高分辨率层序地层学及其在濮城油田开发中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
储层地质模型的建立和剩余油分布的预测已成为油田开发中后期油藏描述的核心。储层骨架模型是建立储层地质模型的前提和关键,建立在测井曲线相似性基础上的传统“旋回控制,分级对比”原则在进行高含水期精细对比时表现出地层学理论依据不足,在解释小层段的砂体对比方面,在解释不同层位砂体规模、形态、砂体连续性、连通性和储层物性的变化规律方面缺乏有力的理论支撑。寻找新的理论来指导储层的精细划分和对比,已成为储层表征面临的一大任务和难题。
     依据基准面变化中的过程—沉积响应,分析沉积过程中沉积物体积分配及与其相伴生的相分异,进行等时地层对比,建立精细地层格架,预测储层空间展布及其非均质性的思路为储层精细描述提供了新的方向。本研究正是基于基准面变化过程中的沉积响应及其伴生的可容空间分析,以濮城油田沙三中6-10油藏为例,通过对储层的精细划分和对比,建立起储层精细地层格架,在基准面旋回格架内,探讨了地层沉积演化及其对储层展布和储层非均质性的控制,首次建立了储层非均质性及原始油气分布与基准面旋回的相关关系,提出了在基准面旋回格架内分析油气动用特征和剩余油分布的思想。据此思路,本文主要进行了以下几方面的研究:
     1、依据沉积现象,通过水动力分析,建立了濮城油田沉积相模式。濮城油田紧邻东缘边界断层,砂岩等厚图及百分含量图表明其沉积物源方向为东部;泥岩基本上为深灰色,反映强还原的深水环境,而碎屑颗粒多为粉砂级,砂层单层厚度小,底部冲刷面规模较小,说明其水动力较弱;粒度分析表明其具有牵引流和重力流的双重特征,其沉积机理与水下扇相近,而且在岩心中观察到正常三角洲沉积中不发育的泥流及泥石流沉积;较厚的砂层多为多个正粒序沉积序列的组成的总体正粒序组合,缺乏扇三角洲中常见的反粒序。综上所述,可以认定其为水下扇沉积。
     在岩心观察的基础上,辨认出20余种岩石相类型,及其沉积微相类型,包括沟道、沟道间、席状砂、深湖泥、湖相盐、滑塌重力流、泥流和泥石流等。而构成储层的则主要是沟道、沟道间和席状砂体。
     2、通过基准面旋回分析,建立了高分辨率层序地层格架
     在岩心中识别出四级基准面旋回,分别命名为超短期旋回、短期旋回、中期旋回和长期旋回。在研究层段共划分长期旋回1个、中期旋回6个和短期旋回27个(短期旋回规模太小,仅能在岩心上识别),通过测井曲线的基准面识别和对比,确定了地层的分布,结合基准面旋回内可容空间的变化,对其沉积演化进行了分析。
     3、对储层非均质的分析,为储层开发动用状况分析提供了直接依据。
     岩电关系分析表明,孔隙度与声波时差成正相关关系,与自然伽玛呈负相关关系,而渗透率与孔隙度具有较好的指数关系,据此建立了解释模型,在测井数据标准化的基础上进行了测井解释,较为准确地反映了井点处的物性特征。
     储层非均质性研究表明,水下扇的非均质性较强。储层物性较差,孔隙度多在11-13%之间,渗透率多小于5毫达西,层内夹层较为发育,层内和层间渗透率差异明显,渗透率变异数多在0.7以上,孔隙喉道细小,以小于0.1um的喉道为主。
     储层的非均质性受基准面控制明显。短期基准面控制了砂体内部的非均质模式,中长期基准面旋回控制了砂体的层间及平面非均质特征。在中长期基准面低位处,储层大都发育较好,砂体厚度、展布面积均较大,物性相对较好,层间夹层较薄;而在中长期基准面较低位置处,则出现相反的储层特征。
     4、开发响应与油气分布研究为开发调整提供了地质依据。
    
    高分辨率层序地层学及其在埃城油田开发中的应用
     原始油气分布受控于基准面旋回的位置。高储量和储量丰度的砂体多位于基准面较低位
    置处,而低储量和低储量丰度的砂体则常与基准面高位相关。
     在非均质模式与油气动用状况分析基础上,研究了基准面旋回对油气动用状况和剩余油
    分布的控制作用。结果表明,基准面高位处的砂体难于动用,而且多不作为重点层位开采,
    因而动用程度较低,但由于其原始油气资源量较小,剩余油的绝对量并不大;基准面低位处
    的砂体较易动用,且多作为主力层位开采,因而动用相对充分,但由于其本身储量较大,因
    而剩余储量仍很可观,占剩余储量的大部。
     5、地层样式模拟为正确理解层序的形成提供了新的方法。建立的一维地层形成样式模
    拟可分析不同因素对地层叠加样式的影响,为二维和三维地层模拟奠定了基础。
The foundation of reservoir model and residual oil prediction have been the core of reservoir detailed description for improved oil production and enhanced oil recovery. The traditional way of sandstone correlation based on the geometrical similarity of well-logs which emphasizes "based on the cycle and correlating from larger to smaller" has shown its theoretical limits when explaining the correlating and the scale, geometry, continuity, connectivity of sandstones and the law of the reservoir property. It has been an urgent and difficult subject to find new theory and methods to solve the reservoir correlation and property prediction.
    It's a new way to correlate strata and found framework of reservoir through the process-response analysis in the base-level cycles. And it is also possible to analyze the reservoir property in reservoir framework.
