同分子多晶相体系的结构和光物理性质的量子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
王悦课题组设计合成了蒽的衍生物(ANP),该有机发光分子通过分子间弱相互作用,在不同的晶体生长条件下形成五种超分子单晶,这五种晶体发光颜色不同,分别发蓝光、蓝-绿光和绿光(Adv.Mater.2006,18,2369-2372)。
     以往通过对有机分子取代基的修饰来调节光物理性质,其实通过分子间非共价作用调节分子的堆积结构(即多晶相现象)同样可以实现上述目标。多晶相现象是晶体学上的常见现象,是指某一分子通过分子间堆积形成两种或两种以上晶体的现象。王悦课题组设计合成了蒽的衍生物,该有机发光分子在不同的晶体生长环境下分别通过分子间氢键和π…π相互作用导致分子聚集状态的差异,使发光颜色有所改变。从而形成五种超分子单晶。这种基于同一分子的不同堆积带来不同晶体发光颜色的改变的同分子多晶相体系,是探讨结构和性能关系的理想结构模型。
     为深入探讨单分子和聚集体结构与光物理性质之间的关系,我们借助量子化学方法研究了不同堆积体系的结构、分子间相互作用和光谱性质。采用密度泛函理论(DFT)B3LYP /6-31G*方法,优化了单分子和三聚体的基态几何构型,采用单组态相互作用(CIS/6-31G*)方法优化分子的最低激发单重态几何构型。用含时密度泛函理论(TDDFT)计算分子的吸收和发射光谱。
     研究结果表明,单分子通过弱相互作用形成聚合物,有利于提高分子的稳定性。对比三聚物和单分子的能量可知,单分子聚集后能量降低,结构更加稳定。
     同时对于聚合物体系光谱性质的研究表明,分子间氢键作用对光谱性质的影响很小,但通过H键聚集起到支撑骨架的作用,而使发光强度有所提高;而分子间π…π相互作用对有机分子的发光性质具有重要影响,前线分子轨道主要成份分布在具有π…π作用的配体上,跃迁性质发生改变,导致光谱发生部分红移。
Wang et al. have designed and synthesized five luminescent polymorphs by tuning the molecular assembly structures in crystals (Adv.Mater.2006, 18, 2369-2372) which show different colors.
     In the past, we usually modify of the substitute group to regulate the photo physical properties, whereas the non-covalent intermolecular interactions are able to strongly influence the final packing structure, make polymorphism existence. Polymorph is a solid crystalline phase of a given compound resulting from the possibility of at least two different arrangements of the molecules of that compound in the solid states, which is a widespread phenomenon.Wang et al. have designed and synthesized anthracene derivatives, under specific circumstances, crystals with different colors were achieved, which can be attributed to weak interactions between molecules leading to distinctive aggregation. Different polymorphs base on the same single molecular may have very different physical and chemical properties, and therefore represent special situations for the study of structure-property relationships.
     To reveal the relationship between different molecular packing and emission colors, theoretical analysis of spectral properties and electronic structures of these complexes were systematically characterized. The geometric and electronic structures of the complexes in the ground state are studied with density functional theory (DFT) ,whereas the lowest singlet excited states are optimized by ab initio CIS. To assign the absorption and emission peaks observed in the experiment, we computed the spectrum of the lowest singlet excited states with time-dependent DFT (TD-DFT). All DFT calculations were performed using the B3LYP functional and the 6-31G* basis set.
     This work suggests that, the anthracene derivatives accumulate into trimers via hydrogen bonding have a little influence on the shift of the spectra, but can increase the luminous intensity and play the role of supporting the trimer skeleton. At the same time, the intermolecularπ...πinteraction between the organic light-emitting elements has an important impact on the luminescent properties and lead to red shifts of emission spectra.
引文
[1]. Kalinowski J. Electroluminescence in organics[J]. J Phys D: Appl Phys, 1999, 32 (24).
    [2]. Baldo M A, O'Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395 (6698): 151-154.
    [3]. Endo A, Ogasawara M, Takahashi A, et al. Thermally activated delayed fluorescence from Sn4+ porphyrin complexes and their application to organic light-emitting diodes A novel mechanism for electroluminescence[J]. Adv Mater, 2009, 21 (47): 4802-4806.
    [4].Baldo M A, Lamansky S, Burrows P E, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence[J]. Appl Phys Lett, 1999, 75 (1): 4-6.
