SGLT2抑制剂的合成及基于异腈的多组分选择性合成吡咯[1,2-f]菲啶衍生物的反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SGLT2抑制剂是一种新型的降糖药物,它通过增加肾脏葡萄糖的清除率降低血糖,可减弱肾脏对葡萄糖的重吸收,使多余的葡萄糖从尿液排出,从而降低血糖,为糖尿病的治疗提供了新的途径。本论文将葡萄糖基片段引入到三唑类杂环化合物中,有效改善和提高了杂环化合物的生物活性,并改善其水溶性差的缺点。
     菲啶并吡咯类杂环化合物是一类具有抗肿瘤作用的药物分子,某些分子还可以作为分子机器,是一类重要的含氮杂环类化合物。异腈类化合物具有独特的官能团,它可以和某些亲电试剂形成两可性离子来构筑杂环以及碳环化合物。本文基于该特征,利用取代异腈与亲电试剂形成的两可性离子与菲啶发生1,3-偶极环加成反应,采用新型多组分有机反应合成方法,构筑和发展新型菲啶并吡咯类杂环体系的合成方法。
     论文首先综述了酰肼,酰胺基硫脲,1,2,4-三唑类杂环化合物,全乙酰化溴代糖,钠依赖性葡萄糖转运体2(SGLT2)抑制剂的合成和应用;对异腈,基于异腈的多组分反应,多杂环菲啶衍生物进行了概述。
     其次以羟基苯甲酸乙酯与水合肼制得酰肼,由酰肼分别与三种不同取代基的异硫氰酸苯酯反应得到氨基硫脲,在碱性条件下合环后与卤代烷发生烷基化,得到1,2,4-均三唑衍生物。三唑与全乙酰化溴代糖发生亲核取代反应,进一步经水解脱去乙酰基得到类SGLT2抑制剂类目标化合物。在三唑类化合物的合成中,放弃了固相合成方法,使用更为简便并且易于跟踪反应进程的普通方法。在烷基化过程中,控制反应物的用量,无需进行羟基的保护。三唑与糖类化合物的反应,使用相转移催化剂使反应速度加快,产率明显提高,反应条件温和。合成了三个目标化合物1b,2b和3b。
     最后研究了以取代异腈,取代2-亚芳基丙二腈和菲啶三组分的反应,构建了新型菲啶并吡咯类杂环化合物。研究了溶剂以及取代基等条件对反应的影响。对于三组分反应,乙醚为最佳溶剂溶剂,在室温条件下便可以得到较高产率的目标产物。异腈类化合物取代基的空间位阻以及2-亚芳基丙二腈取代基的供/吸电子作用,都对反应产率有影响。得到产物通过乙醚洗涤便可得到纯品,无需进一步分离。该反应条件温和,操作简便,无需使用催化剂或者是活化剂。重要的是,所有目标产物有两个手性中心,却只有一种对映异构体,合成方法具有高度区域及立体选择性。合成了25个目标化合物4a-4k, 5a-5f, 6a-6h,这种方法合成吡咯并菲啶类化合物迄今未见文献报道。
     所有新化合物的结构均经IR,~1H NMR,~(13)C NMR, HRMS等手段进行了鉴定,并对反应提出了可能的反应机理。
Sodium glucose co-transporter 2 (SGLT2) inhibitors are a kind of new glucose-lowering drugs. They can reduce the renal reabsorption of glucose by increasing the clearance of renal glucose and make the extra glucose exclude through urine thus can lower blood sugar. Therefore, SGLT2 inhibitors provided a new method for the treatment of diabetes. In this paper, analogous SGLT2 inhibitors--thiazole derivatives containing glycosyl were synthesized to improve the bioactivity and poor water-solubility of triazoles.
     Pyrrolophenanthridine derivatives displayed high antitumor and antileukemic activity. Some of them could be used as molecular scale devices. Therefore, they play an important role in nitrogen-containing heterocycles. Isocyanides with its unique functional groups could form zwitterions with some electrophiles to construst novel protocols for the synthesis of heterocycles and carbocycles. Here, we developed the reaction of the zwitterions generated in situ from isocyanides and electrophiles with phenanthridine via 1,3-dipolar cycloaddition.
     Firstly, the synthesis and applications of hydrazide, thiosemicarbazide, triazoles, peracetylglucopyranosyl bromide, and SGLT2 inhibitors were reviewed in brief. Then isocyanide, isocyanide-based multicomponet reactions (IMCRs) and fused heterocyclic phenanthridine were introduced.
