表面活性剂和环糊精溶液中多氯联苯(PCBs)的光降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多氯联苯(PCBs)是一类广泛分布的环境污染物,其理化性质稳定,且抗生物降解,但它可以被紫外光所降解。本文在较全面地综述了国内外有关PCBs光降解的研究概况的基础上,研究了PCBs在表面活性剂溶液和环糊精溶液中的紫外光降解情况,分析了PCBs的光降解途径和降解动力学,建立了PCBs在表面活性剂溶液中的光降解反应动力学模型。本文还采用表面活性剂和环糊精溶液对受PCBs污染的天然土壤进行了清洗,并对洗脱液的紫外光降解情况进行了研究。最后论文还从量子化学的角度对PCBs的光降解行为进行了理论上的分析。
     通过PCBs在表面活性剂溶液中的光降解实验发现,PCBs在表面活性剂溶液中的光降解反应与其在水溶液中的光降解反应相比得到了强化,且在阴离子表面活性剂溶液中的光降解反应速率和量子产率均略高于非离子表面活性剂溶液中。
     表面活性剂溶液中PCBs初始浓度影响其光降解反应速度,浓度较低时光解反应速度较快,量子产率较高,且光化学反应速率常数(y)与PCBs初始浓度(x)之间存在y=axb的关系。实验还发现表面活性剂溶液中的溶解氧分子对光降解反应速率的影响不大,这预示PCB在表面活性剂溶液中可能是在单线态下发生C-Cl键断裂而直接导致光解脱氯,对此仍需进一步的研究来确认。实验还建立了表面活性剂溶液中PCBs光降解反应动力学模型,模型的模拟曲线与实验数据能较好地吻合。
     多氯联苯在羟丙基-β-环糊精(HPCD)溶液中可有效地为紫外光所分解,通过对各个时段光解试样的紫外-可见吸收光谱的检测,发现随光解时间的增加其吸收光谱中的κ波段逐渐发生红移。利用气相色谱、气相色谱-质谱联用仪对试样做进一步检测确定光解产物为含氯量较少的多氯联苯,并且反应物与其产物之间存在很好的质量平衡关系。此结果表明在HPCD溶液中从邻位氯原子开始的逐步脱氯反应为所试PCBs的主要光解途径。PCBs在HPCD溶液中的光降解反应为假一级反应,试验测得2,2',4,4'CB和2,4,4'CB的光降解反应速率常数和量子产率分别为:0.00816 s-1和0.0183、0.00911 s-1和0.0124。由于环糊精为天然化合物,环境毒性很低,所以在环境修复中仍具有良好的应用价值。
     利用表面活性剂和环糊精溶液可以有效地将受污染土壤中的PCBs洗脱出来。当以阴离子表面活性剂十二烷基硫酸钠(SDS)作为清洗剂时,SDS浓度为10g/L,清洗液容量(mL)与土壤质量(g)比为20:1时的清洗效果较好。但是以HPCD作为清洗剂时,难以找到最佳的HPCD浓度和清洗液容量,随着HPCD浓度和清洗液容量的升高PCBs的洗脱量增加。采用SDS和HPCD溶液清洗受污染土壤的过程均可在较短的时间内达到平衡。试验还对SDS、Brij35和HPCD三种洗脱液进行了紫外光降解,其中的PCBs可被有效地降解,且浊度较高、溶液中的颗粒粒径较大时对洗脱液的光解反应速度影响较大,pH值对洗脱液的光解反应速度影响较小。
     最后,论文还利用量子化学软件探讨了PCBs分子的双面夹角、生成热、前线轨道能量和总能量与其光降解性质之间的关系,并采用半经验方法(PM6)逐步分析了2,2',4,4'CB的光降解途径,从理论上进一步证明了含邻位氯原子的PCB分子受到紫外光辐照发生降解反应时其邻位氯原子会优先脱除的结论。
Polychlorinated biphenyls (PCBs) are wildly distributed environmental contaminants. Though they are physically and chemically stable and generally recalcitrant to biodegradation, they are photodegradable. On the basis of comprehensively reviewing references on PCBs photolysis both in china and abroad, the ultraviolet irradiation of PCBs dissolved in surfactant and cyclodextrin solutions was studied. Pathways and kinetics of PCB photodecomposition have been evaluated and kinetic models for the PCB degradation were then established. Washing of PCB contaminated soils by using of surfactant and cyclodextrin solutions following by UV degradation of the soil washings were also studied. Finally, the photolysis behaviors of PCBs were discussed from the viewpoint of quantum chemistry.