    [5].Ikai M, Tokito S, Sakamoto Y, et al. Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer[J]. Appl Phys Lett, 2001, 79 (2): 156-158.
    [6]Wang L, Jiang Y, Luo J, et al. Highly efficient and color-stable deep-blue organic light-emitting diodes based on a solution-processible dendrimer[J]. Adv Mater, 2009, 21 (47): 4854-4858.
    [7].D'Andrade B W and Forrest S R. White organic light-emitting devices for solid-state lighting[J]. Adv Mater, 2004, 16 (18): 1585-1595.
    [8].Su S J, Gonmori E, Sasabe H, et al. Highly efficient organic blue-and white-light-emitting devices having a carrier- And exciton-confining structure for reduced efficiency roll-off[J]. Adv Mater, 2008, 20 (21): 4189-4194.
    [9].Misra A, Kumar P, Kamalasanan M N, et al. White organic LEDs and their recent advancements[J]. Semicond Sci Technol, 2006, 21 (7).
    [10] Tang C W and VanSlyke S A. Organic electroluminescent diodes[J]. Appl Phys Lett, 1987, 51 (12): 913-915.
    [11] Huang L S, Chen C H. Recent progress of molecular organic electroluminescent materials and devices[J] Mater Sci Eng R, 2002,39:143-222.
    [12]Forrest S R, The path to ubiquitous and low-cost organic electronic appliances on plastic[J]. Nature, 2004, 428: 911-918.
    [13]Shi J M , Tang C W, Anthracene derivatives for stable blue-emitting organic eletroluminescence devices[J].Appl Phys Lett,2002,80:3201-3203.
    [14] Tao Y T, Balasubramaniam E, Danel A, et al. Sharp green electroluminescence from 1H-pyrazolo [3,4-b]quinoline-based light-emitting diodes[J]. Appl Phys Lett, 2000, 77 (11): 1575-1577.
    [15] Shirota Y. Organic materials for electronic and optoelectronic devices[J]. J Mater Chem, 2000, 10 (1): 1-25.
    [16] Palilis L C, M?kinen A J, Uchida M, et al. Highly efficient molecular organic light-emitting diodes based on exciplex emission[J]. Appl Phys Lett, 2003, 82 (14): 2209-2211.
    [17]Kido J, Iizumi Y. Fabrication of highly efficient organic electroluminescent devices[J]. Appl Phys Lett, 1998, 73:2721-2723.
    [18] Wakimoto T, Yonemoto Y, Funaki J, et al. Stability characteristics of quinacridone and coumarin molecules as guest dopants in the organic LEDs[J]. Synth Met, 1997, 91 (1-3): 15-19.
    [19]Tang C W , VanSlyke S A. Organic electroluminescent diondes[J]. Appl Phys Lett, 1987,51:913-915.
    [20] Toguchi S, Morioka Y, Ishikawa H, et al. Novel red organic electroluminescent materials including perylene moiety[J]. Synth Met, 2000, 111 57-61.
    [21]Yeh H C, Yeh S J, Chen C T. Readily synthesised arylamino fumaronitrile or non-doped red organic light-emitting diodes[J]. Chem Commum,200320:2632-2634.
    [22]Burroughes J H , Bradley D D C , Brown A R , et al. Light-emitting diodes based on conjugated polymer[J]. Nature, 1990, 347: 539-541.
    [23] Kraft,A.;Grimsdale,A.C.;Holmes,A.B“.Electroluminescent Conjugated Polymers-Seeing Polymers in a New Light”,Angew.Chem.,Int.Ed.1998,37,402.
    [24]Friend,R.H.;Gymer,R.W.;Holmes,A.B.;Burroughes,J.H.;Marks,R.N.;Taliani,C.;Bradley , D.D.C. ; Dos Santos , D.A. ; Breédas , J.L. ; Lǒgdlund , M. ; Salaneck ,W.R.Nature(London)1999,397,121.