     Secondly, hydrazide compound was derived from the reaction of hydroxybenzoate with hydrazine hydrate. Thiosemicarbazide derivatives were synthesized through hydrazide and phenylisothiocyanate containing different subtituents. Thiosemicarbazide derivatives cyclized at alkaline conditions and then reacted with alkyl halide to obtain 1,2,4-triazole derivatives. Under phase transfer conditions, triazole derivatives proceeded with 2,3,4,6-tetra-O-acetyl-α- D-glucopyranosyl bromide to give the peracetylated sugar derivatives which underwent hydrolysis to give analogous SGLT2 inbitors. The synthesis of 1,2,4-triazole derivatives proceeded with the common method without using solid phase synthesis to make this reaction convenient and easy to trace. Adjusting the reactant amount could avoid the protection of hydroxyl group during the alkylation reaction. Using phase transfer catalyst could increase the reaction rate and improve the yield effectively under mild conditions. Three target compounds 1b, 2b and 3b were synthesized.
     Finally, Novel pyrrolophenanthridine derivatives were constructed through three-component reaction of isocyanides, 2-arylidenemalononitriles with phenanthridine as well as four-component reaction of isocyanides, malononitrile, aromatic aldehyde with phenanthridine. The reaction conditions including solvent and substituents were also investigated. Using diethyl ether as the solvent resulted in higher yields and shorter reaction time at room temperature in three-component reaction. The steric hinerance of substituents of isocyanides and different electronically substituents of arylidenemalononitriles also had some influence on the yields. All the isolated products only need washing with diethyl ether twice rather than column chromatography or recrystallization. These reactions proceeded in mild conditions and are rapid to execute without using any catalyst or activation. All the target compounds owned two chiral centers but only one corresponding stereoisomers was achieved. This indicated that this transformation provided a highly regio- and stereoselective method for the preparation of pyrrolophenanthridine derivatives. Twenty-five target compounds 4a-4k, 5a-5f, 6a-6h were synthesized
     Structures of all the target compounds were confirmed by IR, ~1H NMR, ~(13)C NMR, and HRMS, and the possible mechanism was also proposed. The unambiguous molecular structure of 4a, 5f and 6d were determined by X-ray diffraction analysis.
引文
[1] Rothgery, E. F., Hydrazine and its derivatives. Kirk-Othmer Encyclopedia Chemical Technology, John Wiley & Sons, New York, 1995.
    [2] Campos, K. R., Woo, J. C. S., Lee, S., Tillyer, R. D., A general synthesis of substituted indoles from cyclic enol ethers and enol lactones. Org. Lett. 2004, 6, 79-82
    [3] Maekawa, K., Kanno, Y., Kubo, K., Igarashi, T., Sakurai, T., A novel ring-opening reaction of (Z)-2-methyl-4-arylmethylene-5(4H)-oxazolone derivatives with acylhydrazines. Heterocycles, 2004, 63, 1273-1279.
    [4] Martin, S. W., Romine, J. L., Chen, L., Mattson, G., Antal-Zimanyi, I. A., Poindexter, G. S., Application of solution-phase parallel synthesis to preparation of trisubstituted 1, 2, 4-triazoles. J. Comb. Chem. 2004, 6, 35-37.
    [5] Ivachtchenko, A., Kovalenko, S., Tkachenko, O. V., Parkhomenko, O., Synthesis of substituted thienopyrimidine-4-ones. J. Comb. Chem. 2004, 6, 573-583.
    [6]邹金山,薛思佳,管谦。酰基硫脲的合成、性质及生物活性。合成化学,2000, 9 ,109-112.
    [7] Douglass, I. B., Dains, F. B., Some derivatives of benzoyl and furoyl isothiocyanates and their use in synthesizing heterocyclic compounds. J. Am. Chem. Soc. 1934, 56, 719-721.
    [8] Reeves, W. P., Simmons, A., Rudis, J. J. A., Bothwell, T. C., Synthesis of thiosemicarbazides under liquid-liquid phase transfer catalysis conditions. Synth. Commun. 1981, 11, 781-785
    [9] Li, Z., Wang, X. C., Da, Y. X., Chen, J. C., A novel route to acylureas, synthesis of N-[5-(2-ch- lorphenyl)-2-furoyl]-N-arylthioureas and ureas. Synth. Commun. 2000, 30, 2635-2645.
