不同形貌的功能性介孔材料的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文致力于制备具有不同宏观形貌的介孔材料,并以其作为主体材料进行掺杂和组装得到各种功能性介孔材料,详细研究了这些材料在光学、电学等方面的性质,考察了实验条件对形貌的影响、实验条件对客体材料组装浓度的影响,探讨了形貌与其性质之间的关系以及客体分子(或材料)的浓度与其性质之间的关系。
     第一章是绪论,简要介绍了多孔材料的分类和发展史及介孔材料的发展史,重点介绍了介孔材料的合成、分类、掺杂与组装以及形貌方面的研究概况,最后,浅谈了介孔材料在各方面的应用。
     第二章,采用不锈钢网作基底担载染料掺杂的介孔二氧化硅薄膜材料,制得一种新颖的光学活性材料。通过对其进行紫外吸收、荧光光致发光和激光光致发光性质的表征,证明该材料具有优良的光学特性。
     第三章,采用电纺丝方法,通过对电纺丝实验条件的调节来控制电纺丝纤维的宏观形貌,得到了一系列电纺丝实验条件调控电纺丝纤维形貌的结论。同时,采用原位掺杂的方法将有机染料分子引入电纺丝纤维,通过对其荧光光致发光性质的表征,证明其具有良好的荧光光致发光特性。
     第四章,采用阳极氧化铝膜作硬模板,结合介孔碳软模板合成方法,制得了一系列具有规则孔道结构的介孔碳纳米纤维。然后,对六方结构的介孔碳纳米纤维进行功能化和Pt纳米粒子的组装,通过对其电化学性质的表征,证明得到了高效、稳定的铂催化剂。
Since the pioneering reports by Mobil scientists, mesoporous materia ls with highlyordered pore structure, uniform pore size, large pore volume and high specia l surfacearea have attracted considerable attention. It is very important to design themorphologies of mesoporous materia ls for desired applica tions in catalysis, adsorption,separations and sensors. Recent studies have demonstrated mesoporous materia ls canbe prepared in the form of monoliths, films, spheres, fibers, tubes and so on. Inpractica l applica tion, the mesoporous materia ls with different morphologies haveexhibited a wide variety of useage: mesoporous films can be used for membraneseparation and gas sensing; mesoporous spheres may be applied to a stationary phase inhigh-performance liq uid chromatography; mesoporous fibers or tubes possess goodoptica l or electrical conductivity. For the sake of future development in functiona l andeconomic mesoporous materia ls, it is significa nt, in theory as well as in practice, tofabricate mesoporous materia ls with controllable morphologies and explore therelationship between the morphology and the property of mesoporous materialsprepared.
     The thesis put stress upon the fabrication of mesoporous materia ls with controllablemorphologies. Severa l types of mesoporous materials with different morphologies(films, fibers), various components (silica, carbon) and distinct properties (optical, electrical) have successfully been prepared by combining the concepts of sol-gelchemistry and supra molecular self-assembly and utilizing the methods ofelectrospinning, hard template-ind uced reverse replication and in situ doping orencapsulation. A variety of characteriza tion can be applied to investigate detailed ly theproperties of the functiona l mesoporous materials. Large number of experimental datahave revea led the effects of encapsulating concentration of guests on the properties ofthe materia ls and the relation between experimental conditions in preparation and themorphologies of the materia ls.
     Firstly, a dye-doped mesoporous silica films supported by stainless steel nets havebeen fabricated during the traditiona l sol-gel process through combination of themethods of in situ synthesis and dip-coating. For the optica lly active materia ls dopedby various concentration dye, we have studied their morphologies, mesostructures andoptica l properties of ultraviolet adsorption, fluorescence luminescence and laserluminescence in detail. Experimental data have shown that not only the optica lly activemateria ls process well-refined macroscopic homogeneity and ordered mesoscopicregularity, but also the optica l properties of them are certain functions of concentrationof dye. According to laser luminescence characteriza tion, it can be proved that theoptica lly active materia ls with the particular concentration displa yed the specificperforma nce of distributed feedback laser (DFB laser), namely, the gain narrowing ofbands over threshold energy and the occurring of superlinear dependence. A series ofcontrast experiments have indica ted that the grids of stainless steel nets used forsupporting the optica lly active films are capable of serving as the laser resonators inwhich light can be fed back and revea l amplified spontaneous emission (ASE).Additiona lly, we have confirmed that the aperture of grids is also an important factor ofthe optica l performa nce of the materia ls. So the promising results are a great leapforward toward new solid state laser system with properties tunable over a wide range.
     Secondly, mesoporous silica fibers have been prepared by electrospinning. We havefocused our mind on controlling the morphologies of electrospun fibers by adjustingexperimental conditions of electrospinning, and have genera lized some conclusionsfrom experimental evidence. In order to make further investigation into the effects of experimental conditions of electrospinning on the morphologies of electrospun fibers,a series of contrast experiments have been conducted as following: 1. Adjustment in thequantities of viscosifier PVP. Experimental results have shown that well-refinedelectrospun fibers are impossible to be formed until the quantities of PVP reach certainconcentration. Then, the dia meter of electrospun fibers has thickened with an increaseof concentration of PVP. 2. Adjustment in supply voltage. Experimental data haveindica ted that well-proportioned electrospun fibers have been made when supplyvoltages exceed a critica l value. The dia meter of electrospun fibers increase as supplyvoltages increase and the morphology of them will become inferior if the supplyvoltages are much too high. 3. Adjustment in flow rate. Experimental evidence suggestthat the faster the flow rate, the faster the electrospinning, the more the electrospunfibers during the same period, and the thicker the dia meter of electrospun fibers. It isunfavorable for generating uniform electrospun fibers in case of too fast or too slowflow rate. 4. Adjustment in dista nce between the positive and nega tive termina l. As thedista nce between the positive and nega tive termina l increase, the electric field strengthdecrease, and the dia meter of electrospun fibers become thin. On the other hand,various concentration dyes have been doped in the electrospun fibers by in situsynthesis, and the properties of ultraviolet adsorption and fluorescence luminescence ofthe dye-doped materia ls have been studied systematica lly.
     Thirdly, a series of highly ordered mesoporous carbon nanofibers have beenprepared by combining the advantage of the confined channels of anode aluminamembranes with the facile one-step synthesis method of mesoporous carbons. Then,the mesoporous carbon nanofibers with hexa gona l structure have been functiona lizedby a noncova lent method under mild condition. The noncova lent functiona liza tion notonly avoids direct dama ge to carriers caused by the violent H2O2 oxidation method, butalso leads to a high density and homogeneous distribution of surface functiona l groups.Pt nanoparticles have been encapsulated in mesoporous carbon nanofibers usingethylene glycol reduction method preparing fibrous Pt catalysts. Ethylene glycol playroles in both solvent and reducing agent during the whole reduction process. Themethanol electrocatalytic performa nce of the Pt catalysts have been investigated by cyclic voltammetry (CV). Experimental data have proved that highly effective Ptcatalysts have been obtained as Pt nanoparticles were encapsulated in mesoporouscarbon nanofibers by mea ns of mild functiona liza tion and have exhibited excellentmethanol ele ctrocatalytic activity. Through comparing the electrochemica l propertiesamong a series of Pt catalysts, we have also researched the influence of experimentalcondition on preparation of catalysts in detail.
     In conclusion, severa l kinds of mesoporous materia ls with various morphologieshave been prepared using the combined methods of sol-gel, electrospinning, hardtemplate-ind uced reverse replication and doping or encapsula tion. According to theexperimental evidence based upon characterization of properties of them, it can beconfirmed that the functiona l materia ls have integrated the advantages of hosts inmorphologies and structures with the excellence of guests in functiona lities and haverevea led good optica l and electrical performa nce. Therefore, it is expected that thefunctiona l mesoporous materials with different morphologies will be applied into moredoma ins in the future, such as catalysis, adsorption, separation and biosensors.
引文
[1] Davis M E. Ordered porous materia ls for emerging applica tions [J]. Nature,2002, 417: 813-821.
    [2]徐如人,庞文琴,于吉红等.分子筛与多孔材料化学[M].北京:科学出版社,2004:1-10.
    [3] Barrer R M. Hydrothermal chemistry of zeolites [M]. London: Academic press,1982.
    [4]中国科学院大连化学物理研究所分子筛组.沸石分子筛[M].北京:科学出版社,1978.
    [5] Flanigen E M. Molecular sieve zeolite technology-The first twenty-five years.Proceeding of the fifth internationa l conference on zeolites , Naples, June 2-6,1980 [C]. Heyden, London, Philadelphia, Rheine, 1980: 760-780, Rees L. V. C.Ed.
    [6] Wilson S T, Lok B M, Flanigen E M. Crysta lline meta llophospha tecompositions: US, 4310440 [P]. 1982-01-12.
    [7] Cheetham A K, Férey G, Loiseau T. Open-framework inorganic materia ls [J].Angew. Chem. Int. Ed, 1999, 38: 3268-3292.
    [8] Davis M E, Saldarria ga C, Montes C, et al. A molecular sieve with eighteenmemberedrings [J]. Nature, 1988, 331: 698-699.
    [9] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecularsieves synthesized by a liq uid-crysta l template mecha nism [J]. Nature, 1992,359: 710-712.
    [10] Beck J S, McCullen S B, Higgins J B, et al. A new family of mesoporousmolecular sieves prepared with liq uid crysta l templates [J]. J. Am. Chem. Soc.,1992, 114: 10834-10843.
    [11] Argauer R J, Landolt G R. Crysta lline zeolite HZSM-5 and method of preparingthe same: US, 3702886 [P]. 1972.
    [12] Velev O D, Jede T A, Lobo R F, et al. Porous silica via colloida l crysta llization[J]. Nature, 1997, 389: 447-448.
    [13] Yang P D, Deng T, Zhao D Y, et al. Hierarchica lly ordered oxides [J]. Science,1998, 282: 2244-2246.
    [14] Velev O D, Jede T A, Lobo R F, et al. Microstructured porous silica obained viacolloida l crysta l template [J]. Chem. Mater., 1998, 10: 3597-3602.
    [15] Imhof A, Pine D J. Ordered macroporous materia ls by emulsion templating [J].Nature, 1997, 389: 948-951.
    [16] Imhof A, Pine D J. Uniform macroporous ceramics and plastics by emulsiontemplating [J]. Adv. Mater., 1998, 10: 697-700.
    [17] Zakhidov A A, Baughman R H, Iqbar Z, et al. Carbon structures with threedimensional period icity at optica l wavelengths [J]. Science, 1998, 282: 897-899.
    [18] Velev O D, Tessier P M, Lenhoff A M, et al. Materia ls: A class of porousmeta llic nanostructures [J]. Nature, 1999, 401: 548.
    [19] Holla nd B T, Bla nford C F, Do T, et al. Synthesis of highly ordered threedimensional macroporous structures of amorphous or crysta lline inorga nicoxides, phospha tes and hybrid composites [J]. Chem. Mater., 1999, 11: 795-805.