    Taking the reservoir of zonation 6-10 in S32 of Pucheng Oil Field in Henan Province as an example, we founded the detailed reservoir stratigraphic framework through base-level correlation. In the strata frame, sediment distribution and its development are discussed based on sediment volume partitioning and facies differentiation analysis. Reservoir heterogeneities and its relation to base-level are also discussed. The analysis of primary oil distribution shows the base-level controlled oil distribution in reservoir.
    In this paper, subjects as following are discussed in detail.
    1 Based on the analysis of sedimentary structure and sedimentary energy, the facies model was founded.
    Pucheng Oil Field is tightly adjacent to the boundary fault of Dongpu Depress, and it is easy to develop fan-delta and sub-fan on this location. In fact it is easy to find the sediment supply of the studying area is mainly from eastern high through the thickness map and its sand-content map. Shale is mainly dark gray to black, some of them is oil shale, so the sedimentary environment is in deep and reductive conditions. The fact that grain of sand is fine or silty, with thin layer and little-scale scours means that the water energy was low. Grain analysis tells its transiting character between turbulent flow and drag flow with the same character as sub-fan. In the core, every sequence is positive rhythm and debris flow that is not developed in delta was also found. Thick sand beds are always made of several layers of single normal cycles. From all the characters above, it is easy to say that it was developed in the sub-fan environment.
    In the core, more than 20 kinds of lithofacies was recognized and more than 6 type microfacies including channel, inter-channel, sheet-like sand, lake and salt lake was distinguished.
    2 Founding stratigraphy framework through base level analysis
    Four scales cycle was distinguished from the core. Very-short term base level cycle is equal to a sediment incident. Rock in the cycle is made of single lithofacies or lithofacies sequences that made a stratigraphic pattern, it is always made of one single environmental element. Short term cycle is a sets of sedimentary incidents, which indicates a stage of water depth changing obviously. In the studying area, it is corresponding to the development of one lobe in a fan of the sub-fan. In the profile, it is often made of one to two environment elements, which indicates a progradation or regression. The sand developed in this stage is equal to single sandbody which is the smallest scale for correlating between wells. Middle term cycle is related to an obvious water changing. In the studying area, it is defined as the process of one fan development. Long term cycle is a sets of large scale water changing which forms a local progradation and regression. In the studying area,
    
    
    
    it is defined as the foundation of fan-complexity. There is response in the seismic profiles for this scale, which made it possible to make correlation through the well log under the restriction of seismic.