    [10] (a) Chen, Z. X., Yang, G. C., Zhang, Z. J., Wang, D., Synthesis of a library of N-p-hydroxybenZoyl thioureas using a poly (ethylene glycol) support. Synthesis, 2001, 1483-1486; (b) Li, J. P., Luo, Q. F., Wang, Y. L., Wang, H., An efficient solid-state method for the preparation of acyl thiosemicarbazides. Synth. Commun. 2001, 31, 1793-1798.
    [11] Wang, X. C., Wang, J. K., Li, Z., Poly (ethylene glycol)-supported liquid-phase rarallel synthesis of di(aryloxyacetyl) thiosemicarbazides. Chin. Chem. Lett. 2004, 15, 635-638.
    [12]薛思佳,柯少勇,段李平,李景智。超声辐射合成5,7-二取代-2-(5-芳基-2-呋喃甲酰亚胺)-[1,2,4]-噻二唑并[2,3-α]嘧啶衍生物及其生物活性研究。有机化学,2004,24,1610-1613.
    [13] (a) Wang, X., Li, Z., Da, Y., Synthesis of 2-(4-tolyloxyacetylamido)-5-aryloxymethyl-1,3,4- thIadiazoles under microwave irradiation. Synth. Commun. 2001, 31, 19-26; (b)李政,权正军,王喜存。微波促进下1-芳甲酰基-4-(2'-苯并呋喃甲酰基)氨基硫脲及其衍生物的合成。有机化学, 2003, 23, 822-826; (c) Wang, X. C., Li, Z., Da, Y. X., Wei, B. G., Microwave induced synthesis of 2-(2-furoylamido)-5-aryloxymethyl-1,3,4-thiadiazoles. Synth. Commun. 2001, 31, 2537-2541
    [14] Garratt, P. J., Comp. Heterocycl. Chem. II 1996, 4, 127-163, 905-1006.
    [15] Dreikorn, B. A., Unger, P., Synthesis and identification of 4-methyl-N-(4H-1,2,4-trizaol-4-yl) -2-benzothiazolamine, an impurity in the synthesis of tricyclazole. J. Heterocycl. Chem. 1989, 26, 1735-1737.
    [16] (a) Sung, K., Lee, A. R. Synthesis of [(4,5-disubstituted-4H-1,2,4-triazol-3-yl)thio] alkanoic adids and their analogues as possible antiinflammatory agents. J. Heterocycl. Chem. 1992, 29, 1101-1109; (b) Kim, H. S., Kurasawa, Y., Takada, A., A selective synthesis of 1-aryl-3-quinox-Alinyl-1,2,4-triazole and furo[2,3-b]quinoxaline. J. Heterocycl. Chem. 1989,26, 1129-1133.
    [17] (a) Collin, X., Sauleau, A., Coulon, J., 1,2,4-Triazolo mercapto and aminonitriles as potent antifungal agents. Bioorg. Med. Chem. Lett. 2003, 13, 2601-2605 ; (b) Papakonstantinou-Gar- oufalias, S., Pouli, N., Marakos, P., Chytyroglou-Ladas, A., Synthesis antimicrobial and antifungal activity of some new 3 substituted derivatives of 4-(2,4-dichlorophenyl)-5-adama- ntyl-1H-1,2,4-triazole. Farmaco, 2002, 57, 973-977.
    [18] (a) Martin, G., Lahti, R.A., Rudzik, A.D., Duchamp, D.J., Chidester, C., Scahill, T., Novel a nxiolytic agents derived fromα?amino-α-phenyl-o-tolyl-4H-triazoles and -imidazoles. J. Med. Chem. 1978, 21, 542-548; (b) Cao, X. F., Hu, M., Zhang, J., Li, F., Yang, Y. H., Liu, D. L., Liu, S. H., Determination of stereoselective interaction between enantiomers of chiralγ-aryl-1H-1,2,4-triazole derivatives and penicillium digitatum. J. Agric. Food Chem. 2009, 57, 6914-6919.
    [19] (a) Perez, H. D., Weksler, B. B., Goldstein, I. M., Generation of a chemotactic lipis from arac- Hidonic acid by exposure to a superoxide-generating system. Inflammation, 1980, 4, 313-328; (b) McCord, J. M., A superoxide-activated chemotactic factor and its role in the inflammatory process. Inflammation Res. 1980, 10, 522-527; (c) Petrone, W. F., English, D. K., Wong, K., McCord, J. M., Free radicals and inflammation: superoxide-dependent activation of a neutrophil chemotactic factor in plasma. Proc. Natl. Acad. Sci U.S.A. 1980, 77, 1159-1163; (d) Salin, M. L., McCord, J. M., Free radicals and inflammation. Protection of phagocytosine leukocytes by superoxide dismutase. J. Clin. Invest. 1975, 56, 1319-1323.