    [25]Rees,I.D.;Robinson,K.L.;Holmes,A.B.;Towns,C.R.;O’Dell,R.MRS Bull.2002,27,451。
    [26] Sheats,J.R.;Antoniadis,H.;Hueschen,M.;Leonard,W.;Miller,J.;Moon,R.;Roitman,D.;Stocking,A.Science 1996,273,884
    [27] Tarkka,R.M.;Zhang,X.;Jenekhe,S.A“.Electrically Generated Intramolecular Proton Transfer:Electroluminescence and Stimulated Emission from Polymers”J.Am.Chem.Soc.1996,118,9438。
    [28] Zhang,X.;Shetty,A.S.;Jenekhe,S.A“.Electroluminescence and Photophysical Properties of Polyquinolines”Macromolecules 1999,32,7422。
    [29] Jenekhe,S.A.;Zhang,X.;Chen,X.L.;Choong,V.E.;Gao,Y.;Hsieh,B.R.“Finite Size Effects on Electroluminescence of Nanoscale Semiconducting Polymer Heterojunctions”Chem. Mater.1997,9,409。
    [30]Zhang , X. ; Jenekhe , S.A.Electroluminescence of Multicomponent Conjugated Polymers.1.Roles of Polymer/Polymer Interfaces in Emission Enhancement and Voltage-TunableMulticolor Emission in Semiconducting Polymer/Polymer Heterojunctions. Macromolecules 2000,33,2069。
    [31]Tonzola,C.J.;Alam,M.M.;Jenekhe,S.A.“New Soluble n-Type Conjugated Copolymer for Light-Emitting Diodes”Adv.Mater. 2002,14,1086。
    [32] Gustafsson,G.;Cao,Y.;Treacy,G.M.;Klavetter,F.;Colaneri,N.;Heeger,A.J.Nature(London)1992,357,477。
    [33]Greenham,N.C.;Moratti,S.C.;Bradley,D.D.C.;Friend,R.H.;Holmes,A.B. Nature(London)1993,365,628。
    [34]Zhu , Y. ; Alam , M.M. ; Jenekhe , S.A. Regioregular Poly (4-alkylquinoline)s :Synthesis,Self-Organization,and Properties. Macromolecules 2002,35,9844。
    [35]Zhu , Y. ; Alam , M.M. ; Jenekhe , S.A.“Regioregular Head-to-Tail Poly(4-alkylquinoline)s:Synthesis,Characterization,Self-Organization,Photophysics,and Electroluminescence of New n-Type Conjugated Polymers”Macromolecules 2003,36,8958。
    [1] Kendall R A, Dunning Jr T H and Harrison R J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions[J]. The Journal of Chemical Physics, 1992, 96 (9): 6796-6806.
    [2] Simenel C, Chomaz P and De France G. Quantum calculations of Coulomb reorientation for sub-barrier fusion[J]. Phys Rev Lett, 2004, 93 (10).
    [3] Saunders S. Time, quantum mechanics, and probability[J]. Synthese, 1998, 114 (3): 373-404.
    [4] Born M, Oppenheimer J R. Zur quantentheorie der molekeln[J]. Ann Physik, 1927, 84(20): 457-484.
    [5] Roothaan C C J. New developments in molecular orbital theory[J]. Rev Mod Phys, 1951, 23(2): 69-89.
    [6] Ziegler T. Tools of the trade in modeling inorganic reactions. From balls and sticks to HOMO's and LUMO's[J]. Dalton Transactions, 2002 (5): 642-652.
    [7] Dreuw A and Head-Gordon M. Single-reference ab initio methods for the calculation of excited states of large molecules[J]. Chem Soc Rev, 2005, 105 (11): 4009-4037.
    [8] R.G. Parr,W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.
    [9] Kohn W, Becke A D and Parr R G. Density functional theory of electronic structure[J]. J Phys Chem, 1996, 100 (31): 12974-12980.
    [10] Chermette H. Density functional theory a powerful tool for theoretical studies in coordination chemistry[J]. Coord Chem Rev, 1998, 178-180 (PART 1): 699-721.
    [11] Baerends E J and Gritsenko O V. Quantum chemical view of density functional theory[J]. J Phys Chem A, 1997, 101 (30): 5383-5403.
    [12] W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley/VCH, Weinheim, 2000.
    [13] J. Simons, An Introduction Theoretical Chemistry, Cambridge University Press, Cambridge, 2003.
    [14] P. Atkins, R. Friedman, Molecular Quantum Mechanics, Oxford University Press, Oxford, 2005.
    [15] J. Li, L. Noodleman, D.A. Case, in: E.I. Solomon, A.B.P. Lever (Eds.),Inorganic Electronic Structure and Spectroscopy, JohnWiley&Sons Inc., New York, 1999.
    [16] R.G. Parr,W. Yang, Density-Functional Theory of Atoms and Molecules,Oxford University Press, New York, 1989
    [17]Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J Chem Phys, 1993, 98 (7): 5648-5652.