    In the studying zone, one long term cycle, 6 middle term cycles and 27 short term cycles was identified and correlated. Base on t
引文
1. Anderson, D.S., and Cross, T. A., submitted, Large-scale cycle architecture and stacking patterns in continental strata of the Hornelen Basin (Devonian), Western Norway, Journal of Sedimentary Research.
    2. Andres A. Fajardo-Diaz 4-D stratigraphic architecture and 3-D reservoir fluid-fluid model of the Mirador Formation,Cusiana Field, Foothills area of the Cordillera,Colombia Dr. thesis for Colorado School of Mines 1995
    3. Aitken J.F et al. The Application of High-Resolution Sequence Stratigraphy to Fluvial Systems: A Case Study from the Upper Carbonaferous Breathitt Group, Eastern Kentucky, USA. Sedimentology. 1995, V42: 3-30.
    4. Bice D. Synthetic stratigraphy of carbonate platform and basin systems. Geology, 1988, 16: 703-706
    5. Burton R,Kendall C G St C,L erche I. Out of our depth:on the impossibility of fathoming eustacy from the stratigraphic record. Earth Science Reviews, 1987,24:237-277
    6. Carlos H.L. High-Resolution Stratigraphy and Sedimentary Evolution of Coarse-Grained Canyon-Filling Turbidites from the Campos Basin,Offshore Brazil. Journal of Sedimentary Research, 1995, 65 (4) : 426-442.
    7. Clark J. D & Pickering K. T. Architectural Elements and Growth Patterns of Submarine Channels: Application to Hydrocarbon Exploration. AAPG. Bulletin. 1996, 80(2) : 194-211.
    8. Cross T. A and Margaret A.Lessenger. Correlation Strategies for Clastic Wedges. Department of Geology and Geological engineering. Colorado school of Mines, Golden USA.
    9. Cross, T.A., and Kusumanegara, Y., unpublished, Stratigraphic controls on petrophysical attributes and fluid-flow pathways in an exhumed fluvial reservoir
    10. Cross, T.A., and Navarre, J.C., unpublished, Recognition and high-resolution correlation of continental stratigraphic cycles, Mesa Verde Group, San Juan Basin, Colorado.
    11. Cross, T.A., submitted, Stratigraphic Controls on Reservoir Attributes in Continental Strata, Earth Science Frontiers.
    12. Cross, T.A., and Lessenger, M.A., submitted, The scientific basis for stratigraphic inversion, Geological Society of America Bulletin.
    13. Cross T.A ,Controls on coal distribution in transgressive-regressive cycles,Upper Cretaceous,Western Interior,U.S.A.In:Wilgaus C.K,et al.Sea-level changes: An integrated approach. SEPM Special Publication, 1988, (42) : 371-380.
    14. Cross, T. A., 1990, ed., Quantitative Dynamic Stratigraphy: New Jersey, Prentice Hall, 622 p.
    15. Cross, T.A., 1991, Field-scale reservoir characterization, in L.W. Lake, H. B. Carroll, Jr., and T. C. Wesson, eds., Reservoir Characterization Ⅱ: Academic Press, Orlando, Florida, p. 493-497.
    
    
    16. Cross T. A, High-resolution stratigraphic correlation from the perspectives of base-level cycles and sediment accommodation, in Dolson,J., ed., Unconformity related hydrocarbon exploration and accumulation in clastic and carbonate setting. Short Course Notes ,rocky mountain Association of Geologists, 1991, 28-41.
    17. Cross, T.A., 1993, Foreword to Subsurface Reservoir Characterization from Outcrop Observations: Proceedings of the 7th IFP Exploration and Production Research Conference: Paris, Technip, p. v-x.