    [20] Vlasov Y A, Yao N, Norris D J. Synthesis of photonic crysta ls for optica lwavelengths from semicond uctor quantum dots [J]. Adv. Mater., 1999, 11: 165-169.
    [21] Johnson S A, Ollivier P J, Mallouk T E. Ordered mesoporous polymers oftunable pore size from colloida l silica templates [J]. Science, 1999, 283: 963-965.
    [22] Yaghi O M, Li H L, Davis C, et al. Synthetic strategies, structure patterns, andemerging properties in the chemistry of modular porous solids [J]. Acc. Chem.Res., 1998, 31: 474-484.
    [23] Holliday B J, Mirkin C A. Strategies for the construction of supramolecularcompounds through coordination chemistry [J]. Angew. Chem. Int. Ed., 2001,40, 2022-2043.
    [24] Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the designof new materia ls [J]. Nature, 2003, 423: 705-714.
    [25] James S L. Metal-organic frameworks [J]. Chem. Soc. Rev., 2003, 32: 276-288.
    [26] Janiak C. Engineering coordination polymers towards applica tions [J]. Dalton.Trans., 2003, 14: 2781-2804.
    [27] Kita gawa S, Kita ura R, Noro S. Functiona l porous coordination polymers [J].Angew. Chem. Int. Ed., 2004, 43: 2334-2375.
    [28] Chiola V, Ritsko J E, Vanderpool C D. Process for procucting low-bulk densitysilica: US, 3556725 [P]. 1971.
    [29] DiRenzo F, Cambon H, Dutartre R. A 28-year-old synthesis of micelletemplatedmesoporous silica [J]. Micropor. Mater., 1997, 10: 283-286.
    [30] Yanagisawa T, Shimizu T, Kuroda K, et al. The preparation ofalkyltrimethyla mmonium-kanemite complexes and their conversion tomicroporous materia ls [J]. Bull. Chem. Soc. Jpn., 1990, 63: 988-992.
    [31] Inagaki S, Fukushima Y, Kuroda K. Synthesis of highly ordered mesoporousmateria ls from a la yered polysilica te [J]. J. Chem. Soc., Chem. Commun., 1993:680-682.
    [32] Clark J H, Macquarrie D J. Catalysis of liq uid phase organic reactions usingchemica lly modified mesoporousinorganic solids [J]. Chem. Commun., 1998:853-860.
    [33] Soler-lllia G J de A A, Sanchez C, Lebeau B, et al. Chemica l strategies todesign textured materia ls: from microporous and mesoporous oxides tonanonetworks and hierarchica l structures [J]. Chem. Rev., 2002, 102: 4093-4138.
    [34] Corma A. From microporous to mesoporous molecular sieve materia ls and theiruse in catalysis [J]. Chem. Rev., 1997, 97: 2373-2419.
    [35] Monnier A, Schüth F, Huo Q S, et al. Cooperative formation of inorganicorganicinterfaces in the synthesis of silicate mesostructures [J]. Science, 1993,261: 1299-1303.
    [36] Huo Q S, Margolese D I, Ciesla U, et al. Generalized synthesis of period icsurfactant inorga nic composite materia ls [J]. Nature, 1994, 368: 317-321.
    [37] Huo Q S, Margolese D I, Ciesla U, et al. Organiza tion of organic moleculeswith inorga nic molecular species into nanocomposite biphase arrays [J]. Chem.Mater., 1994, 6: 1176-1191.
    [38] G?ltner C G, Antonietti M. Mesoporous materia ls by templating of liq uidcrysta lline phases [J]. Adv. Mater., 1997, 9: 431-436.
    [39] G?ltner C G, Henke S, Weissenberger M C, et al: Mesoporous silica fromlyotropic liq uid crysta l polymer templates [J]. Angew. Chem. Int. Ed., 1998, 37:613-616.
    [40] Vartuli J C, Schmitt K D, Kresge C T, et al. Development of a formationmecha nism for M41s materia ls [J]. Stud. Surf .Sci. Catal., 1994, 84: 53-60.
    [41] Vartuli J C, Kresge C T, Leonowicz M E, et al. Synthesis of mesoporousmateria ls: liq uid-crysta l templating versus interca lation of la yered silicates [J].Chem. Mater., 1994, 6: 2070-2077.
    [42] Chen C Y, Li X H, Davis M E. Studies on mesoporous materia ls I. Synthesisand characteriza tion of MCM-41 [J]. Micropor. Mater., 1993, 2: 17-26.
    [43] Chen C Y, Burkette S L, Li X H, et al. Studies on mesoporous materia ls II.Synthesis mecha nism of MCM-41 [J]. Micropor. Mater., 1993, 2: 27-34.
    [44] Stucky G D, Huo Q S, Firouzi A, et al. Directed synthesis of organic/inorganiccomposite structures [J]. Stud. Surf. Sci. Catal., 1997, 105: 3-28.
    [45] Firouzi A, Kumar D, Bull L M, et al. Cooperative organization of inorga nicsurfactant and biomimetic assemblies [J]. Science, 1995, 267: 1138-1143.
    [46] Huo Q S, Leon R, Petroff P M, et al. Mesostructure design with Geminisurfactants: superca ge formation in a 3-dimensiona l hexa gona l array [J].Science, 1995, 268: 1324-1327.
    [47] Firouzi A, Atef F, Oertli A G, et al. Alkaline lyotropic silicate-surfactant liq uidcrysta ls [J]. J. Am. Chem. Soc., 1997, 119: 3596-3610.
    [48] Chen X Y, Ding G Z, Chen H Y, et al. Formation at low surfactantconcentrations and characteriza tion of mesoporous MCM-41 [J]. Sci. China.Ser. B-Chem., 1997, 40: 278-285.
    [49] Huo Q S, Margolese D I, Stucky G D. Surfactant control of phases in thesynthesis of mesoporous silica-based materia ls [J]. Chem. Mater., 1996, 8:1147-1160.
    [50] Kageya ma K, Ogino S, Aida T. Mesoporous zeolite as a new class of catalystfor controlled polymerization of lactones [J]. Macromolecules, 1998, 31: 4069-4073.
    [51] Chen L Y, Horiuchi T, Mori t, et al. Postsynthesis hydrotherma l restructuring ofM41S mesoporous molecular sieves in water [J]. J. Phys. Chem. B, 1999, 103:1216-1222.
    [52] R. Mokaya. Ultrastable mesoporous aluminosilica tes by grafting routes [J].Angew. Chem. Int. Ed., 1999, 38: 2930-2934.
    [53] Shen S C, Kawi S. Understa nding of the effect of Al substitution on thehydrotherma l stability of MCM-41 [J]. J Phys. Chem. B, 1999, 103: 8870-8879.
    [54] Liu Y, Zha ng W, Pinnava ia T J. Steam-Stable MSU-S aluminosilica temesostructures assembled from zeolite ZSM-5 and zeolite Beta seeds [J].Angew. Chem. Int. Ed., 2001, 40: 1255-1258.
    [55] Zha ng Z T, Han Y, Zhu L, et al. Strongly acid ic and high-temperaturehydrotherma lly stable mesoporous aluminosilica tes with ordered hexa gona lstructure [J]. Angew. Chem. Int. Ed., 2001, 40: 1258-1262.
    [56] Gallis K W, Landry C C. Synthesis of MCM-48 by a phase transformationprocess [J]. Chem. Mater., 1997, 9: 2035-2038.
    [57] Schumacher K, Grün M, Unger K K. Novel synthesis of spherical MCM-48 [J].Micropor. Mesopor. Mat., 1999, 27: 201-206.
    [58] Sayari A. Novel synthesis of high-quality MCM-48 silica [J]. J. Am. Chem.Soc., 2000, 122: 6504-6505.
    [59] Liu Y, Karkamkar A, Pinnava ia T J. Redirecting the assembly of hexa gona lMCM-41 into cubic MCM-48 from sodium silicate without the use of anorganic structure modifier [J]. Chem. Commun., 2001: 1822-1823.
    [60] Sun J H, Coppens M O. A hydrotherma l post-synthesis route for the preparationof high quality MCM-48 silica with a tailored pore size [J]. J. Mater. Chem.,2002, 12: 3016-3020.
    [61] Vinu A, Murugesan V, Hartma nn M. Pore size engineering and mecha nicalstability of the cubic mesoporous molecular sieve SBA-1 [J]. Chem. Mater.2003, 15: 1385-1393.
    [62] Zhou W Z, Hunter H M A, Wright P A, et al. Ima ging the pore structure andpolytypic intergrowths in mesoporous silica [J]. J. Phys. Chem. B, 1998, 102:6933-6936.
    [63] Zhou W Z, Garcia-Bennett A E, Hunter H M A, et al. Electron microscopicinvestigation of mesoporous SBA-2 [J]. Stud. Surf. Sci. Catal., 2002, 141: 379-386.
    [64] Sakamoto Y H, Kaneda M, Terasaki O, et al. Direct ima ging of the pores andcages of three-dimensiona l mesoporous materia ls [J]. Nature, 2000, 408: 449-453.
    [65] Zhao D Y, Huo Q S, Feng J L, et al. Novel mesoporous silicates with twodimensional mesostructure direction using rigid bola form surfactants [J]. Chem.Mater., 1999, 11: 2668-2672.
    [66] Ulagappan N, Rao C N R. Mesoporous phases based on SnO2 and TiO2 [J].Chem. Commun., 1996: 1685-1686.
    [67] Yada M, Takenaka H, Machida M, et al. Mesostructured gallium oxidestemplated by dodecyl sulfate assemblies [J]. J. Chem. Soc., Dalton Trans., 1998:1547-1550.
    [68] Che S A, Garcia-Bennett A E, Yokoi T, et al. Mesoporous silica of novelstructures with period ic modulations synthesized by anionic surfactanttempla ting route [J]. Nat. Mater., 2003, 2: 801-805.
    [69] Garcia -Bennett A E, Terasaki O, Che S A, et al. Structural investigations ofAMS-n mesoporous materia ls by transmission electron microscopy [J]. Chem.Mater., 2004, 16: 813-821.
    [70] Gao C, Sakamoto Y, Sakamoto K, et al. Synthesis and characteriza tion ofmesoporous silica AMS-10 with a novel bicontinuous cubic Pn 3 m symmetry[J]. Angew. Chem. Int. Ed., 2006, 45: 4295-4298.
    [71] Che S A, Liu Z, Ohsuna T, et al. Synthesis and characteriza tion of mesoporoussilica with chiral structure [J]. Nature, 2004, 429: 281-284.
    [72] Jin H, Liu Z, Ohsuna T, et al. Control of morphology and helicity of chiralmesoporous silica [J]. Adv. Mater., 2006, 18: 593-596.
    [73] WuX, Jin H, Liu Z, et al. Racemic helica l mesoporous silica formation by achiral anionic surfactant [J]. Chem. Mater., 2006, 18: 241-243.