    [18] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys Rev Lett, 1997, 78 (7): 1396-1396.
    [19] Koch W, Holthausen M C. A chemist’s guide to density functional theory[M]. Second Edition, Wiley-VCH, 2001.
    [20] Peukert V.A new approximation method for electron systems[J].J Phys C:Solid State Phys,1978,11:4945-4956.
    [21] Deb B M, Chosh S K. Schr?dinger fluid dynamics of many-electron systems in a time-dependent density-functional framework[J]. J Chem Phys, 1982, 77: 342-348.
    [22]Bartolotti L. Time-dependent extension of the Hohenberg-Kohn-Levy energy-density functional[J]. J Phys Rev, 1981, A24: 1661-1667.
    [23] E. Runge and E. K. U. Gross, Density-Functional Theory for Time-Dependent Systems, Phys. Rev. Lett., 1984, 52, 997.
    [24] Ullrich C A and Gross E K U. Density functional theory of normal and superconducting electron liquids: explicit functionals via the gradient expansion[J]. Aust J Phys, 1996, 49 (1): 103-160.
    [25] M.E. Casida, in: D.P. Chong (Ed.), Recent Advances in Density-Functional Methods, World Scientific, Singapore, 1995, p. 155.
    [26] Van Gisbergen S J A, Groeneveld J A, Rosa A, et al. Excitation Energies for Transition Metal Compounds from Time-Dependent Density Functional Theory. Applications to MnO4-,Ni(CO)4, and Mn2 (CO)10 [J]. J Phys Chem A, 1999, 103 (34): 6835-6844.
    [27] N.J.特罗.现代分子光化学[N],北京:科学出版社,1987.
    [28]Masson, C. R., Boekelheide, V.,and Noyes, W.A.,Jr.,Techniques of Organic Chemistry,ed. Weissberger,A.,New York:Interscience,1956.2,257.
    [29] De Mayo P and Reid S T. Photochemical rearrangements and related transformations[J]. Quarterly Reviews, Chemical Society, 1961, 15 (4): 393-417.
    [30] Brown A R and Greeham N C. Eletroluminescence form multiplayer conjugated polymer devices: spatial control of exciton formation and emission[J]. Chem Phys Lett, 1992, 200: 46
    [31] Parker I D. Carrier tunneling and device characteristics in polymer light-emitting diodes[J]. Journal of Applied Physics, 1994, 75 (3): 1656-1666.
    [32] Pope M, Kallmann H P and Magnante P. Electroluminescence in Organic Crystals[J]. J Chem Phys, 1963, 38 (8): 2042-2043.
    [33] Pople J A,Seeger R,Krishnan R,Variational configuration interaction methods and comparison with perturbation theory[J].Int J Quant Chem Symp,1977,11:149-163.
    [34] Foresman J B,Head-Gordon M,Pople J A,et al.Toward a systematic molecular orbital theory for excited states[J].J Phys Chem,1992,96:135-149.
    [35] Krishnan R,Schlegel H B,Pople J A.Derivate studies in configuration interaction theory[J].J Chem Phys,1980,72:4654-4655.
    [36] Brooks B R,Laidig W D,Saxe P,et al.Analytic gradient from correlated wave functions via the two-particle density matrix and the unitary group approach[J].J Chem Phys,1980,72:4652-4653.
    [37] Salter E A,Trucks G W.Bartlett R J.Analytic energy derivatives in many-body methods I.first derivatives[J].J Chem Phys,1989,90:1752-1766.
    [38] Raghavachari K,Pople J A.Calculation of one-electron properties using limited configuration interaction techniques[J].Int J Quant Chem,1981,20(5):1067-1071.
    [39] Pople J A,Head-Gordon M,Raghavachari K.Quadratic configuration interaction.A general technique for determining electron correlation energies[J].J Chem Phys,1987,87:5968-5975.
    [40] Roothaan C C J. New developments in molecular orbital theory[J]. Rev Mod Phys, 1951, 23(2): 69-89.
    [41] Koch W, Holthausen M C A. Chemist’s Guide to Density Functional Theory[M]. Weinheim, Germany:Wiley-VCH, 2000.
    [42] Marques M A L, Gross E K U. Time-dependent density functional theory[J]. Annu Rev Phys Chem,2004, 55: 427-455.