     It was found that the photodechlorination of PCBs in surfactant solutions was enhanced relative to that in water. The photolysis rates in anionic surfactant solutions were higher than those in nonionic surfactant solutions. The initial concentrations of PCBs in surfactant solutions also affected the photolysis rates and quantum yields. The lower the initial PCB concentrations, the faster the photolysis rates and the higher the quantum yields. The relationship between photolysis rates (y) and initial concentrations (x) follows y=axb. It was also found that the molecules of oxygen dissolved in solutions had few effects on photolysis rates, which indicated that cleavage of C-Cl at singlet state would directly contribute to PCB photodechlorination. Further experiments were necessary to confirm this result in the solution of complete oxygen depletion. Kinetic models were built for the photodegradation of PCBs in surfactant solutions, and found them fit to the experimental data quite well.
     PCBs could be photodecomposited in hydroxypropyl-β-cyclodextrin (HPCD) solutions by UV irradiation. By measuring UV-VIS spectra of photolyzed samples, bathochromic shift ofκband of the spectra was found as photolysis time increased. Less chlorinated PCB congeners were identified as the photoproducts of the tested PCB by using a GC-ECD and a GC-MS. Excellent mass balance existed between the tested PCB and its products. These results indicated that stepwise dechlorination initiated at ortho chlorine was the main photodegradation pathway of the tested PCB congener. Photodechlorination of PCBs in HPCD solutions followed pseudo-first-order kinetics. The photolysis rates and quantum yields of 2,2',4,4'CB and 2,4,4'CB were 0.00816 s-1 and 0.0183, 0.00911 s-1 and 0.0124, respectively. Since the cyclodextrins were natural compounds with little environmental toxicity, they were valuable in environmental remediations.
     PCBs could be effectively washed out from field contaminated soil by using surfactant and cyclodextrin solutions. When applying anionic surfactant, sodium dodecyl sulfate (SDS), at concentration of 10 g/L and the ratio of solution volume (mL) to soil mass (g) was 20:1, the washing efficiency reached the top. When using HPCD as washing solution, it was hard to obtain the optimal concentration and ratio of washing solution volume to soil mass. Increasing the concentration and volume of HPCD solution would result in increasing amount of PCB washed from soils. The washing balance was quickly reached when SDS and HPCD solutions were applied. PCBs in nonionic surfactant Brij35, as well as SDS and HPCD soil washings can be degraded effectively by UV irradiation. The higher turbidity of the soil washing solution and larger particles in it would deteriorate the photolysis of PCB in soil washings, but the pH has little effect on the PCB photolysis rates.
     At the end, the relationships between photochemical behavior and dihedral angles, heats of formation, energies of frontier molecular orbitals, and total energy of PCB molecules were addressed. The photolysis pathway of 2,2',4,4'CB was illustrated theoretically by using semi empirical computational methods (PM6). From the points of quantum chemistry, the stepwise dechlorination with ortho chlorine being preferentially removed was further proved to be the main mechanism of PCB photodegradation by UV irradiation.
引文
[1] Hutzinger O, Safe S, Zitko V. The chemistry of PCB's. Cleveland: CRC Press, 1974, 7-221
    [2] Sawhney B L. Chemistry and properties of PCBs in relation to environmental effects. In:Waid J S. PCBs and the Environment. Boca Raton:CRC Press, 1986, 47-64
    [3] 崔明珍. 废弃物化学组分的毒理和处理技术. 北京: 中国环境科学出版社, 1993, 102-132