    18. Cross, T.A., and Raynolds, R.G., 1993, Illustration of Correlation Techniques, Facies Prediction and Reservoir Compartment Identification through Genetic Stratigraphy    19. Cross, T.A., 1993, Applications of High-Resolution Sequence Stratigraphy in Petroleum Exploration and Production    20. Cross, T.A., Baker, M.R., Chapin, M.A., Clark, M.S., Gardner, M.H., Hanson, M.S., Lessenger, M.A., Little, L.D., McDonough, K.J., Sonnenfeld, M.D., Valasek, D.W., Williams, M.R., and Witter, D.N., 1993, Applications of high-resolution sequence stratigraphy to reservoir analysis, in R. Eschard, and B. Doligez, eds., Subsurface Reservoir Characterization from Outcrop Observations: Proceedings of the 7th IFP Exploration and Production Research Conference: Paris, Technip, p. 11-33.
    21. Cross, T.A., 1994, Applications of high-resolution sequence stratigraphy to reservoir analysis: The Interstate Oil and Gas Compact Commission 1993 Annual Bulletin, p. 24-39.
    22. Cross T. A Stratigraphic Architecture , Correlation Concepts, Volumetric Partioning , Facies Differentiation, and Reservoir Compartmentalization from the Perspective of High Resolution Sequence Stratigraphy. Research report of the genetic stratigraphy research group,DGGE,CSM,1994: 28-41
    23. Cross, T.A., and Homewood, P.W., 1997, Amanz Gressly's Role in Founding Modern Stratigraphy: Geological Society of America Bulletin, v. 109, p. 1617-1630. .
    24. Cross, T.A., and Lessenger, M.A., 1997, Correlation strategies for clastic wedges, in E.B. Coalson, J.C. Osmond, And E.T. Williams, eds., Innovative Applications of Petroleum Technology in the Rocky Mountain Area: Rocky Mountain Association of Geologists, Denver, p. 183-203.
    25. Cross, T.A., and Lessenger, M.A., 1998, Sediment volume partitioning: rationale for stratigraphic model evaluation and high-resolution stratigraphic correlation, in F.M. Gradstein, K.O. Sandvik, and N.J. Milton, eds., Sequence Stratigraphy    26. Cross T. A., Sediment gravity flow in the context of rheology and energy. AAPG(poster) ,1999.
    27. Cross, T.A., and Lessenger, M.A., 1999, Construction and application of a stratigraphic inverse model, in J.W. Harbaugh, W.L. Watney, E.C. Rankey, R. Slingerland, R.H. Goldstein, E.K. Franseen, eds, SEPM Special Publication 62 Numerical Experiments in Stratigraphy:
    
    Recent Advances in Stratigraphic and Sedimentologic Computer Simulations: SEPM (Society for Sedimentary Geology), p. 69-83.
    28. Emiliano Mutti , Turbidite Sandstones 1992 Amilcare Pizzi S.P.A. arti grafiche,Cinisello Balsamo(Milan) Italy
    29. Gardner, M.H., and Cross, T.A., 1994, Middle Cretaceous paleogeograpahy of Utah, in M.V. Caputo, J.A. Peterson, and K.J. Franczyk, eds., Mesozoic Systems of the Rocky Mountain region, USA: Rocky Mountain Section SEPM (Society for Sedimentary Geology), Denver, p. 471-502.
    30. Homewood, P.W., Guillocheau, F., Eschard, R., and Cross, T.A., 1992, High resolution correlation and genetic stratigraphy: An integrated approach: Bulletin Centres Recherche Exploration-Production Elf Aquitaine, v. 16, no. 2, p. 357-381.
    31. Lawrence D T,Doyle M,Aigner T. Stratigraphic simulation of sedimentary basinxoncepts and calibration. AAPG,Bull., 1990,74(3) :273-295
    32. Lessenger, M.A., and Lerche, I, 1999, White paper in inverse modeling, in J.W. Harbaugh, W.L. Watney, E.C. Rankey, R. Slingerland, R.H. Goldstein, E.K. Franseen, eds, SEPM Special Publication 62 Numerical Experiments in Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Computer Simulations: SEPM (Society for Sedimentary Geology), p. 29-31.