    [43]王志中.现代量子化学计算方法[M],长春:吉林大学出版社,1998.
    [44] Hay P J, Wadt W R. J Chem Phys, 1985, 82: 207-229.
    [45] Van Houten J. A century of chemical dynamics traced through the nobel prizes 1998: Walter Kohn and John Pople[J]. J Chem Educ, 2002, 79 (11): 1297.
    [1] Bulovi? V, Shoustikov A, Baldo M A, et al. Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts[J]. Chem Phys Lett, 1998, 287 (3-4): 455-460.
    [2] Tang C W, Vanslyke S A. Organic electro luminescent diodes[J]. Appl Phys Lett, 1987, 51: 913-915.
    [3] Chen C H, Tang C W, Shi J, et al. Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence[J]. Thin Solid Films, 2000, 363 (1): 327-331.
    [4] Jung B J, Lee J I, Chu H Y, et al. Synthesis of novel fluorene-based poly(iminoarylene)s and their application to buffer layer in organic light-emitting diodes[J]. Macromolecules, 2002, 35 (6): 2282-2287.
    [5] Yang C, Zhang X, You H, et al. Tuning the energy level and photophysical and electroluminescent properties of heavy metal complexes by controlling the ligation of the metal with the carbon of the carbazole unit[J]. Adv Fucnt Mater, 2007, 17 (4): 651-661.
    [6] Venturi M, Marchioni F, Balzani V, et al. A Photophysical and Electrochemical Investigation on a Phenylacetylene Macrocycle Containing Two 2,2′-Bipyridine Units, Its Protonated Forms, and RuII and OsII Complexes[J]. European Journal of Organic Chemistry, 2003 (21): 4227-4233.
    [7] Anthony J E. Functionalized acenes and heteroacenes for organic electronics[J]. Chem Soc Rev, 2006, 106 (12): 5028-5048.
    [8] Forrest S R and Thompson M E. Introduction: Organic electronics and optoelectronics[J]. Chem Soc Rev, 2007, 107 (4): 923-925.
    [9] Liao Y and Ma J. Stacking and Solvent Effects on the Electronic and Optical Properties of Gold and Mercury Acetylide Aggregations: A Theoretical Study[J]. Organometallics, 2008, 27 (18): 4636-4648.
    [10] Yue W, Tian H, Hu N, et al. Crystal Packing Motifs of Oligothiophenes End-Capped with N-Containing Aryls[J]. Crystal Growth & Design, 2008, 8 (7): 2352-2358.
    [11] Hu W, Lu N, Shi S, et al. Color Tuning via Adjusting the Dye-Loading Capacity of a Polymer[J]. Langmuir, 2009, 25 (8): 4352-4355.
    [12] Teng Y L, Kan Y H, Su Z M, et al. Time-dependent density functional theory study on electronic and spectroscopic properties for Ph2Bq and its complexes[J]. Theoretical Chemistry Accounts, 2007, 117 (1): 1-5.
    [13] Yang G, Liao Y, Su Z, et al. Theoretical study on photophysical and charge transport properties of 1,6-Bis(2-hydroxyphenol)pyridylboron bis(4-n-butylphenyl)phenyleneamine compound[J]. J Phys Chem A, 2006, 110 (28): 8758-8762.
    [14] Liu Q D, Mudadu M S, Thummel R, et al. From blue to red: Syntheses, structures, electronic, and electroluminescent properties of tunable luminescent N,N chelate boron complexes[J]. Adv Fucnt Mater, 2005, 15 (1): 143-154.
    [15] Wakamiya A, Mori K and Yamaguchi S. 3-Boryl-2,2′-bithiophene as a versatile core skeleton for full-color highly emissive organic solids[J]. Angewandte Chemie - International Edition, 2007, 46 (23): 4273-4276.
    [16] Liao Y, Yang G-C, Feng J-K, et al. Theoretical Study on the Optoelectronic Properties of Electron-Withdrawing Substituted Diethynylfluorenyl Gold(I) Complexes[J]. The Journal of Physical Chemistry A, 2006, 110 (48): 13036-13044.
    [17] Davis R, Rath N P and Das S. Thermally reversible fluorescent polymorphs of alkoxy-cyano-substituted diphenylbutadienes: Role of crystal packing in solid state fluorescence[J]. Chem Comm, 2004, 10 (1): 74-75.
