1 expression and hair shaft differentiation[J]. Dev Biol 2009;326 (2):420-30.
    179 Awgulewitsch A. Hox in hair growth and development[J]. Naturwissenschaften 2003;90 (5):193-211.
    180 Jave-Suarez LF, Winter H, Langbein L, Rogers MA, Schweizer J. HOXC13 is involved in the regulation of human hair keratin gene expression[J]. Journal of Biological Chemistry 2002;277 (5):3718-26.
    181 Pruett ND, Tkatchenko TV, Jave-Suarez L, Jacobs DF, Potter CS, Tkatchenko AV, Schweizer J, Awgulewitsch A. Krtap16, characterization of a new hair keratin-associated protein (KAP) gene complex on mouse chromosome 16 and evidence for regulation by Hoxc13[J]. Journal of Biological Chemistry 2004;279 (49):51524-33.
    182 Izpisua-Belmonte JC, Falkenstein H, Dolle P, Renucci A, Duboule D. Murine genes related to the Drosophila AbdB homeotic genes are sequentially expressed during development of the posterior part of the body[J]. EMBO J 1991;10 (8):2279-89.
    183 Geng Y, Johnson LF. Lack of an initiator element is responsible for multiple transcriptional initiation sites of the TATA-less mouse thymidylate synthase promoter[J]. Mol Cell Biol 1993;13 (8):4894-903.
    184 Sander GR, Powell BC. Structure and expression of the ovine Hoxc-13 gene[J]. Gene 2004;327 (1):107-16.
    185 Wu JH, Zhang WG, Li JQ, Yin J, Zhang YJ. Hoxc13 Expression Pattern in Cashmere Goat Skin During Hair Follicle Development[J]. Agricultural Sciences in China 2009;8(4):491-6.
    186 Duboule D. Hox is in the hair: a break in colinearity?[J]. Genes Dev 1998;12 (1):1-4.
    187 Godwin AR, Capecchi MR. Hoxc13 mutant mice lack external hair[J]. Genes & Development 1998;12 (1):11-20.
    188 Potter CS, Peterson RL, Barth JL, Pruett ND, Jacobs DF, Kern MJ, Argraves WS, Sundberg JP, Awgulewitsch A. Evidence that the satin hair mutant gene Foxq1 is among multiple and functionally diverse regulatory targets for Hoxc13 during hair follicle differentiation[J]. Journal of Biological Chemistry 2006;281 (39):29245-55.
    189 Powell BC, Rogers GE. Cyclic hair-loss and regrowth in transgenic mice overexpressing an intermediate filament gene[J]. EMBO J 1990;9 (5):1485-93.
    190 Tkatchenko AV, Visconti RP, Shang L, Papenbrock T, Pruett ND, Ito T, Ogawa M, Awgulewitsch A. Overexpression of Hoxc13 in differentiating keratinocytes results in downregulation of a novel hair keratin gene cluster and alopecia[J]. Development 2001;128 (9):1547-58.
    191 Peterson RL, Tkatchenko TV, Pruett ND, Potter CS, Jacobs DF, Awgulewitsch A. Epididymal cysteine-rich secretory protein 1 encoding gene is expressed in murine hair follicles and downregulated in mice overexpressing Hoxc13[J]. Journal of Investigative Dermatology Symposium Proceedings 2005;10 (3):238-42.
    192 Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs[J]. Cell 2007;129 (7):1311-23.
    193 Stenn KS, Paus R. What controls hair follicle cycling?[J]. Exp Dermatol 1999;8 (4):229-33; discussion 33-6.
    194 Daftary GS, Taylor HS. Endocrine regulation of HOX genes[J]. Endocr Rev 2006;27 (4):331-55.
    195 Dasen JS, Liu JP, Jessell TM. Motor neuron columnar fate imposed by sequential phases of Hox-c activity[J]. Nature 2003;425 (6961):926-33.
    196尹俊.内蒙古绒山羊毛囊发育、生长周期及相关基因的研究[D].呼和浩特:内蒙古大学, 2004.
    197岳春旺,张微,孔祥浩,刘海英,贾志海.褪黑激素对内蒙古白绒山羊产绒性能的影响[J].中国畜牧杂志2007;43 (007):32-4.
    198贾志海.褪黑激素促山羊绒生长调控机理的研究[D].北京:中国农业大学.1994.
    199 Betteridge K, Welch RAS, Pomroy WE, Lapwood KL, Devantier BP. Out of season cashmere growth in feral goats. 1987. pp. 137-43.
    200 Roca AL, Ishida Y, Nikolaidis N, Kolokotronis SO, Fratpietro S, Stewardson K, Hensley S, Tisdale M, Boeskorov G, Greenwood AD. Genetic variation at hair length candidate genes in elephants and the extinct woolly mammoth[J]. BMC Evolutionary Biology 2009;9 (1):232.