    33. Lessenger, M.A., and Cross, T.A., 1996, An inverse Stratigraphic simulation model    34. L i Y Y,Lerche I,Perlmutter M A. Global cyclostratigraphy:a model of carbonate growth pattern. Marine and Petroleum Geology, 1993,10 (6) : 20-63
    35. McDonough, K.J., and Cross, T.A., 1991, Late Cretaceous sea level from a paleoshoreline: Journal of Geophysical Research, v. 96, B4, p. 6591-6607.
    36. McPherson Jhon . G . etal . Fan deltas and braid deltas:Conceptual problems,Fan Deltas:Sedimentology and Tectonic settings. Eds,W. Nemec&R. J. Steel,1988
    37. Nemec W. & R. J. Steel. What is a fan delta and how do we recognize it? Fan deltas :Sedimengology and Tectonic settings Eds, W. Nemec & R. J. Steel,1988
    38. Orton G. T. A spectrum of Middle Ordovician fan deltas and braidplain deltas,North Wales:a consequence of varying fluvial clastic input,Fan Deltas:Sedimentology and Tectonic settings. Eds,W. Nemec&R. J. Steel,1988
    39. Posamentier H.W et al. High Resolution Sequence Stratigraphy-the East Coulee Delta Alberta. Journal of Sedimentary Petrology, 1992, 62 (2) : 310-317
    40. Posamentier H.W et al. Siliciclastic Sequence Stratigraphy and petroleum Geology-Where to From Here ?. AAPG Bulletin. 1993, 77(5) : 731-742.
    41. Ramon, J.C., and Cross, T.A., 1997, Characterization and prediction of reservoir architecture and petrophysical properties in fluvial channel sandstones, Middle Magdalena Basin, Colombia: Ciencia, Tecnologia y Futuro, v. 1, no. 3, p. 19-46.
    42. Perlmutter M A,Matthews M D. Global cyclostratigraphy------a model. In:Cross T A ed. Quantitative Dynamic Stratigraphy. New Jersey:Prentice Hall,1989. 3-20
    43. Ramon, J.C., and Cross, T.A., submitted, Correlation strategies and methods in continental
    
    strata, Middle Magdalena Basin, Columbia, Journal of Sedimentary Research.
    44. Scholle,P.A., and Spearing,D. ,1982,Sandstone. Depositional Environments, p365-403: Sedimentology of Submarine Fans, AAPG
    45. Schlager W. Accommodation and supply--a dual control on stratigraphic sequence. Sedimentary Geology, 1993,86: 111 - 136
    46. Shelton, J.L., and Cross, T.A., 1990, The influence of stratigraphy in reservoir simulation, in T.A. Cross, ed., Quantitative Dynamic Stratigraphy: New Jersey, Prentice-Hall, p. 589-600.
    47. Sheh,Amihai, 1979,Late Pleistocene fan deltas along the Dead Sea rift. Joural of Sedimentary Petrology, vol. 49,NO. 2
    48. Smith, N.D., Cross, T.A., Dufficy, J.P., and Clough, S.R., 1989, Anatomy of an avulsion: Sedimentology, v. 36, p. 1-23.
    49. Sonnenfeld, M.D., and Cross, T.A., 1993, Volumetric partitioning and facies differentiation within the Permian Upper San Andres Formation of Last Chance Canyon, Guadalupe Mountains, New Mexico, in R.G. Loucks and J.F. Sarg, eds., Recent advances and applications of carbonate sequence stratigraphy: American Association of Petroleum Geologists Memoir 57, p. 435-474.
    50. Tetzlaff D M,Harbaugh JW. Simulating Clastic Sedimentation. New York:Van Nostrand Reinhold, 1989.1-202
    51. Tipper J C, 2000, Patterns of Stratigraphic Cyclicity. Journal of Sedimentary Research, Vol.70, No.6. November, p. 1262-1279
    52. Van Wagoner J C et al. Sequence Stratigraphy in Well Logs,Cores and Outcrops:Concepts for highresolution correlation of time and facies.AAPG Methods in Exploration Series, 1990
    53. Wescott, W. A. ,and Ethridge,F. G. ,1980,Fan-delta Sedimentary and Tectonic Set-Ting,Yallahs Fan Delta, southeast Jamacia. AAPG, vol. 64,NO. 3
    54. Xue L., W.E. Galloway. High-Resolution Depositional Framework of the Paleocene Middle Wilcox Strata, Texas Coastal Plain. AAPG Bulletin. 1995, 79(2): 205-230.