    [18] Mutai T, Tomoda H, Ohkawa T, et al. Switching of polymorph-dependent ESIPT luminescence of an imidazo[1,2-a]pyridine derivative[J]. Angewandte Chemie - International Edition, 2008, 47 (49): 9522-9524.
    [19] Mutai T, Satou H and Araki K. Reproducible on-off switching of solid-state luminescence by controlling molecular packing through heat-mode interconversion[J]. Nature Materials, 2005, 4 (9): 685-687.
    [20] Zhang G, Lu J, Sabat M, et al. Polymorphism and Reversible Mechanochromic Luminescence for Solid-State Difluoroboron Avobenzone[J]. J Am Chem Soc, 2010, 132 (7): 2160-2162.
    [21] Fu X F, Yue Y F, Guo R, et al. An enhanced fluorescence in a tunable face-to-faceπ?πstacking assembly directed by the H-bonding[J]. CrystEngComm, 2009, 11 (11): 2268-2271.
    [22]Roy S and Matzger Adam J. Unmasking a Third Polymorph of a Benchmark Crystal-Structure-Prediction Compound13[J]. Angewandte Chemie International Edition, 2009, 48 (45): 8505-8508.
    [23] Mutai T, Satou H and Araki K. Reproducible on-off switching of solid-state luminescence by controlling molecular packing through heat-mode interconversion[J]. Nature Materials, 2005, 4 (9): 685-687.
    [24] Mizukami S, Houjou H, Sugaya K, et al. Fluorescence color modulation by intramolecular and intermolecularπ-πinteractions in a helical zinc(II) complex[J]. Chem Mater, 2005, 17 (1): 50-56.
    [25] McCrone, W. C. In Physics and Chemistry of the Organic Solid State;Fox, D.; Labes, M. M.; Weissberger, A., Eds. Wiley Interscience: NewYork, 1965; Vol. 2, pp 725–767.
    [26] Chemburkar S R, Bauer J, Deming K, et al. Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development[J]. Organic Process Research and Development, 2000, 4 (5): 413-417.
    [27] Dunitz J D and Bernstein J. Disappearing Polymorphs[J]. Acc Chem Res, 1995, 28 (4): 193-200.
    [28] Perrier P R and Byrn S R. Influence of crystal packing on the solid-state desolvation of purine and pyrimidine hydrates: Loss of water of crystallization from thymine monohydrate, cytosine monohydrate, 5-nitrouracil monohydrate, and 2′-deoxyadenosine monohydrate[J]. J Org Chem, 1982, 47 (24): 4671-4676.
    [29] Munshi P, Venugopala K N, Jayashree B S, et al. Concomitant polymorphism in 3-acetylcoumarin: Role of weak C-H?O and C-H?πinteractions[J]. Crystal Growth and Design, 2004, 4 (6): 1105-1107.
    [30] Mei X and Wolf C. Formation of new polymorphs of acridine using dicarboxylic acids as crystallization templates in solution[J]. Crystal Growth and Design, 2004, 4 (6): 1099-1103.
    [31] Boateng J S, Auffret A D, Matthews K H, et al. Characterisation of freeze-dried wafers and solvent evaporated films as potential drug delivery systems to mucosal surfaces[J]. Int J Pharm, 2010, 389 (1-2): 24-31.
    [32] Bushuev Y G and Sastre G. Atomistic simulations of water and organic templates occluded during the synthesis of zeolites[J]. Microporous and Mesoporous Materials, 2010, 129 (1-2): 42-53.
    [33] Flaten E M, Seiersten M and Andreassen J P. Growth of the calcium carbonate polymorph vaterite in mixtures of water and ethylene glycol at conditions of gas processing[J]. J Cryst Growth, 2010, 312 (7): 953-960.
    [34] Fujii K, Uekusa H, Itoda N, et al. Physicochemical understanding of polymorphism and solid-state dehydration/rehydration processes for the pharmaceutical material acrinol, by Ab initio powder X-ray diffraction analysis and other techniques[J]. J Phys Chem C, 2010, 114 (1): 580-586.
    [35] Komarneni S and Katsuki H. Microwave-hydrothermal synthesis of barium titanate under stirring condition[J]. Ceramics International, 2010, 36 (3): 1165-1169.
    [36]Ramakrishna S, Le Viet A, Reddy M V, et al. Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries[J]. J Phys Chem C, 2010, 114 (1): 664-671.