    201 Iacumin P, Davanzo S, Nikolaev V. Short-term climatic changes recorded by mammoth hair in the Arctic environment[J]. Palaeogeography Palaeoclimatology Palaeoecology 2005;218 (3-4):317-24.
    202 Coletta A, Pinney JW, Solis DY, Marsh J, Pettifer SR, Attwood TK. Low-complexityregions within protein sequences have position-dependent roles[J]. BMC Syst Biol 2010;4:43.
    203 Palena CM, Tron AE, Bertoncini CW, Gonzalez DH, Chan RL. Positively charged residues at the N-terminal arm of the homeodomain are required for efficient DNA binding by homeodomain-leucine zipper proteins1[J]. Journal of Molecular Biology 2001;308 (1):39-47.
    204 Fondon JW, 3rd, Garner HR. Molecular origins of rapid and continuous morphological evolution[J]. Proc Natl Acad Sci U S A 2004;101 (52):18058-63.
    205 Anan K, Yoshida N, Kataoka Y, Sato M, Ichise H, Nasu M, Ueda S. Morphological change caused by loss of the taxon-specific polyalanine tract in Hoxd-13[J]. Mol Biol Evol 2007;24 (1):281-7.
    206 Wang Z, Yuan L, Rossiter SJ, Zuo X, Ru B, Zhong H, Han N, Jones G, Jepson PD, Zhang S. Adaptive evolution of 5'HoxD genes in the origin and diversification of the cetacean flipper[J]. Mol Biol Evol 2009;26 (3):613-22.
    207 Carpenter PW, Davies C, Lucey AD. Hydrodynamics and compliant walls: Does the dolphin have a secret[J]. Current Science 2000;79 (6):758-65.
    208 Rogers GE. Hair follicle differentiation and regulation[J]. Int J Dev Biol 2004;48 (2-3):163-70.
    209 Lin KK, Chudova D, Hatfield GW, Smyth P, Andersen B. Identification of hair cycle-associated genes from time-course gene expression profile data by using replicate variance[J]. Proc Natl Acad Sci U S A 2004;101 (45):15955-60.
    210 Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO. Diversity, topographic differentiation, and positional memory in human fibroblasts[J]. Proc Natl Acad Sci U S A 2002;99 (20):12877-82.
    211 Rinn JL, Wang JK, Allen N, Brugmann SA, Mikels AJ, Liu H, Ridky TW, Stadler HS, Nusse R, Helms JA, Chang HY. A dermal HOX transcriptional program regulates site-specific epidermal fate[J]. Genes Dev 2008;22 (3):303-7.
    212 Yamaguchi Y, Passeron T, Hoashi T, Watabe H, Rouzaud F, Yasumoto K, Hara T, Tohyama C, Katayama I, Miki T, Hearing VJ. Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/beta-catenin signaling in keratinocytes[J]. FASEB J 2008;22 (4):1009-20.
    213 Ashkenazi M, Bader GD, Kuchinsky A, Moshelion M, States DJ. Cytoscape ESP: simple search of complex biological networks[J]. Bioinformatics 2008;24 (12):1465-6.
    214 Bazzi H, Demehri S, CS P. Desmoglein 4 is regulated by transcription factors implicated in hair shaft differentiation[J]. Differentiation 2009;78:292–300.
    215 Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation[J]. The EMBO Journal 2001;20 (13 ):3427-36.
    216 Ouji Y, Yoshikawa M, Shiroi A, Ishizaka S. Promotion of hair follicle development and trichogenesis by Wnt-10b in cultured embryonic skin and in reconstituted skin[J]. Biochem Biophys Res Commun 2006;345 (2):581-7.
    217 Maganga R, Giles N, Adcroft K, Unni A, Keeney D, Wood F, Fear M, Dharmarajan A.Secreted Frizzled related protein-4 (sFRP4) promotes epidermal differentiation and apoptosis[J]. Biochem Biophys Res Commun 2008;377 (2):606-11.
    218 Jin W, Kim BC, Tognon C, Lee HJ, Patel S, Lannon CL, Maris JM, Triche TJ, Sorensen PH, Kim SJ. The ETV6-NTRK3 chimeric tyrosine kinase suppresses TGF-beta signaling by inactivating the TGF-beta type II receptor[J]. Proc Natl Acad Sci U S A 2005;102 (45):16239-44.
    219 Potter CS, Pruett ND, Kern MJ, Baybo AM, Godwin AR, Potter AK, Peterson LR, Sundberg JP, Awgulewitsch A. The Nude Mutant Gene Foxn1 Is a HOXC13 Regulatory Target during Hair Follicle and Nail Differentiation[J]. Journal of Investigative Dermatology 2011;131:828–37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700