    [74] Gao C, Sakamoto Y, Terasaki O, et al. Molecular design of the surfactant andthe CSDA toward rationa l synthesis of targeted anionic surfactant templa tedmesoporous silica [J]. J. Mater. Chem. , 2007, 17: 3591-3602.
    [75] Qiu H, Che S A. Formation mechanism of achiral amphiphile-templa ted helica lmesoporous silicas [J]. J. Phys. Chem. B, 2008, 112: 10466-10474.
    [76] Qiu H, Inoue Y, Jin T, et al. Supramolecular chiral transcription and recognitionby mesoporous silica prepared by chiral imprinting of a helica l micelle [J].Angew. Chem. Int. Ed., 2009, 48: 3069-3072.
    [77] Bagsha w S A, Prouzet E, Pinnava ia T J. Templating of mesoporous molecularsieves by nonionic polyethylene oxide surfactants [J]. Science , 1995, 269:1242-1244.
    [78] Tanev P T, Pinnava ia T J. A neutral templa ting route to mesoporous molecularsieves [J]. Science , 1995, 267: 865-867.
    [79] Braun P V, Osenar P, Stupp S I. Semicond ucting superlattices templated bymolecular assemblies [J]. Nature , 1996, 380: 325-328.
    [80] Sun T, Ying J Y. Synthesis of microporous transition meta l oxide molecularsieves with bifunctiona l templating molecules [J]. Angew. Chem. Int. Edit.,1998, 37: 664-667.
    [81] Kim S S, Zha ng W Z, Pinnava ia T J. Ultrastable mesostructured silica vesicles[J]. Science, 1998, 282: 1302-1305.
    [82] Templin M, Franck A, DuChesne A, et al. Organically modified aluminosilica temesostructures from block copolymer phases [J]. Science , 1997, 278: 1795-1798.
    [83] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses ofmesoporous silica with period ic 50 to 300 angstrom pores [J]. Science , 1998,279: 548-552.
    [84] Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblockcopolymer and oligomeric surfactant syntheses of highly ordered,hydrotherma lly stable, mesoporous silica structures [J]. J. Am. Chem. Soc.,1998, 120: 6024-6036.
    [85] Yu C Z, Tian B Z, Fan J, et al. Nonionic block copolymer synthesis of largeporecubic mesoporous single crysta ls by use of inorganic salts [J]. J. Am. Chem.Soc., 2002, 124: 4556-4557.
    [86] Sakamoto Y H, Kaneda M, Terasaki O, et al. Direct ima ging of the pores andcages of three-dimensiona l mesoporous materia ls [J]. Nature, 2000, 408: 449-453.
    [87] Morishige K, Tateishi N, Fukuma S. Capilla ry condensation of nitrogen inMCM-48 and SBA-16 [j]. J. Phys. Chem. B, 2003, 107: 5177-5181.
    [88] Fan J, Yu C Z, Gao T, et al. Cubic mesoporous silica with large controllableentrance sizes and advanced adsorption properties [J]. Angew. Chem. Int. Edit.,2003, 42: 3146-3150.
    [89] Yang P D, Zhao D Y, David I M, et al. Generalized syntheses of large-poremesoporous meta l oxides with semicrystalline frameworks [J]. Nature, 1998,396: 152-155.
    [90] Yang P D, Zhao D Y, Margolese D I, et al. Block copolymer templatingsyntheses of mesoporous meta l oxides with large ordering lengths andsemicrystalline framework [J]. Chem. Mater., 1999, 11: 2813-2826.
    [91] Tia n B Z, Yang H F, Liu X Y, et al. Fast preparation of highly orderednonsiliceous mesoporous materia ls via mixed inorga nic precursors [J]. Chem.Commun., 2002, 1824-1825.
    [92] Meng Y, Gu D, Zha ng F Q, et al. Ordered mesoporous polymers andhomologous carbon frameworks: amphiphilic surfactant templa ting and directtransformation [J]. Angew. Chem. Int. Ed., 2005, 44: 7053-7059.
    [93] Meng Y, Gu D, Zha ng F Q, et al. A family of highly ordered mesoporouspolymer resin and carbon structures from organic-organic self-assembly [J].Chem. Mater., 2006, 18: 4447-4464.
    [94] Zha ng F Q, Meng Y, Gu D, et al. Facile aqueous route to synthesize highlyordered mesoporous polymers and carbon frameworks with Ia d bicontinuou3b icontinuouscubic structure [J]. J. Am. Chem. Soc., 2006, 127: 13508-13509.
    [95] Wei Y, Jin D L, Ding T Z, et al. A non-surfactant templa ting route tomesoporous silica materia ls [J]. Adv. Mater., 1998, 10: 313-316.
    [96] Pang J B, Qiu K Y, Wei Y, et al. A facile preparation of transparent andmonolithic mesoporous silica materia ls [J]. Chem. Commun., 2000, 477-478.
    [97] Ryoji T, Satoshi S, Toshiaki S, et al. High surface-area silica with controlledpore size prepared from nanocomposite of Silica and citric acid [J]. J. Phys.Chem. B, 2000, 104: 12184-12191.
    [98] Okabe A, Fukushima T, Ariga K, et al. Color-tunable transparent mesoporoussilica films : immobiliza tion of one-dimensiona l columnar charge-tra nsferassemblies in aligned silicate nanocha nnels [J]. Angew. Chem. Int. Edit., 2002,41: 3414-3417.
    [99] Kozhevnikov I V, Sinnema A, Jansen R J J, et al. New acid catalyst comprisingheteropoly acid on a mesoporous molecular sieve MCM-41 [J]. Catal. Lett.,1994, 30: 241-252.
    [100] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sievesvia template-med iated structural transformation [J]. J. Phys. Chem. B, 1999,103: 7743-7746.
    [101] Kaneda M, Tsubakiya ma T, Carlsson A, et al. Structural study of mesoporousMCM-48 and carbon network synthesized in the spaces of MCM-48 byelectron crysta llography [J]. J. Phys. Chem. B, 2002, 106: 1256-1266.
    [102] Jun S, Joo S H, Ryoo R, et al. Synthesis of new nanoporous carbon withhexa gona lly ordered mesostructure [J]. J. Am. Chem. Soc., 2000, 122: 10712-10713.
    [103] Lu A H, Schmidt W, Taguchi A, et al. Taking nanocasting one step further:Replicating CMK-3 as a silica materia l [J]. Angew. Chem. Int. Ed., 2002, 41:3489-3492.
    [104] Laha S C, Ryoo R. Synthesis of thermally stable mesoporous cerium oxidewith nanocrystalline frameworks using mesoporous silica templates [J]. Chem.Commun., 2003, 2138-2139.
    [105] Zhu K K, Yue B, Zhou W Z, et al. Preparation of three-dimensiona l chromiumoxide porous single crysta ls templated by SBA-15 [J]. Chem. Commun., 2003,98-99.
    [106] Zhu K K, He H Y, Xie S H, et al. Crysta lline WO3 nanowires synthesized bytemplating method [J]. Chem. Phys. Lett., 2003, 377: 317-321.
    [107] Wang Y, Yang C M, Schmidt W, et al. Weakly ferroma gnetic orderedmesoporous Co3O4 synthesized by nanocasting from vinyl-functiona lizedcubic Ia3d mesoporous silica [J]. Adv. Mater., 2005, 17: 53-56.
    [108] Tia n B Z, Liu X Y, Yang H F, et al. General synthesis of ordered crysta llizedmeta l oxide nanoarrays replicated by microwa ve-digested mesoporous silica [J].Adv. Mater., 2003, 15: 1370-1374.
    [109] Krawiec P, Weidenthaler C, Kaskel, S. SiC/MCM-48 and SiC/SBA-15nanocomposite materia ls [J]. Chem. Mater., 2004, 16: 2869-2880.
    [110] Parmentier J, Solovyov L A, Ehrburger-Dolle F, et al. Structural peculia ritiesof mesostructured carbons obtained by nanocasting ordered mesoporoustemplates via carbon chemica l vapor or liq uid phase infiltration routes [J].Chem. Mater., 2006, 18: 6316-6323.
    [111] Yang H F, Yan Y, Liu Y, et al. A simple melt impregnation method tosynthesize ordered mesoporous carbon and carbon nanofiber bundles withgraphitized structure from pitches [J]. J. Phys. Chem. B, 2004, 108: 17320-17328.
    [112] Yang H F, Zhao D Y. Synthesis of replica mesostructures by the nanocastingstrategy [J]. J. Mater. Chem., 2005, 15: 1217-1231.
    [113] Kang M, Yi S H, Lee H I, et al. Reversible replication between orderedmesoporous silica and mesoporous carbon [J]. Chem. Communun., 2002, 1944-1945.
    [114] Lu A H, Schmidt W, Taguchi A, et al. Taking nanocasting one step further:replica ting CMK-3 as a silica materia l [J]. Angew. Chem. Int. Ed., 2002, 41:3489-3492.
    [115] Kim J Y, Yoon S B, Yu J S. Template Synthesis of a New MesostructuredSilica from Highly Ordered Mesoporous Carbon Molecular Sieves [J]. Chem.Mater., 2003, 15: 1932-1934.
    [116] Roggenbuck J, Tiema nn M.Ordered mesoporous ma gnesium oxide with highthermal stability synthesized by exotemplating using CMK-3 carbon [J]. J. Am.Chem. Soc., 2005, 127: 1096-1097.
    [117] Anpo M, Yamashita H, Ikeue K, et al. Photocatalytic reduction of CO2 withH2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts [J]. Catal.Today,1998, 44: 327-332.
    [118] Lin W Y, Cai Q, Pang W Q, et al. Preparation of aluminosilica te MCM-41 indesirable forms via a novel co-assemble route [J]. Chem. Commun., 1998:2473-2474.
    [119] Cai Q, Wei C P, Xu Y Y, et al. Synthesis, characteriza tion and catalysis activityof the MCM-48 framework containing Ti, Co, Cr, Mn, Cu, Mo [J]. Chem. Res.Chinese U., 1999, 20: 344-349.
    [120] Dai L X, Tabata K, Suzuki E, et al. Synthesis and characteriza tion of V-SBA-1cubic mesoporous molecular sieves [J]. Chem. Mater., 2001, 13: 208-212.
    [121] Vinu A, Dedecek J, Murugesan V, et al. Synthesis and characteriza tion ofCoSBA-1 cubic mesoporous molecular sieves [J]. Chem. Mater., 2002, 14:2433-2435.
    [122] Hartma nn M, Vinu A, Elangova n S P, et al. Direct synthesis and catalyticevaluation of AlSBA-1 [J]. Chem. Commun., 2002: 1238-1239.
    [123] Vaudry F, Khodabandeh S, Davis M E. Synthesis of pure alumina mesoporousmateria ls [J]. Chem, Mater., 1996, 8: 1451-1464.
    [124] Cabrera S, Haskouri J E, Alamo J, et al. Surfactant assisted synthesis ofmesoporous alumina with continuously adjustable pore sizes [J]. Adv. Mater.,1999, 11, 379-382.