    [37] Rutigliano M, Zazza C, Sanna N, et al. Oxygen adsorption onβ-cristobalita polymorph: ab initio modeling and semiclassical time-dependent dynamics[J]. J Phys Chem A, 2009, 113 (52):15366-15375.
    [38] Horowitz G. Organic Field-Effect Transistors[J]. Adv Mater, 1998, 10 (5): 365-377.
    [39] Fraxedas J. Perspectives on Thin Molecular Organic Films[J]. Adv Mater, 2002, 14 (22): 1603-1614.
    [40]Witte G and W?ll C. Growth of aromatic molecules on solid substrates for applications in organic electronics[J]. J Mater Res, 2004, 19 (7): 1889-1916.
    [41]Massa W, Dehghanpour S and Jahani K. Structure-dependent spectroscopic and redox properties of copper(I) complexes with bidentate iminopyridine ligands[J]. Inorg Chim Acta, 2009, 362 (8): 2872-2878.
    [42]Minemawari H, Naito T and Inabe T. Control of molecular packing in the et based conductor by supramolecular mellitate networks (ET = bis(ethylenedithio)tetrathiafulvalene)[J]. Crystal Growth and Design, 2009, 9 (11): 4830-4833.
    [43] Wakita J, Sekino H, Sakai K, et al. Molecular design, synthesis, and properties of highly fluorescent polyimides[J]. J Phys Chem B, 2009, 113 (46): 15212-15224.
    [45]Thomas R, Varghese S and Kulkarni G U. The influence of crystal packing on the solid state fluorescence behavior of alkyloxy substituted phenyleneethynylenes[J]. J Mater Chem, 2009, 19 (25): 4401-4406.
    [46]Kumar N S S, Varghese S, Rath N P, et al. Solid state optical properties of 4-alkoxy-pyridine butadiene derivatives: Reversible thermal switching of luminescence[J]. J Phys Chem C, 2008, 112 (22): 8429-8437.
    [47] Zhang H Y, Zhang Z L, Ye K Q, et al. Organic Crystals with Tunable Emission Colors Based on a Single Organic Molecule and Different Molecular Packing Structures[J]. Adv Mater, 2006, 18 (18): 2369-2372.
    [48] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian03, Revision B.04, Gaussian, Inc., Pittsburgh PA, 2003.
    [49]Stratmann R E, Scuseria G E and Frisch M J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules[J]. J Chem Phys, 1998, 109 (19): 8218-8224.
    [50]Runge E and Gross E K U. Density-functional theory for time-dependent systems[J]. Phys Rev Lett, 1984, 52 (12): 997-1000.
    [51] Adamo C, di Matteo B V. Adv Quantum Chem, 1999, 36: 4.
    [52] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. JChem Phys, 1993, 98, 5648-5652.
    [53] Miehlich B, Savin A, Stoll H, et al. Results Obtained With The Correlation Energy Density Functionals Of Becke And Lee Yang And Parr[J]. Chem Phys Lett, 1989, 157: 200-206.
    [54] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys ReV B, 1988, 37: 785-789.
    [55] Stanton J F, Gauss J, Ishikawa N, et al. A comparison of single reference methods for characterizing stationary points of excited state potential energy surfaces[J]. The Journal of Chemical Physics, 1995, 103 (10): 4160-4174.
    [56] Walters V A, Hadad C M, Thiel Y, et al. Assignment of the ~A state in bicyclobutane. The multiphoton ionization spectrum and calculations of transition energies[J]. J Am Chem Soc, 1991, 113 (13): 4782-4791.
    [57] Daniel C. Electronic spectroscopy and photoreactivity in transition metal complexes. Coord Chem Rev, 2003, 238: 143-166.
    [58] Boulet P, Chermette H, Daul C, et al. Absorption spectra of several metal complexes revisited by the time-dependent density-functional theory-response theory formalism[J]. J Phys Chem A, 2001, 105 (5): 885-894.
    [59] Farrell I R, van-Slageren J, Zalis S, et al. Time-resolved emission spectra and TD-DFT excited-state calculations of [W(CO)(4)(1,10-phenanthroline)] and [W(CO) (4) (3,4,7,8-tetramethyl-1,10-phenanthroline)] [J]. Inorg Chim Acta 2001, 315(1): 44-52.
    [60] Amat A, Dementia C, De Angelis F, et al. Absorption and emission of the apigenin and luteolin flavonoids: A TDDFT investigation[J]. J Phys Chem A, 2009, 113 (52): 15118-15126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700