    55.Cross T.A著,杜宁平 译.据高分辨率层序地层学认识地层结构对比概念体积配分相分异和储层的间隔单元划分.国外油气勘探,1996,8(3):285-294.
    56.C.K.威尔格斯著.徐怀大等译.层序地层学原理(海平面变化综合分析).北京:石油工业出版社.1993
    57.陈发亮等 东濮凹陷沙河街组盐岩成因研究 沉积学报 2000 18(3):384-394。
    58.学报.1996,20(6):101-106
    59.陈恭洋等,涠 12.1油田高分辨率层序地层研究与储层预测,江汉石油学院研究报告,1999
    60.陈亮,张一伟,熊琦华.严重非均质油藏高含水期剩余油分布研究进展.石油大学 邓宏文.美国层序地层研究中的新学派—高分辨率层序地层学.石油天然气地质,1995,16(2):90-97
    61.池英柳等 陆相断陷盆地层序成困初探 石油学报 1996,17(5)19-26
    62.邓宏文,王洪亮,李熙韶,层序地层地层基准面的识别、对比技术及应用 石油与天然气地质,1996,17(3):177—184
    63.邓宏文,徐长费,王洪亮.陆东凹陷上依罗统层序地层与生储盖组合 石油与天然气地
    
    质,1998,19(4):275—279
    64.邓宏文、王洪亮,高分辩率层序地层对比在河流相中的应用,石油与天然气地质,1997,18(2):90-95
    65.邓宏文 王红壳 齐-曙地区沙三段-沙四段隐蔽油气藏预测(中国地质大学(北京)研究报告) 2000
    66.杜春彦,郑荣才 陕北长6油层组短期基准面旋回与储层非均质性的关系 成都理工学院学报 1999 No.1
    67.樊太亮 沉积基准面变化分析技术及应用 石油与天然气地质,1997,18(2):120-127
    68.冯晓宏等.厚油层非均质特征描述的新方法—水力(渗流)单元分析.石油学报,1994,15(专刊):149-158.
    69.顾家裕等,层序地层学及其在油气勘探开发中的应用论文集,北京:石油工业出版社,1997
    70.顾家裕.中国东部古代扇—三角洲沉积 石油与天然气地质 1984 5(3):236—244
    71.顾家裕 东濮凹陷盐岩形成环境 石油实验地质 1986 8(1):22~28
    72.韩大匡.深度开发高含水油田提高采收率问题的探讨.石油勘探与开发.1995,22(5):47-55
    73.胡受权等 试论控制断陷湖盆陆相层序发育的影响因素 沉积学报 2000,
    74.胡受权等.泌阳断陷下第三系核三上亚段层序地层学研究 地层学杂志 1999 Vol.23 No.2
    75.金强 东濮坳陷早第三纪盐湖成因的探讨——种深水成因模式华东石油学院学报1985 9(1)30
    76.李儒峰,鲍志东 鄂尔多斯盆地中部马五1亚段高分辨率层序地层格架中风化成岩模式和储层特征沉积学报199917(3)
    77.李思田等,鄂尔多斯盆地侏罗纪延安组三角洲及河流砂体内部构成及不均一性研究,成果报告,1991
    78.柳梅青,陈亦军,郑荣才.川西新场气田蓬莱镇组陆相地层高分辨率层序地层学研究 沉积学报,2000,18(1):50—56
    79.吕晓光等.高含水后期油田细分单砂层的地质研究,新疆石地质.1993,14(4):345-349.