    [125] Deng W, Bodart P, Pruski M, et al. Characterization of mesoporous aluminamolecular sieves synthesized by nonionic templating [J]. Micropor. Mesopor.Mat., 2002, 52: 169-177.
    [126] Yuan Q, Yin A X, Luo C, et al. Facile synthesis for ordered mesoporousγ-aluminas with high thermal stability [J]. J. Am. Chem. Soc., 2008, 130, 3465-3472.
    [127] Zou X D, Conradsson T, Klingstedt M, et al A mesoporous germa nium oxidewith crysta lline pore walls and its chiral derivative [J]. Nature, 2005, 437: 716-719.
    [128] Brezesinski T, Fischer A, Limura K, et al. Generation of Self-Assembled 3DmesostructuredSnO2 thin films with highly crysta lline frameworks [J]. Adv.Funct. Mater., 2006, 16: 1433-1440.
    [129] Pan J H, Chai S Y, Lee C, et al.Controlled formation of highly crysta llizedcubic and hexa gona l mesoporous SnO2 thin films [J]. J. Phys. Chem. C, 2007,111: 5582-5587.
    [130] Yang H F, Shi Q H, Tia n B Z, et al. One-step nanocasting synthesis of highlyordered single crysta lline indium oxide nanowire arrays from mesostructuredframeworks [J]. J. Am. Chem. Soc., 2003, 125: 4724-4725.
    [131] Antonelli D M, Ying J Y. Synthesis of hexa gona lly packed mesoporous TiO2by a modified sol-gel method [J]. Angew. Chem. Int. Ed., 1995, 34: 2014-2017.
    [132] Soler-lllia G J de A A, Louis A, Sanchez C, et al. Synthesis andcharacteriza tion of mesostructured titania-based materia ls through evaporationinducedself-assembly [J]. Chem. Mater., 2002, 14: 750-759.
    [133] Yoshitake H, Sugihara T, Tatsumi T. Preparation of wormhole-likemesoporous TiO2 with an extremely large surface area and stabiliza tion of itssurface by chemica l vapor deposition [J]. Chem. Mater., 2002, 14: 1023-1029.
    [134] Tia n B Z, Liu X Y, Tu B, et al. Self-adjusted synthesis of ordered stablemesoporous minera ls by acid-base pairs [J]. Nat. Mater., 2003, 2: 159-163.
    [135] Smarsly B, Grosso D, Brezesinski T, et al. Highly crysta lline cubicmesoporous TiO2 with 10-nm pore dia meter made with a new block copolymertemplate [J]. Chem. Mater., 2004, 16: 2948-2952.
    [136] Brezesinski T, Groenewolt M, Antonietti M, et al. Crysta l-to-crysta l phasetransition in self-assembled mesoporous iron oxide films [J]. Angew. Chem. Int.Ed., 2006, 45: 781-784.
    [137] Jiao F, Jumas J C, Womes M, et al. Synthesis of ordered mesoporous Fe3O4andγ-Fe2O3 with crysta lline walls using post-template reduction/oxidation [J].J.Am.Chem.Soc., 2006, 128: 12905-12909.
    [138] Lyu Y Y, Yi S H, Shon J K, et al. Highly stable mesoporous meta l oxides usingnano-propping hybrid gemini surfactants [J]. J. Am. Chem. Soc., 2004, 126:2310-2311.
    [139] Sinha A K, Suzuki K. Three-dimensiona l mesoporous chromium oxide: ahighly efficient materia l for the elimination of volatile organic compounds [J].Angew. Chem. Int. Ed., 2004, 44: 271-273.
    [140] Banerjee S, Santha nam A, Dhathathreya n A, et al. Synthesis of orderedhexa gona l mesostructured nickel oxide [J]. Langmuir, 2003, 19: 5522-5525.
    [141] Lee B J, Lu D L, Kondo J N, et al. Three-dimensiona lly ordered mesoporousniobium oxide [J]. J. Am. Chem. Soc., 2002, 124: 11256-11257.
    [142] Rumplecker A, Kleitz F, Salabas E L, et al. Hard templating pathways for thesynthesis of nanostructured porous Co3O4 [J].Chem. Mater., 2007, 19: 485-496.
    [143] Dick inson C, Zhou W Z, Hodgkins R P, et al. Formation mechanism of poroussingle-crysta l Cr2O3 and Co3O4 templa ted by mesoporous silica [J]. Chern.Mater., 2006, 18: 3088-3095.
    [144] Wang Y M, Wu Z Y, Wang H J, et al. Fabrication of meta l oxides occluded inordered mesoporous hosts via a solid-sta te grind ing route: the influence ofhost-guest interactions [J]. Adv. Funct. Mater., 2006, 16: 2374-2386.
    [145] Yue W B, Zhou W Z. Synthesis of porous single crysta ls of meta l oxides via asolid-liq uid route [J]. Chem. Mater., 2007, 19: 2359-2363.
    [146] Jiao F, Harrison A, Hill A H, et al. Mesoporous Mn2O3 and Mn3O4 withcrysta lline walls [J]. Adv. Mater., 2007, 19: 4063-4066.
    [147] Waitz T, Tiema nn M, Klar P J, et al. Crysta lline ZnO with an enhanced surfacearea obtained by nanocasting [J]. Appl. Phys. Lett., 2007, 90: 123108.
    [148] Lai X Y, Li X T, Geng W C, et al. Ordered Mesoporous Copper Oxide withCrysta lline Walls [J]. Angew. Chem. Int. Ed., 2007, 119: 752-755.
    [149] Hung I M, Wang H P, Lai W H, et al. Preparation of mesoporous cerium oxidetemplated by tri-block copolymer for solid oxide fuel cell [J]. Electrochim. Acta,2004, 50: 745-748.
    [150] Yada M, Kita mura H, Ichinose A, et al. Mesoporous magnetic materia ls basedon rare earth oxides [J]. Angew. Chem. Int. Ed., 1999, 38: 3506-3510.
    [151] Liang C D, Li Z J, Dai S. Mesoporous carbon materia ls: synthesis andmodification [J]. Angew. Chem. Int. Ed., 2008, 47: 3696-3717.
    [152] Ryoo R, Joo S H, Kruk M, et al. Ordered mesoporous carbons [J]. Adv. Mater.2001, 13: 677-681.
    [153] Lee J, Yoon S, Hyeon T, et al. Synthesis of a new mesoporous carbon and itsapplica tion to electrochemica l double-la yer capacitors [J]. Chem. Commun.,1999: 2177-2178.
    [154] Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supportinghigh dispersions of platinum nanoparticles [J]. Nature, 2001, 412: 169-172.
    [155] Zha ng W H, Liang C H, Sun H J, et al. Synthesis of ordered mesoporouscarbons composed of nanotubes via catalytic chemica l vapor deposition [J].Adv. Mater., 2002, 14: 1776-1778.
    [156] Kruk M, Jaroniec M, Kim T W, et al. Synthesis and characteriza tion ofhexa gona lly ordered carbon nanopipes [J]. Chem. Mater., 2003, 15: 2815-2823.
    [157] Liang C D, Dai S. Synthesis of mesoporous carbon materia ls via enhancedhydrogen-bond ing interaction [J]. J. Am. Chem. Soc., 2006, 128: 5316-5317.
    [158] Zha ng F Q, Meng Y, Gu D, et al. An aqueous cooperative assembly route tosynthesize ordered mesoporous carbons with controlled structures andmorphology [J]. Chem. Mater., 2006, 18: 5279-5288.
    [159] Oliver S, Kuperman A, Coombs N, et al. Lamellar aluminophosphates withsurface patterns that mimic diatom and radiola rian microskeletons [J]. Nature,1995, 378: 47-50.
    [160] Ozin G A. Morphogenesis of biominera l and morphosynthesis of biomimeticforms [J]. Accounts Chem. Res., 1997, 30: 17-27.
    [161] Feng P Y, Xia Y, Feng J L, et al. Synthesis and characteriza tion ofmesostructured aluminophosphates using the fluoride route [J]. Chem.Commun., 1997: 949-950.
    [162] Zhao D Y, Luan Z H, Kevan L. Synthesis of thermally stable mesoporoushexa gona l aluminophosphate molecular sieves [J]. Chem. Commun., 1997,1009-1010.
    [163] Cabrera S, Haskouri J E, Guillem C, et al. Tuning the pore size from micro- tomeso-porous in thermally stable aluminophosphates [J]. Chem. Commun.,1999, 333-334.
    [164] Bha umik A, Inagaki S. Mesoporous tita nium phospha te molecular sieves withion-excha nge capacity [J]. J. Am. Chem. Soc., 2001, 123: 691-696.
    [165] Serre C, Hervieu M, Magnier C, et al. Synthesis and characteriza tion ofmesostructured titanium(IV) fluorophospha tes with a semicrystalline inorganicframework [J]. Chem. Mater., 2002, 14: 180-188.
    [166] Ciesla U, Schacht S, Stucky G D, et al. Formation of a porous zirconium oxophospha te with a high surface area by a surfactant-assisted synthesis [J]. Angew.Chem. Int. Ed., 1996, 35: 541-543.
    [167] Jiménez-J iménez J, Maireles-Torres P, Olivera-Pastor P, et al. Surfactantassistedsynthesis of a mesoporous form of zirconium phospha te with acid icproperties [J]. Adv. Mater., 1998, 10: 812-815.
    [168] Doi T, Miyake T. Synthesis of a novel mesoporous VPO compound [J]. Chem.Commun. 1996, 1635-1636.
    [169] Mizuno N, Hatayama H, Uchida S, et al. Tunable one-pot syntheses ofhexa gona l-, cubic-, and la mellar-mesostructured vanadium-phosphorus oxides[J]. Chem. Mater., 2001, 13: 179-184.
    [170] Roca M, Haskouri J E, Cabrera S, et al. Supramolecular self-assembling inmesostructured materia ls through charge tuning in the inorga nic phase [J].Chem. Commun., 1998, 1883-1884.
    [171] Guo X F, Ding W P, Wang X G, et al. Synthesis of a novel mesoporous ironphospha te [J]. Chem. Commun., 2001, 709-710.
    [172] Nenoff T M, Thoma S G, Provencio P, et al. Novel zinc phospha te phasesformed with chirald-glucosa mine molecules [J]. Chem. Mater., 1998, 10: 3077-3080.
    [173] Mal N K, Ichikawa S, Fujiwara M. Synthesis of a novel mesoporous tinphospha te, SnPO4[J]. Chem. Commun., 2002, 112-113.
    [174] Serre C, Auroux A, Gervasini A, et al. Hexa gona l and cubic thermally stablemesoporous Tin(IV) phospha tes with acid ic and catalytic properties [J]. Angew.Chem. Int. Ed., 2002, 41: 1594-1597.
    [175] Rana R K, Zha ng L Z, Yu J C, et al. Mesoporous structures fromsupra molecular assembly of in situ generated ZnS nanoparticles [J]. Langmuir,2003, 19: 5904-5911.