    [20] Maxwell, J. R., Wasdahl, D. A., Wolfson, A. C., Stenberg, V. I., Synthesis of 5-aryl-2H-tetrazo-le-2-acetic acids, and [(4-phenyl-5-ary-4H-1,2,4-triazol-3-yl)thio]acetic acids as possible supe-roxide scavengers and antiinflammatory agents. J. Med. Chem. 1984, 27, 1565-1570.
    [21] Al-Hayaly, L. J., Buttrus, N. H., Al-Allaf, T. A. K., Homobimetallic complexes of platinum (II) group metals with sulphur containing ligands R2C=CR2 (R=5-phenyl-1,3,4-oxadiazole-2 -thiol; 4,5-diphenyl-1,2,4-triazole-3-thiol or mercaptobenzothiazole). Asian J. Chem. 2002, 14, 1421-1426.
    [22] Haasnoot, J. G., Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1,2,4-triazole derivatives as ligands. Coord. Chem. Rev. 2000, 200-202, 131-185.
    [23] Redemann, C. E., Niemann, C. Organic Synthesis, John Wiley & Sons, New York, 1955, 3, 11.
    [24] Fleet, G. W. J., Nash, R. J., Fellows, L. E., et al. Synthesis of the enantiomers of 6-epieastano -spermine and 1,6-diepicastanospermine from D- and L-gulonolaetone. Carbohydr. Res. 1990, 205, 269-282.
    [25] Attisano, L., Wrana, J. L., Signao transduction by the transforming growth factor beta super family. Science, 2002, 296, 1646-1647.
    [26] (a) Grundman, C., Methoden Org. Chem. (Houben-Weyl) 1985, 1611; (b) Lentz, D. Fluotinated isocyanides-more than ligands with unusual properties. Angew. Chem. Int. Ed. 1994, 33, 1315-1331; (c) Hoffmann, P., Gokel, G., Marquarding, D., Ugi, I., Isonitrile Chemistry. Academic Press, New York, 1971, 9.
    [27] Skorna, G., Ugi, I., An alternative dehydrating agent to the dangerous compound phosgene. Angew. Chem. Int. Ed. 1977, 16, 259-260.
    [28] Kobayashi, Y., Fukuyama, T., Development of a novel indole synthesis and its application to natural products synthesis. J. Heterocyclic Chem. 1998, 35, 1043-1055.
    [29] Hoppe, D.,α-Metalated isocyanides in organic synthesis. New synthetic method (6). Angew.Chem. Int. Ed. 1974, 13, 789-804.
    [30] Hoppe, D., Sch?llkopf, U., Syntheses with–metallated isocyanides. XV. 4-Ethoxycarbonyl -2-oxazolines and their hydrolysis to ethylesters of N-formyl- -hydroxy- -amino acids. Justus Liebigs Ann Chem. 1972, 763, 1-16.
    [31] (a) D?mling, A., Ugi, I., Muticomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 18, 3168-3210; (b) D?mling, A., Recent developments in isocyanide based muticompon- ent reactions in applied chemistry. Chem. Rev., 2006, 106, 17-89; (c) Ngouansavanh, T., Zhu, J. P., IBX-mediated oxidative Ugi-type muticomponent reactions: applications to the N and Cl functionalization of tetrahydroisoquinoline. Angew. Chem. Int. Ed., 2007, 46, 5775-5778; (d) Yan, C. G., Song, X. K., Wang, Q. F., Sun, J., Siemeling, U., Bruhn, C., One-step synthesis of polysubstituted benzene derivatives by muti-component cyclization ofα-bromoacetate, malon- onitrile and aromatic aldehydes. Chem. Commun., 2008, 1440-1442.
    [32] Strecker, A., Strecker amino acid synthesis. Justus Liebigs, Ann. Chem. 1850, 75, 27.
    [33] Robinson, R., LXXV.-A theory of the mechanism of the phytochemical synthesis of certain alkaloids. J. Chem. Soc. Trans., 1917, 111, 876-899.
    [34] Arend, M., Westermann, B., Risch, N., Modern variants of the Mannich reaction. Angew. Chem. Int. Ed. 1998, 37, 1044-1070.