    80.李思田等,论沉积盆地的等时地层和基本建造单元,沉积学报,1992,10(4)
    81.李思田,含能源盆地沉积体系——中国内陆和近海主要沉积体系类型的典型分析,武汉:中国地质大学出版社,1996
    82.林克湘、张昌民等,地面地下对比建立储层精细地质模型,北京:石油工业出版社,1995
    83.穆龙新等.不同开发阶段的油藏描述技术和方法.中国石油天然气总公司油气藏经营管理座谈会.中国重庆1996.
    84.裘怿楠,储层地质模型,石油学报,1991,12(4):55-62
    85.裘怿楠等,油气储层评价技术北京 石油工业出版社 1991
    86.裘怿楠.裘怿楠石油开发地质文集 北京 石油工业出版社 1997。
    87.石广仁等 盆地模拟技术新进展(一) 石油勘探与开发 1997,24(3):38-44。
    
    
    88.王洪亮,邓宏文.地层基准面原理在湖相储层预测中的应用.石油与天然气地质,1997,18(2):96-102
    89.王洪亮 邓宏文 东濮凹陷濮卫环洼带层序划分与沉积体系 古地理学报2000 2(1):49-53
    90.王启民,郑兴范,林影.非均质多层砂岩油田高含水后期剩余油分布.大庆石油地质与开发.
    91.王英民 王勇 断陷湖盆陆相层序过程—响应机制的单因素计算机模拟
    92.吴朝容,郑荣才.辽河油田西部洼陷沙河街组高分辨率层序地层学特征 成都理工学院学报,1999,26(4):375—381
    93.吴崇筠,薛叔浩等.中国含油气盆地沉积学.北京:石油工业出版社,1992
    94.吴智勇等 盆地地层学定量模拟综述 地质科技情报 199716(1):34-38
    95.万重焱等 濮城油田地质规律与勘探经验(中原石油勘探局内部报告) 1994
    96.愈启泰.论提高油田采收率的战略与方法.石油学报.1996,17(2):53-61
    97.魏魁生,徐怀大,叶淑蓉等.松辽盆地白空系高分辨率层序地层格架 石油与天然气地质,1997,18(1):4—7
    98.熊琦华等.岩石物理相研究方法初探—以辽河冷东—雷家地区为例.石油学报.1994,15(专刊):68-75.
    99.薛良清,层序地层学研究现状、方法与前景,石油勘探与开发,1995,22(5)
    100.尹太举等 依据高分辨率层序地层学进行剩余油分布预测 石油勘探与开发 2001,No.4
    101.游俊,郑浚茂,王德发 陆相层序地层学应用中几个问题的讨论 石油实验地质 1999 No.2 Vol.21
    102.张昌民,储层研究中的层次分析法,石油与天然气地质,1992,13(3):344-350
    103.张昌民等,三角洲储层露头精细解剖(中国石油天然气总公司九五攻关课题),江汉石油学院研究报告,2000
    104.张昌民等 枣北地区孔一段枣Ⅱ、Ⅲ油组储层精细对比与剩余油潜力分析研究江汉石油学院研究报告 1999
    105.张昌民,樊中海等.双河油田油砂体建筑结构分析与控制剩余油分布因素研究.研究报告
    106.张建军等 东濮凹陷下第三系沙河街组层序地层划分及盐岩成因探讨 断块油气田 19985(5):18-22
    107.郑荣才,尹世民,彭军.基准面旋回结构与叠加样式的沉积动力学分析.沉积学报,2000,18 (3)
    108.郑荣才,吴朝容,叶茂才.浅谈陆相盆地高分辨率层序地层研究思路 成都理工学院学报,2000,27(3):241—244
    109.郑荣才,彭军,吴朝容。陆相盆地基准面旋回的级次划分和研究意义 沉积学报 2000,
    110.郑荣才,吴朝容.西部凹陷深层沙河街组生储盖组合的层序分析 成都理工学院学报,1999,26(4):348—356
    111.中国石油学会石油地质委员会 国外浊流和扇三角洲研究 1986石油工业出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700