    [176] Gao F, Lu Q Y, Zhao D Y. Synthesis of crysta lline mesoporous CdSsemicond uctor nanoarrays through a mesoporous SBA-15 silica templatetechnique [J]. Adv. Mater., 2003, 15: 739-742.
    [177] Rangan K K, Trikalitis P N, Canlas C, et al. Hexa gona l pore organization inmesostructured meta l tin sulfides built with [Sn2S6]4- cluster [J]. Nano. Lett.,2002, 2: 513-517.
    [178] Trikalitis P N, Rangan K K, Bakas T, et al. Single-crystal mesostructuredsemicond uctors with cubic Ia3d symmetry and ion-excha nge properties [J]. J.Am. Chem. Soc., 2002, 124: 12255-12260.
    [179] Attard G S, Bartlett P N, Coleman N R B, et al. Mesoporous platinum filmsfrom lyotropic liq uid crysta lline phases [J]. Science, 1997, 278: 838-840.
    [180] Attard G S, Goltner C G, Corker J M, et al. Liquid-crysta l templates fornanostructured meta ls [J]. Angew. Chem. Int. Ed., 1997, 36: 1315-1317.
    [181] Shin H J, Ko C H, Ryoo R. Synthesis of platinum networks with nanoscopicperiod icity using mesoporous silica as template [J]. J. Mater. Chem., 2001, 11:260-261.
    [182] Lee K, Kim Y H, Han S B, et al. Osmium replica of mesoporous silicateMCM-48: efficient and reusable catalyst for oxidative clea vage anddihydroxylation reactions [J]. J. Am. Chem. Soc., 2003, 125: 6844-6845.
    [183] Xu Y M, Langford C H. Photoactivity of titanium dioxide supported onMCM41, zeolite X, and zeolite Y [J]. J. Phys. Chem. B, 1997, 101: 3115-3121.
    [184] Xiong L M, Shi J L, Gu J L, et al. A mesoporous template route to the lowtemperaturepreparation of efficient green light emitting Zn2SiO4:Mnphosphors [J]. J. Phys. Chem. B, 2005, 109: 731-735.
    [185] Liu G, Chen Z G, Dong C L, et al. Visible light photocatalyst: iodine-dopedmesoporous titania with a bicrysta lline framework [J]. J. Phys. Chem. B, 2006,110: 20823-20828.
    [186] Wang L Z, Chen Y L, Chen F, et al. Manipulating energy transfer processesbetween rhodamine 6G and rhodamine B in different mesoporous hosts [J]. J.Phys. Chem. C, 2007, 111: 5541-5548.
    [187] Saha D, Deng S G. Hydrogen adsorption on ordered mesoporous carbonsdoped with Pd, Pt, Ni, and Ru [J]. Langmuir, 2009, 25: 12550-12560.
    [188] Wang Y D, Brezesinski T, Antonietti M, et al. Ordered mesoporous Sb-, Nb-,and Ta-doped SnO2 thin films with adjustable doping levels and high electricalconductivity [J]. ACS Nano, 2009, 3: 1373-1378.
    [189] Suvanto S, Pakkanen T A, Temperature programmed studies of Co on MCM-41 and SiO2. [J]. J. Mol. Catal. A, 2000, 164: 273-280.
    [190] Kim S W, Son S U, Lee S I, et al. Cobalt on mesoporous silica: the firstheterogeneous Pauson-Kha nd catalyst [J]. J. Am. Chem. Soc., 2000, 122: 1550-1551.
    [191] Besson S, Gacoin T, Ricollea u C, et al. Silver nanoparticle growth in 3Dhexagona l mesoporous silica films [J]. Chem. Commun., 2003, 360-361.
    [192] Chen W, Zha ng J, Cai W. Sonochemica l preparation of Au, Ag, Pd/SiO2mesoporous nanocomposites [J]. Scripta. Mater., 2003, 48: 1061-1066.
    [193] Zhou W Z, Thomas J M, Shephard D S, et al. Ordering of ruthenium clustercarbonyls in mesoporous silica [J]. Science, 1998, 280: 705-708.
    [194] Peng C Y, Zha ng H J, Yu J B, et al. Synthesis, characteriza tion, andluminescence properties of the ternary europium complex covalently bonded tomesoporous SBA-15 [J]. J. Phys. Chem. B, 2005, 109: 15278-15287.
    [195] Ganschow M, Wark M, W?hrle D, et al. Anchoring of functiona l dyemolecules in MCM-41 by microwa ve-assisted hydrotherma l cocondensation[J]. Angew. Chem. Int. Ed., 2000, 39: 160-163.
    [196] Xu W, Guo H Q, Akins D L. Aggrega tion and exciton emission of a cyaninedye encapsulated within mesoporous MCM-41 [J]. J. Phys. Chem. B, 2001, 105:7686-7689.
    [197] Fukuoka A, Miyata H, Kuroda K. Alignment control of a cyanine dye using amesoporous silica film with unia xially aligned mesocha nnels [J]. Chem.Commun., 2003, 284-285.
    [198] Schomburg C, Wark M, Rohlfing Y, et al. Photochromism of spiropyran inmolecular sieve voids: effects of host-guest interaction on isomer status,switching stability and reversibility [J]. J. Mater. Chem., 2001, 11: 2014-2021.
    [199] Zhao W J, Li D M, He B, et al. The photoluminescence of coumarin derivativeencapsulated in MCM-41 and Ti-MCM-41 [J]. Dyes Pigments, 2005, 64: 265-270.
    [200] Moller K, Bein T, Fischer R X. Entrapment of PMMA polymers strands inmicro- and mesoporous materials [J]. Chem. Mater., 1998, 10: 1841-1852.
    [201] Drljaca A, Kepert C, Spiccia L, et al. Qualitative test for supra molecularcomplexa tion of C60 using a mesoporous silica [J]. Chem. Commun., 1997:195-196.
    [202] Chen J S, Li Q H, Ding H, et al. Infrared study on the dehydroxylation of C60-loaded MCM-41 [J]. Langmuir, 1997, 13: 2050-2054.
    [203] Dag ?, Kuperman A, Ozin G A. Nanostructures: new forms of luminescentsilicon [J]. Adv. Mater., 1995, 7: 72-78.
    [204] Leon R, Margolese D, Stucky G D, et al. Nanocrysta lline Ge fila ments in thepores of a mesosilicate [J]. Phys. Rev. B, 1995, 52: R2285-R2288.
    [205] Srdanov V I, Alxneit I, Stucky G D, et al. Optica l properties of GaAs confinedin the pores of MCM-41 [J]. J. Phys .Chem., 1998, 102: 3341-3344.
    [206] B?hlma nn W, Schandert K, P?ppl A, et al. Synthesis and electron spinresona nce studies of MCM-41 doped with copper pyrid ine complexes [J].Zeolites, 1997, 19: 297-304.
    [207] Liu C J, Li S G, Pang W Q, et al. Ruthenium porphyrin encapsulated inmodified mesoporous molecular sieve MCM-41 for alkene [J]. Chem.Commun., 1997, 65-66.
    [208] Ganschow M, W?hrle D, Schulz-Ekloff G. Incorporation of differentlysubstituted phtha locya nines in the mesoporous molecular sieve Si-MCM-41 [J].J. Porphyr. Phthalocya., 1999, 3: 299-309.
    [209] Wark M, Ortla m A, Ganschow M, et al. Monomeric encapsulation ofphtha locya nine-dye molecules in the pores of Si-MCM-41 and Ti-MCM-41 [J].Ber. Bunsenges. Phys. Chem., 1998, 102: 1548-1553.
    [210] Hoppe R, Ortla m A, Rathousk y J, et al. Synthesis of titanium-containingMCM-41 mesoporous molecular sieves in the presence of zinc phtha locya nineand rhodamine B [J]. Micropor. Mater., 1997, 8: 267-273.
    [211] Evans J, Zaki A B, El-Sheikh M Y, et al. Incorporation of transition-meta lcomplexes in functiona lized mesoporous silica and their activity toward theoxidation of aromatic amines [J]. J. Phys. Chem. B, 2000, 104: 10271-10281.
    [212] Feng P Y, Bu X H, Stucky G D, et al. Monolithic mesoporous silica templatedby microemulsion liq uid crysta ls [J]. J. Am. Chem. Soc., 2000, 122: 994-995.
    [213] Yang H F, Shi Q H, Tia n B Z, et al. A fast way for preparing crackfreemesostructured silica monolith [J]. Chem. Mater., 2003, 15: 536-541.
    [214] Naik S P, Fan W, Yokoi T, et al. Synthesis of a three-dimensiona l cubicmesoporous silica monolith employing an organic additive through anevaporation-induced self-assembly process [J]. Langmuir, 2006, 22: 6391-6397.
    [215] Xia Y D, Mokaya R. Ordered mesoporous carbon monoliths: CVDnanocasting and hydrogen storage properties [J]. J. Phys. Chem. C, 2007, 111:10035-10039.
    [216] Yang H, Kuperman A, Coombs N, et al. Synthesis of oriented films ofmesoporous silica on mica [J]. Nature, 1996, 379: 703-705.
    [217] Yang H, Coombs N, Sokolov I, et al. Free-standing and oriented mesoporoussilica films grown at the air-water interface [J]. Nature, 1996, 381: 589-592.
    [218] Aksay I A, Trau M, Manne S, et al. Biomimetic pathways for assemblinginorganic thin films [J]. Science, 1996, 273: 892-898.
    [219] Ogawa M. Formation of novel oriented transparent films of la yered silicasurfactantnanocomposites [J]. J. Am. Chem. Soc., 1994, 116: 7941-7942.
    [220] Ogawa M. A simple set-gel route for the preparation of silica-surfactantmesostructured materia ls [J]. Chem. Commun., 1996, 1149-1150.
    [221] Ogawa M, Ishikawa H, Kikuchi T. Preparation of transparent mesoporoussilica films by a rapid solvent evaporation method [J]. J. Mater. Chem., 1998, 8:1783-1786.
    [222] Ogawa M. Nanoporous silica films containing aluminum and titanium [J].Colloid and Polymer, Science, 2003, 281: 665-672.
    [223] Lu Y F, Ganguli R, Drewien C A, et al. Continuous formation of supportedcubic and hexa gona l mesoporous films by sol gel dip-coating [J]. Nature, 1997,389: 364-368.
    [224] Zhao D Y, Yang P D, Margolese D I, et al. Synthesis of continuousmesoporous silica thin films with three-dimensiona l accessible pore structures[J]. Chem. Commun., 1998, 2499-2500.
    [225] Alberius P C A, Frindell K L, Hayward R C, et al. General predictivesyntheses of cubic, hexa gona l, and la mellar silica and titania mesostructuredthin films [J]. Chem. Mater., 2002, 14: 3284-3294.
    [226] Crepald i E L, Soler-lllia G J de A A, Grosso C, et al. Design and postfunctionalisation of ordered mesoporous zirconia thin films [J]. Chem.Commun., 2001, 1582-1583.