    [35] (a) Passerini, M., Sopra gli isonitrili (I). Composto del p-isonitril-azobenzolo con acetone ed acido acetico. Gazz. Chim. Ital. 1921, 51, 126-129; Passerini, M., Sopra gli isonitrili (I). Sopra gli isonitrili (II). Composti con aldeidi o con chetoni ed acidi organici monobasici. Gazz. Chim. Ital. 1921, 51, 181-188.
    [36] Janvier, P., Bienaymé, H, Zhu, J. P., A five-component synthesis of hexasubstituted benzene. Angew. Chem. Int. Ed. 2002, 41, 4291-4294.
    [37] Marcaccini, S., Pepino, R., Paoli, P., Rossi, P., Torroba, T., Studies on isocyanides and related compounds. N, N’-disubstituted 2-cyanoacetoxy-2-cyanomethylmalondiamides from an unus- ual reaction between isocyanides and cyanoacetic acid. J. Chem. Res. 2001, 11, 465-467.
    [38] Jida, M., Soueidan, M., Willand, N., Agbossou-Niedercorn, F., Pelinski, L., Laconde, G., Deprez-Poulain, R., Deprez, B., A facile and rapid synthesis of N-benzyl-2-substituted piperazines. Tetrahedron Lett. 2011, 52, 1705-1708.
    [39] Nair, V., Menon, R. S., Sreekumar, B. V., Bindu, S., A novel muticomponent reaction involving isocyanide, dimethyl acetylenedicarboxylate (DMAD), and electrophilic styrenes: facile synthesis of highly substituted cyclopentadienes. Org. Lett., 2004, 5, 767-769.
    [40] Shaabani, A., Ghadari, R., Sarvary, A., Rezayan, A. H., Synthesis of highly functionalized bis(4H-chromene) and 4H-benzo[g]chromene derivatives via an isocyanide-based pseudo-five-component reaction. J. Org. Chem., 2009, 74, 4372-4374.
    [41] (a) Harayama, T., Hori, A., Abe, H., Takeuchi,Y., Concise synthesis of pyrrolophenanthridine alkaloids using a Pd-mediated biaryl coupling reaction with regioselective CH activation via the intramolecular coordination of the amine to Pd. Tetrahedron 2004, 60, 1611–1616; (b) Chattopadhyay, S., Chattopadhyay, U., Marthur, P. P., Saini, K. S., Ghosal, S., Effects of hippadine, an amaryllidaceae alkaloid, on testicular function in rats. Planta Med., 1983, 49, 252–254.
    [42] (a) Parenty, A. D. C., Smith, L. V., Guthrie, K. M., Long, D. L., Plumb, J., Brown, R., Cronin, L., Highly stable phenanthridinium frameworks as a new class of tunable DNA binding agents with cytotoxic properties. J. Med. Chem. 2005, 48, 4504-4506; (b) Smith, L. V., de la Fuente, J. M., Guthrie, K. M., Parenty; A. D. C., Cronin, L., Does it bind? An instant binding assay for DNA oligonucleotide interactive small molecules. New J. Chem. 2005, 29, 1118-1120.
    [43] Buyanov, V. N., Baberkina, E. P., Samoilova, M. E., Akhvlediani, R. N., Frolova, E. P., Kurkovskaya, L. N., Ershova, Y. A., Safonova, T. S., Korovin, B. V., Suvorov, N. N. Synthesis and antitumor properties of pyrrolophenanthridines. Khim.-farm. Zh., 1994, 1, 10-14.
    [44] Almerico, A. A., Mingoia, F., Diana, P., Barraja, P., Montalbano, A., Pyrrolo[1, 2-f]phenanthridines and related non-rigid analogues as antiviral agents. Eur. J. Med. Chem. 2002, 37, 3-10.
    [45] (a) Richmond, C. J., Parenty, A. D. C., Song, Y. F., Cooke, G., Cronin, L., Realization of a“lockable”molecular switch via pH- and redox-modulated cyclization. J. Am. Chem. Soc. 2008, 130, 13059-13065; (b) Kitson, P. J., Parenty, A. D. C., Richmond, C. J., Long, D. L., Cronin, L., A new C-C bond forming annulation reaction leading to pH switchable heterocycles. Chem. Commun. 2009, 4067-4069.
    [46] Mironov, M. A., Mokrushin, V. S., Maltsev, S. S., New method for the combinatorial search of muti component reactions. Synlett. 2003, 7, 943-946.
    [47] Sheldrick G. M., SHELXS97, Program for Crystal Structure Solution, University of G?ttingen, Germany, 1997.
    [48] Sheldrick G. M., SHELXS97, Program for Crystal Structure Refinement, University of G?ttingen, Germany, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700