    [227] Schacht S, Huo Q, Voigt-Martin I G, et al. Oil-water interface templating ofmesoporous macrosca le structures [J]. Science, 1996, 273: 768-771.
    [228] Li Y S, Shi J L, Hua Z L, et al. Hollow spheres of mesoporous aluminosilica tewith a three-dimensiona l pore network and extraordinarily high hydrotherma lstability [J]. Nano Lett., 2003, 3: 609-612.
    [229] Sun Q Y, Kooyman P J, Grossma nn J G, et al. The formation of well-definedhollow silica spheres with multila mellar shell structure [J]. Adv. Mater., 2003,15: 1097-1100.
    [230] Huo Q S, Feng J L, Schüth F, et al. Preparation of hard mesoporous silicaspheres [J]. Chem. Mater., 1997, 9: 14-17.
    [231] Grün M, Lauer I, Unger K K. The synthesis of micrometer- andsubmicrometer-size spheres of ordered mesoporous oxide MCM-41 [J]. Adv.Mater., 1997, 9: 254-257.
    [232] Yoon S B, Sohn K, Kim J Y, et al. Fabrication of carbon capsules with hollowmacroporous core/mesoporous shell structures [J]. Adv. Mater., 2002, 14: 19-21.
    [233] Huo Q S, Zhao D Y, Feng J L, et al. Room temperature growth of mesoporoussilica fibers: a new high-surface-area optica l waveguide [J]. Adv. Mater., 1997,9: 974-978.
    [234] Yang P D, Zhao D Y, Chmelka B F, et al. Triblock-copolymer-directedsyntheses of large-pore mesoporous silica fibers [J]. Chem. Mater., 1998, 10:2033-2036.
    [235] Wang J F, Zha ng J P, Asoo B Y, et al. Structure-selective synthesis ofmesostructured/mesoporous silica nanofibers [J]. J. Am. Chem. Soc., 2003, 125:13966-13967.
    [236] Wang J F, Tsung C K, Hong W B, et al. Synthesis of mesoporous silicananofibers with controlled pore architectures [J]. Chem. Mater., 2004, 16:5169-5181.
    [237] Chae W S, An M J, Lee S W, et al. Templated carbon nanofiber withmesoporosity and semicond uctivity [J]. J. Phys. Chem. B, 2006, 110: 6447-6450.
    [238] Yang Z L, Niu Z W, Cao X Y, et al. Template synthesis of uniform 1Dmesostructured silica materia ls and their arrays in anodic alumina membranes[J]. Angew. Chem. Int. Ed., 2003, 42: 4201-4203.
    [239] Lu Q Y, Gao F, Komarneni S, et al. Ordered SBA-15 nanorod arrays inside aporous alumina membrane [J]. J. Am. Chem. Soc., 2004, 126: 8650-8651.
    [240] Yamaguchi A, Uejo F, Yoda T, et al. Self-assembly of a silica-surfactantnanocomposite in a porous alumina membrane [J]. Nat. Mater., 2004, 3: 337-341.
    [241] Park I S, Jang S R, Hong J S, et al. Preparation of composite anatase TiO2nanostructure by precipitation from hydrolyzed TiCl4 solution using anodicalumina membrane [J]. Chem. Mater., 2003, 15: 4633-4636.
    [242] Yamauchi Y, Takai A,Komatsu M, et al. Vapor infiltration of a reducing agentfor facile synthesis of mesoporous Pt and Pt-based alloys and its applica tion forthe preparation of mesoporous Pt microrods in anodic porous membranes [J].Chem. Mater., 2008, 20: 1004-1011.
    [243] Madhugiri S, Zhou W L, Ferraris J P, et al. Electrospun mesoporous molecularsieve fibers [J]. Micropor. Mesopor. Mat., 2003, 63: 75-84.
    [244] Macías M, Chacko A, Ferraris J P et al. Electrospun mesoporous meta l oxidefibers [J]. Micropor. Mesopor. Mat., 2005, 86: 1-13.
    [245] Zha n S H, Chen D R, Jiao X L, et al. Long TiO2 hollow fibers withmesoporous walls: so-gel combined electrospun fabrication and photocatalyticproperties [J]. J. Phys. Chem. B, 2006, 110: 11199-11204.
    [246] Gunnewegh E A, Gopie S S, vanBekkum H. MCM-41 type molecular sievesas catalysts for the Friedel-Cra fts acylation of 2-methoxynaphthalene [J]. J.Mol. Catal. Chem., 1996, 106: 151-158.
    [247] Anpo M, Yamashita H, Ikeue K, et al. Photocatalytic reduction of CO2 withH2O on Ti-MCM-41 and Ti- MCM-48 mesoporous zeolite catalysts [J]. Catal.Today,1998, 44: 327-332.
    [248] Stein A, Melde B J, Schroden R C. Hybrid inorganic-organic mesoporoussilicates-Nanoscopic reactors coming of age [J]. Adv. Mater., 2000, 12: 1403-1419.
    [249] Davidson A. Modifying the walls of mesoporous silicas prepared bysupra molecular-templa ting [J]. Curr. Opin. Colloid In., 2002, 7: 92-106.
    [250] Zhao B, Shi B, Ma R. Immobilization of papain on the mesoporous molecularsieve MCM-48 [J]. Eng. Life Sci., 2005, 5: 436-441.
    [251] Zha ng B P, Janicke M T, Woodruff W H, et al. Fast photored uction of a hemepeptide encapsulated in nanostructured materia ls [J]. J. Phys. Chem. B, 2005,109: 19547-19549.
    [252] Vallet-Regi M, Ramila A, Real R P. A new property of MCM-41: drugdelivery system [J]. Chem. Mater., 2001, 13: 308-311.
    [253] O'Connor A J, Hokura A, Kisler J M, et al. Amino acid adsorption ontomesoporous silica molecular sieves [J]. Sep. Purif. Technol., 2006, 48: 197-201.
    [254] Amama P B, Lim S, Ciuparu D, et al. Synthesis, characteriza tion, and stabilityof Fe-MCM-41 for production of carbon nanotubes by acetylene pyrolysis [J]. J.Phys. Chem. B, 2005, 109: 2645-2656.
    [255] Wang X Q, Ge H L, Jin H X, et al. Influence of Fe on the thermal stability andcatalysis of SBA-15 mesoporous molecular sieves [J]. Micropor. Mesopor. Mat.,2005, 86: 335-340.
    [256] Shimizu Y, Hyodo T, Egashira M. Meso- to macro-porous oxides assemicond uctor gas sensors [J]. Catal. Surv. Asia, 2004, 8: 127-135.
    [257] Liu Z C, Chen H G, Huang W M, et al. Facile route to tin oxide containingmesoporous silica composites with room-temperature photoluminescence [J]. J.Mater. Res., 2006, 21: 655-663.
    [258] Scott B J, Wirnsberger G, Stucky G D. Mesoporous and mesostructuredmateria ls for optica l applica tions [J]. Chem. Mater., 2001, 13: 3140-3150.
    [259] Chen H R, Shi J L, Yu J, et al. Synthesis of titanium-doped ordered porouszirconium oxide with high-surface-area [J]. Micropor. Mesopor. Mat, 2000, 39:171-176.
    [260] Oh S M, Hyeon T H, Jang J H, et al. Mesoporous carbon materia l,carbon/meta l oxide composite materia ls and electrochemica l capacitors usingthem: US, 20040047798 [P]. 2004-03-11.
    [261] Jang J H, Han S, Hyeon T, et al. Electrochemica l capacitor performa nce ofhydrous ruthenium oxide/mesoporous carbon composite electrodes [J]. J.Power Sources, 2003, 123: 79-85.
    [1] Dick inson T A, White J, Kauer J S, et al. A chemica l-detecting system based ona cross-reactive optica l sensor array [J]. Nature, 1996, 382: 697-700.
    [2] Fan H Y, Lu Y F., Stump A, et al. Rapid prototyping of patterned functiona lnanostructures [J]. Nature , 2000, 405: 56-60.
    [3] Wirnsberger G, Scott B J, Stucky G D. pH sensing with mesoporous thin films[J]. Chem. Commun., 2001, 119-120.
    [4] Han B H, Manners I, Winnik M A.Oxygen sensors based on mesoporous silicaparticles on la yer-by-la yer self-assembled films [J]. Chem. Mater., 2005, 17:3160-3171.
    [5] Schaudel B, Guermeur C, Sanchez C, et al. Spirooxa zine- and spiropyrandopedhybrid organic-inorganic matrices with very fast photochromic responses[J]. J. Mater. Chem., 1997, 1: 61-65.
    [6] Levitus M, Aramend ia P F. Photochromism and thermochromism ofphena nthrospirooxa zine in poly(a lkyl methacrylates) [J]. J. Phys. Chem. B,1999, 103: 1864-1870.
    [7] Bergeron B V, Kelly C A, Meyer G J. Thin film actinometers for transientabsorption spectroscopy: applica tions to dye-sensitized solar cells [J].Langmuir, 2003, 19: 8389-8394.
    [8] Ihlein G, Junges B, Junges U, et al. Ordered porous materia ls as med ia for theorganization of matter on the nanosca le [J]. Appl. Organometa l. Chem., 1998,12: 305-314.
    [9] Wirnsberger G, Yang P D, Scott B J, et al. Mesostructured materia ls for optica lapplica tions: from low-k dielectrics to sensors and lasers [J]. Spectrochim.Acta. A, 2001, 57: 2049-2060.
    [10] Bartl M H, Scott B J, Huang H C, et al. Synthesis and luminescence propertiesof mesostructured thin films activated by in-situ formed trivalent rare earth ioncomplexes [J]. Chem. Commun., 2002, 2474-2475.
    [11] Sauer J, Marlow F, Spliethoff B, et al. Rare earth oxide coating of the walls ofSBA-15 [J]. Chem. Mater., 2002, 14: 217-224.
    [12] Nguyen T Q, Wu J J, Doan V, et al. Control of energy transfer in orientedconjugated polymer-mesoporous silica composites [J]. Science, 2000, 288:652-656.
    [13] Ogawa M, Nakamura T, Mori J I, et al. Luminescence of tris(2,2'-bipyridine)ruthenium(II) cations ([Ru(bpy)3]2+) adsorbed in mesoporous silica[J]. J. Phys. Chem. B, 2000, 104: 8554-8556.
    [14] Fukuoka A, Miyata H, Kuroda K. Alignment control of a cyanine dye using amesoporous silica film with unia xially aligned mesocha nnels [J]. Chem.Commun., 2003, 284-285.
    [15] Subbia h S, Mokaya R. Synthesis of transparent and ordered mesoporous silicamonolithic films embedded with monomeric zinc phtha locya nine dye [J].Chem. Commun., 2003, 860-861.
    [16] Schultheiss S, Yariv E, Reisfeld R, et al. Solid state dyes lasers: rhodamines insilica-zirconia materia ls [J]. Photochem. Photobiol. Sci., 2002, 1: 320-323.
    [17] Ganschow M, Wark M, W?hrle D, et al. Anchoring of functiona l dye moleculesin MCM-41 by microwa ve-assisted hydrotherma l cocondensation [J]. Angew.Chem. Int. Ed., 2000, 39: 161-163.
    [18] Subbia h S, Mokaya R. Photophysica l properties of [60]fullerenes andphtha locya nines embedded in ordered mesoporous silica films annealed atvarious temperatures [J]. J. Phys. Chem. B, 2005, 109: 5079-5084.
    [19] Zhou H S, Honma I. Dye-doped photosensitive mesostructure materia ls [J].Adv. Mater., 1999, 11: 683-685.
    [20] Wirnsberger G, Scott B J, Chmelka B F, et al. Fast response photochromicmesostructures [J]. Adv. Mater., 2000, 12: 1450-1454.
    [21] Scott B J, Wirnsberger G, Stucky G D. Mesoporous and mesostructuredmateria ls for optica l applica tions [J]. Chem. Mater., 2001, 13: 3140-3150.
    [22] Schulz-Ekloff G, W?hrle D, van Duffel B, et al. Chromophores in poroussilicas and minera ls: preparation and optica l properties [J]. Micropor. Mesopor.Mat., 2002, 51: 91-138.
    [23] Marlow F, McGehee M D, Zhao D Y, et al. Doped mesoporous silica fibers: anew laser materia l [J]. Adv. Mater., 1999, 11: 632-636.
    [24] Marlow F, Zhao D Y, Stucky G D. Doped mesoporous silica fibers: the internalstructure [J]. Micropor. Mesopor. Mat., 2000, 39: 37-42.
    [25] Bartl M H, Scott B J, Wirnsberger G, et al. Single-photon hot band absorptioninduced anti-stokes luminescence of rhodamine 101 in mesostructured thinfilms [J]. Chem. Phys. Chem., 2003, 4: 392-395.
    [26] Scott B J, Bartl M H, Wirnsberger G, et al. Energy transfer in dye-dopedmesostructured composites [J]. J. Phys. Chem. A, 2003, 107: 5499-5502.
    [27] Yang P D, Wirnsberger G, Huang H C, et al. Mirrorless lasing frommesostructured waveguides patterned by soft lithography [J]. Science, 2000,287: 465-467.
    [28] Wirnsberger G, Yang P D, Huang H C, et al. Patterned block-copolymer-silicamesostructures as host med ia for the laser dye rhodamine 6G [J]. J. Phys. Chem.B, 2001, 105: 6307-6313.
    [29] Vogel R, Meredith P, Kartini I, et al. Mesostructured dye-doped titaniumdioxide for micro-optoelectronic applica tions [J]. Chem. Phys. Chem., 2003, 4:595-603.
    [30] Bartl M H, Boettcher S W, Hu E L, et al. Dye-activated hybridorganic/inorganic mesostructured titania waveguides [J]. J. Am. Chem. Soc.,2004, 126: 10826-10827.
    [31] Loerke J, Marlow F. Laser emission from dye-doped mesoporous silica fibers[J]. Adv. Mater., 2002, 14: 1745-1749.
    [32] Wirnsberger G, Stucky G D. Microring lasing from dye-doped silica/blockcopolymer nanocomposites [J]. Chem. Mater., 2000, 12: 2525-2527.
    [33] Hebner T R, Wu C C, Marcy D, et al. Ink-jet printing of doped polymers fororganic light emitting devices [J]. Appl. Phys. Lett., 1998, 72: 519-521.
    [34] McGehee M D, Díaz-García M A, Hide F, et al. Semicond ucting polymerdistributed feedback lasers [J]. Appl. Phys. Lett. 1998, 72: 1536-1538.
    [35] Scott B J, Wirnsberger G, McGehee M D, et al. Dye-doped mesostructuredsilica as a distributed feedback laser fabrica ted by soft lithography [J]. Adv.Mater., 2001, 13: 1231-1234.
    [36] Yang H, Shi Q, Tian B, et al. A fast way for preparing crack-free mesostructuredsilica monolith [J]. Chem. Mater., 2003, 15: 536-541.
    [37] Zhao D Y, Yang P D, Melosh N, et al. Continuous mesoporous silica films withhighly ordered large pore structures [J]. Adv. Mater., 1998, 10: 1380-1385.
    [1] Hu J, Odom T W, Lieber C M. Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes [J]. Acc. Chem. Res.,1999, 32: 435-445.
    [2] Duan B, Dong C H, Yuan X Y, et al. Electrospinning of chitosan solutions inacetic acid with poly(ethylene oxide) [J]. J. Biomater. Sci. Polym. Ed., 2004, 15:797-811.
    [3] Won K S, Ji H Y, Taek S L, et al. The effects of solution properties andpolyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers [J].Polymer, 2004, 45: 2959-2966.
    [4] Subbia h T, Bhat G S, Tock R W, et al. Electrospinning of nanofibers [J]. J. Appl.Polym. Sci., 2005, 96: 557-562.
    [5] Pham Q P, Sharma U, Mikos A G. Electrospinning of polymeric nanofibers frotissue engineering applica tions: A review [J]. Tissue Eng., 2006, 12: 1197-1211.
    [6] Nalawade S P, Picchioni F, Janssen L P B M. Supercritical carbon dioxide as agreen solvent for process in polymer melts: processing aspects and applica tions[J]. Prog. Polym. Sci., 2006, 31: 19-43.
    [7] Xia Y, Yang P, Sun Y, et al. One-dimensiona l nanostructures: synthesis,characteriza tion, and applica tions [J]. Adv. Mater., 2003, 15: 353-389.
    [8] Reneker D H, Chun I. Nanometre dia meter fibres of polymer, produced byelectrospinning [ J ] Nanotechnology, 1996, 7: 216-223.
    [9] Frenot A, Chronakis I S. Polymer nanofibers assembled by electrospinning [J].Curr. Opin. Colloid. Interface. Sci., 2003, 8: 64-75.
    [10] Huang Z M, Zha ng Y Z, Kotaki M, et al. A review on polymer nanofibers byelectrospinning and their applica tions in nanocomposites [J]. Compos. Sci.Technol. , 2003, 63: 2223-2253.
    [11] Reneker D H, Yarin A L, Fong H, et al. Bend ing instability of electricallycharged liq uid jets of polymer solutions in electrospinning [J]. J. Appl. Phys.,2000, 87: 4531-4547.
    [12] Shin Y M, Hohman M M, Brenner M P, et al. A whipping fluid jet generatessubmicron polymer fibers [J]. Appl. Phys. Lett., 2001, 78: 1149-1151.
    [13] MacDiarmid A G, Jones W E, Norris I D, et al. Electrostatica lly-generatednanofibers of electronic polymers [J]. Synth. Met., 2001, 119: 27-30.
    [14] Wang X Y, Drew C, Lee S H, et al. Electrospun nanofibrous membranes forhighly sensitive optica l sensors [J]. Nano lett., 2002, 2: 1273-1275.
    [15] Choi S W, Jo S M, Lee W S, et al. Electrospun poly(vinylidene fluoride)nanofibrous membrane and its battery applica tions [J]. Adv. Mater., 2003, 15:2027-2032.
    [16] Caseri W R, Chanzy H D, Feldma n K, et al. "(Hot-)water-proof",semicond ucting, platinum-based chain structures: processing, products, andproperties [J]. Adv. Mater., 2003, 15: 125-129.
    [17] Madhugiri S, Dalton A, Gutierrez J, et al. Electrospun MEH-PPV/SBA-15composite nanofibers using a dual syringe method [J]. J. Am. Chem. Soc., 2003,125: 14531-14538.
    [18] Jin H J, Fridrikh S V, Rutled ge G C, et al. Electrospinning bombyx morisilkwith poly(ethylene oxide) [J]. Biomacromolecules, 2002, 3: 1233-1239.
    [19] Norris I D, Shaker M M, Ko F K, et al. Electrostatic fabrica tion of ultrafineconducting fibers: polya niline/ polyethylene oxide blends [J]. Synth. Met., 2000,114: 109-114.
    [20] Larsen G, Velarde-Ortiz R, Minchow K, et al. A method for making inorganicand hybrid (organic/inorganic) fibers and vesicles with dia meters in thesubmicrometer and micrometer range via sol-gel chemistry and electrica llyforced liquid jets [J]. J. Am. Chem. Soc., 2003, 125: 1154-1155.
    [21] Madhugiri S, Zhou W, Ferraris J P, et al. Electrospun mesoporous molecularsieve fibers [J]. Micropor. Mesopor. Mat., 2003, 63: 75-84.
    [22] Li D, Xia Y. Fabrication of titania nanofibers by electrospinning [J]. Nano Lett.,2003, 3: 555-560.
    [23] Li D, Wang Y, Xia Y. Electrospinning of polymeric and ceramic nanofibers asunia xially aligned arrays [J]. Nano Lett., 2003, 3: 1167-1171.
    [24] Hou H, Jun Z, Reuning A, et al. Poly(p-xylylene) nanotubes by coating andremova l of ultrathin polymer templa te fibers [J]. Macromolecules, 2002, 35:2429-2431.
    [25] Hou H, Reneker D H. Carbon nanotubes on carbon nanofibers: a novelstructure based on electrospun polymer nanofibers [J]. Adv. Mater., 2004, 16:69-73.
    [26] Ko F, Gogotsi Y, Ali A, et al. Electrospinning of continuous carbon nanotubefillednanofiber yarns [J]. Adv. Mater., 2003, 15: 1161-1165.
    [27] Dror Y, Sala lha W, Khalfin R L, et al. Carbon nanotubes embedded in orientedpolymer nanofibers by electrospinning [J]. Langmuir, 2003, 19: 7012-7020.
    [28] Sen R, Zhao B, Perea D, et al. Preparation of single-walled carbon nanotubereinforced polystyrene and polyurethane nanofibers and membranes byelectrospinning [J]. Nano Lett., 2004, 4: 459-464.
    [29] Drew C, Liu X, Ziegler David, et al. Metal oxide-coated polymer nanofibers [J].Nano Lett., 2003, 3: 143-147.
    [30] Wang X, Kim Y G, Drew C, et al. Electrostatic assembly of conjugated polymerthin layers on electrospun nanofibrous membranes for biosensors [J]. NanoLett., 2004, 4: 331-334.
    [31] Bognitzki M, Hou H, Ishaq ue M, et al. Polymer, metal, and hybrid nano- andmesotubes by coating degradable polymer templa te fibers (TUFT Process) [J].Adv. Mater., 2000, 12: 637-640.
    [32] Park S H, Kim C, Choi Y O, et al. Preparations of pitch-based CF/ACF webs byelectrospinning [J]. Carbon, 2003, 41: 2655-2657.
    [33] Nagapud i K, Brinkma n W T, Leisen J E, et al. Photomed iated solid-state crosslinkingof an elastin-mimetic recombinant protein polymer [J].Macromolecules, 2002, 35: 1730-1737.
    [1] Surampud i S, Narayan S R, Vamos E, et al. Advances in direct oxidationmethanol fuel cells [J]. J. Power Sources, 1994, 47: 377-385.
    [2] Dinh H D, Ren X, Garzon F H, et al. Electrocatalysis in direct methanol fuelcells: in-situ probing of PtRu anode catalyst surfaces [J]. J. Electroanal. Chem. ,2000, 491: 222-233.
    [3] AricòA S, Srinivasan S, Antonucci V. DMFCs: from fundamental aspects totechnology development [J]. Fuel Cells , 2001, 1: 133-161.
    [4] Lamy C, Lima A, LeRhun V, et al. Recent advances in the development ofdirect alcohol fuel cells (DAFC) [J]. J. Power Sources , 2002, 105: 283-296.
    [5] Chen C Y, Yang P. Performa nce of an air-breathing direct methanol fuel cell [J].J. Power Sources, 2003, 123: 37-42.
    [6] Liang Z X, Zhao T S. New DMFC anode structure consisting of platinumnanowires deposited into a nafion membrane [J]. J. Phys. Chem. C, 2007, 111:8128-8134.
    [7] Petrii O A. Pt-Ru electrocatalysts for fuel cells: a representative review [J]. J.Solid State Electr., 2008 12: 609-642.
    [8] Wu G, Chen Y S, Xu B Q. Rema rkable support effect of SWNTs in Pt catalystfor methanol electro oxidation [J]. Electrochem. Commun., 2005, 7: 1237-1243.
    [9] Kost K M, Bartak D E, Kazee B, et al. Electrodeposition of platinummicropa rticles into polya niline films with electrocatalytic applica tions [J]. Anal.Chem. , 1988, 60: 2379-2384.
    [10] Liu F J, Huang L M, Wen T C. Large-area network of supported platinumnanocatalysts for methanol oxidation [J]. Synthetic Met., 2007, 157: 651-658.
    [11] Rajesh B, Thampi K R, Bonard J M, et al. Conducting polymeric nanotubulesas high performa nce methanol oxidation catalyst support [J]. Chem. Commun.,2003, 2022-2023.
    [12] Kuo C W, Huang L M, Wen T C, et al. Enhanced electrocatalytic performa ncefor methanol oxidation of a novel Pt-dispersed poly(3,4-ethylened ioxythiophene)-poly(styrene sulfonic acid) electrode [J]. J. Power Sources , 2006,160: 65-72.
    [13] Lee J S, Gu G H, Kim H, et al. Growth of carbon nanotubes on anodicaluminum oxide templates: fabrication of a tube-in-tube and linearly joinedtube [J]. Chem. Mater., 2001, 13: 2387-2391.
    [14] Jia ng Z Y, Xie Z.X, Zha ng X H, et al. Synthesis of single-crysta lline ZnOpolyhedral submicrometer-sized hollow beads using laser-assisted growth withetha nol droplets as soft templa tes [J]. Adv. Mater., 2004, 16: 904-907.
    [15] Tan H, Ye E, Fan W Y. Alumina-templa te synthesis of fluorescent RuO2nanotubes derived from Ru3(CO)12 clusters [J]. Adv. Mater., 2006, 18: 619-623.
    [16] Dillon R, Srinivasan S, AricòA S, et al. Internationa l activities in DMFC R&D:status of technologies and potentia l applica tions [J]. J. Power Sources , 2001,127: 112-126.
    [17] Lee J, Yoon S, Hyeon T, et al. Synthesis of a new mesoporous carbon and itsapplica tion to electrochemica l double-la yer capacitors [J]. Chem. Commun.,1999, 2177-2178.
    [18] Lee J, Yoon S, Oh S M, et al. Development of a new mesoporous carbon usingan HMS aluminosilica te templa te [J]. Adv. Mater., 2000, 12: 359-362.
    [19] Zhou H, Zhu S, Hibino M, et al. Lithium storage in ordered mesoporous carbon(CMK-3) with high reversible specific energy capacity and good cyclingperforma nce [J]. Adv. Mater., 2003, 15: 2107-2111.
    [20]álvarez S, Bla nco-López M C, Miranda-Ordieres A J, et al. Electrochemica lcapacitor performa nce of mesoporous carbons obtained by templatingtechnique [J]. Carbon, 2005, 43: 866-870.
    [21] Ryoo R, Joo S H, Kruk M, et al. Ordered mesoporous carbons [J]. Adv. Mater.,2001, 13: 677-681.
    [22] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sievesvia template-med iated structural transformation [J]. J. Phys. Chem. B, 1999,103: 7743-7746.
    [23] Kaneda M, Tsubakiya ma T, Carlsson A, et al. Structural study of mesoporousMCM-48 and carbon network synthesized in the spaces of MCM-48 byelectron crysta llography [J]. J. Phys. Chem. B, 2002, 106: 1256-1266.
    [24] Lee J, Yoon S, Hyeon T, et al. Synthesis of a new mesoporous carbon and itsapplica tion to electrochemica l double-la yer capacitors [J]. Chem. Commun.,1999: 2177-2178.
    [25] Jun S, Joo S H, Ryoo R, et al. Synthesis of new nanoporous carbon withhexa gona lly ordered mesostructure [J]. J. Am. Chem. Soc., 2000, 122: 10712-10713.
    [26] Lu A H, Schmidt W, Taguchi A, et al. Taking nanocasting one step further:Replicating CMK-3 as a silica materia l [J]. Angew. Chem. Int. Ed., 2002, 41:3489-3492.
    [27] Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supportinghigh dispersions of platinum nanoparticles [J]. Nature, 2001, 412: 169-172.
    [28] Zha ng W H, Liang C H, Sun H J, et al. Synthesis of ordered mesoporouscarbons composed of nanotubes via catalytic chemica l vapor deposition [J].Adv. Mater., 2002, 14: 1776-1778.
    [29] Kruk M, Jaroniec M, Kim T W, et al. Synthesis and characteriza tion ofhexa gona lly ordered carbon nanopipes [J]. Chem. Mater., 2003, 15: 2815-2823.
    [30] Meng Y, Gu D, Zha ng F Q, et al. Ordered mesoporous polymers andhomologous carbon frameworks: amphiphilic surfactant templa ting and directtransformation [J]. Angew. Chem. Int. Ed., 2005, 44: 7053-7059.
    [31] Zha ng F Q, Meng Y, Gu D, et al. A facile aqueous route to synthesize highlyordered mesoporous polymers and carbon Frameworks with Ia3d bicontinuouscubic structure [J]. J. Am. Chem. Soc., 2005, 127: 13508-13509.
    [32] Meng Y, Gu D, Zha ng F Q, et al. A family of highly ordered mesoporouspolymer resin and carbon structures from organic-organic self-assembly [J].Chem. Mater., 2006, 18: 4447-4464.
    [33] Zha ng F Q, Meng Y, Gu D, et al. An aqueous cooperative assembly route tosynthesize ordered mesoporous carbons with controlled structures andmorphology [J]. Chem. Mater., 2006, 18: 5279-5288.
    [34] Liang C D, Hong K L, Guiochon G A, et al. Synthesis of a large-scale highlyordered porous carbon film by self-assembly of block copolymers [J]. Angew.Chem. Int. Ed., 2004, 43: 5785-5789.
    [35] Otsuka K, Abe Y, Kanai N, et al. Synthesis of carbon nanotubes on Ni/carbonfibercatalysts under mild conditions [J]. Carbon, 2004, 42: 727-736.
    [36] Pan Z W, Zhu H G, Zha ng Z T, et al. Hierarchica lly ordered carbon tubes [J].Chem. Phys. Lett., 2003, 371: 433-437.
    [37] Kyotani T, Tsai L F, Tomita A. Formation of ultrafine carbon tubes by using ananodic aluminum oxide film as a template [J]. Chem. Mater., 1995, 7: 1427-1428.
    [38] Kyotani T, Tsai L F, Tomita A. Formation of platinum nanorods andnanoparticles in uniform carbon nanotubes prepared by a templatecarboniza tion method [J]. Chem. Commun., 1997, 701-702.
    [39] Zelensk i C M, Dorhout P K. Template synthesis of near-monodispersemicrosca le nanofibers and nanotubules of MoS2 [J]. J. Am. Chem. Soc., 1998,120: 734-742.
    [40] Lu Q Y, Gao F, Komarneni S, et al. Ordered SBA-15 nanorod arrays inside aporous alumina membrane [J]. J. Am. Chem. Soc., 2004, 126: 8650-8651.
    [41] Cott D J, Petkov N, Morris M A, et al. Preparation of oriented mesoporouscarbon nano-fila ments within the pores of anodic alumina membranes [J]. J.Am. Chem. Soc., 2006, 128: 3920-3921.
    [42] Wang S Y, Jia ng S P, White T J, et al. Electrocatalytic activity andinterconnectivity of Pt nanoparticles on multiwalled carbon nanotubes for fuelcells [J]. J. Phys. Chem. C, 2009, 113: 18935-18945.
    [43] Rhee C K , Kim B J, Ham C, et al. Size effect of Pt nanoparticle on catalyticactivity in oxidation of methanol and formic acid: comparison to Pt(111),Pt(100), and polycrysta lline Pt electrodes [J]. Langmuir, 2009, 25: 7140-7147.
    [44] Hyeon T, Han S, Sung Y E, et al. High-performa nce direct methanol fuel cellelectrodes using solid-phase-synthesized carbon nanocoils [J]. Angew. Chem.Int. Ed., 2003, 42: 4352-4356.
    [45] Golabi S M, Nozad A. Electrocatalytic oxidation of methanol on electrodesmodified by platinum micropa rticles dispersed into poly(o-phenylened iamine)film [J]. J. Electroanal. Chem. , 2002, 521: 161-167.
    [46] Chen W X, Lee J Y, Liu Z L. Microwa ve-assisted synthesis of carbon supportedPt nanoparticles for fuel cell applica tions [J]. Chem. Commun., 2002, 2588-2589.
    [47] Yu J S, Kang S, Yoon S B, et al. Fabrication of ordered uniform porous carbonnetworks and their applica tion to a catalyst supporter [J]. J. Am. Chem. Soc.,2002, 124: 9382-9383.
    [48] Park K W, Choi J H, Sung Y E, et al. Structural, chemica l, and electronicproperties of Pt/Ni thin film electrodes for methanol electrooxidation [J]. J.Phys. Chem. B, 2003, 107: 5851-5856.
    [49] Coutanceau C, Croissa nt M J, Napporn T, et al. Electrocatalytic reduction ofdioxygen at platinum particles dispersed in a polya niline film [J]. Electrochim.Acta, 2000, 46: 579-588.
    [50] Bouzek K, Mangold K M, Jüttner K J. Electrocatalytic activity of platinummodified polypyrrole films for the methanol oxidation reaction [J]. Appl.Electrochem., 2001, 31: 501-507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700