    [4] Mullins M D, Pochini C M, McCrindle S, et al. High-resolution PCB analysis: synthesis and chromatographic properties of all 209 PCB congeners. Environmental Science and Technology, 1984, 18(6): 468-476
    [5] 余刚, 牛军峰, 黄俊. 持久性有机污染物:新的全球性环境问题. 北京: 科学出版社, 2005, 10-217
    [6] 毕新慧, 徐晓白. 多氯联苯的环境行为. 化学进展, 2000, 12(2): 152-160
    [7] 孟庆昱, 储少岗, 徐晓白. 多氯联苯的环境吸附行为研究进展. 科学通报, 2000, 45(15): 1572-1583
    [8] Xing Y, Lu Y, Dawson R W, et al. A spatial temporal assessment of pollution from PCBs in China. Chemosphere, 2005, 60(6): 731-739
    [9] 祝心如, 王怡中, 王大力等. 白洋淀地区的多氯联苯污染研究. 环境科学学报, 1995, 15(1): 86-91
    [10] 李洪, 付宇众, 周传光等. 大连湾和锦州湾表层沉积物中有机氯农药和多氯联苯的分布特征. 海洋环境科学, 1998, 17(02): 73-76
    [11] 张祖麟, 陈伟琪, 哈里德等. 九龙江口水体中多氯联苯的研究. 云南环境科学, 2000, 19(S1): 124-129
    [12] 张俊增, 王兆文, 王秀凤. 东营市有机污染物(多氯联苯)的污染调查与防治对策. 山东环境, 1999(4): 22-23
    [13] Zhou J L, Maskaoui K, Qiu Y W, et al. Polychlorinated biphenyl congeners and organochlorine insecticides in the water column and sediments of Daya Bay, China. Environmental Pollution, 2001, 113(3): 373-384
    [14] Zhang Q H, Jiang G B. Polychlorinated dibenzo-p-dioxins/furans and polychlorinated biphenyls in sediments and aquatic organisms from the Taihu Lake, China. Chemosphere, 2005, 61(3): 314-322
    [15] 习志群, 储少岗, 徐晓白等. 东湖水体中多氯联苯的研究. 海洋与湖沼, 1998, 29(4): 436-440
    [16] 刘仁沿, 吴世培, 王斌. 长江口以北沿海主要经济贝类中有机氯农药和多氯联苯的分布及评价. 海洋环境科学, 1996, 15(3): 29-35
    [17] 陈满荣, 俞立中, 许世远等. 长江口潮滩沉积物中PCBs及其空间分布. 海洋环境科学, 2003, 22(2): 20-23
    [18] 刘华林, 杨毅, 刘敏等. 长江口湖滩表层沉积物中PCBs和OCPs的分布. 中国环境科学, 2003, 23(2): 215-219
    [19] 陈满荣, 俞立中, 许世远等. 长江口PCBs污染及水环境PCBs研究趋势. 环境科学与技术, 2004, 27(5): 24-25
    [20] 申荣艳, 骆永明, 章钢娅等. 长江三角洲地区城市污泥中多氯联苯和有机氯农药含量与组分研究. 土壤, 2006, 38(5): 539-546
    [21] 安琼, 董元华, 王辉等. 长江三角洲典型地区农田土壤中多氯联苯残留状况. 环境科学, 2006, 27(3): 528-532
    [22] 程书波, 刘敏, 刘华林等. 长江口滨岸水体悬浮颗粒物中PCBs分布特征. 环境科学, 2006, 27(1): 110-114
    [23] 张祖麟, 洪华生, 哈里德等. 厦门港表层水体中有机氯农药和多氯联苯的研究. 海洋环境科学, 2000, 19(3): 48-51
    [24] 陈伟琪, 张珞平, 王新红等. 厦门岛东部和闽江口沿岸经济贝类中持久性有机氯农药和多氯联苯的残留水平. 台湾海峡, 2001, 20(3): 329-334
    [25] Chen W Q, Zhang L P, Xu L, et al. Residue levels of HCHs, DDTs and PCBs in shellfish from coastal areas of east Xiamen Island and Minjiang Estuary, China. Marine Pollution Bulletin, 2002, 45(1-12): 385-390
    [26] Kang Y H, Sheng G Y, Fu J M, et al. Polychlorinated biphenyls in surface sediments from the Pearl River delta and Macau. Marine Pollution Bulletin, 2000, 40(9): 794-797
    [27] 聂湘平, 蓝崇钰, 栾天罡等. 珠江广州河段水体、沉积物及底栖生物体内多氯联苯有机污染物的初步研究. 广州环境科学, 2001, 16(2): 6-9
    [28] 聂湘平, 蓝崇钰, 栾天罡等. 珠江广州段水体、沉积和及底栖生物中的多氯联苯. 中国环境科学, 2001, 21(5): 417-421
    [29] 方展强, 张润兴, 黄铭洪. 珠江河口区翡翠贻贝中有机氯农药和多氯联苯含量及分布. 环境科学学报, 2001, 21(1): 113-116
    [30] 陈伟琪, 洪华生, 张珞平等. 珠江口表层沉积物和悬浮颗粒物中的持久性有机氯污染物. 厦门大学学报(自然科学版), 2004, 43(B08): 230-235
    [31] Nie X P, Lan C Y, Wei T L, et al. Distribution of polychlorinated biphenyls inthe water, sediment and fish from the Pearl River estuary, China. Marine Pollution Bulletin, 2005, 50(5): 537-546
    [32] 储少刚, 徐晓白. 多氯联苯在典型污染地区环境中的分布及其环境行为. 环境科学学报, 1995, 15(4): 423-432
    [33] 耿存珍, 李明伦, 杨永亮等. 青岛地区土壤中OCPs和PCBs污染现状研究. 青岛大学学报(工程技术版), 2006, 21(2): 42-48
    [34] 王泰, 张祖麟, 黄俊等. 海河与渤海湾水体中溶解态多氯联苯和有机氯农药污染状况调查. 环境科学, 2007, 28(4): 730-735
    [35] Zhang Z L, Huang J, Yu G, et al. Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environmental Pollution, 2004, 130(2): 249-261
    [36] Shen M, Yu Y J, Zheng G J, et al. Polychlorinated biphenyls and polybrominated diphenyl ethers in surface sediments from the Yangtze River Delta. Marine Pollution Bulletin, 2006, 52(10): 1299-1304
    [37] Han J, Shen H, Tie X, et al. Polychlorinated dibenzo-p-dioxins/furans and polychlorinated biphenyls in fresh fishes from Qiantangjiang River, China. Chemosphere, 2007, 68(1): 112-119
    [38] Rice C P, OKeefe P W, Kubiak T J. Source, pathways, and effects of PCBs, dioxins, and dibenzofurans. In:Hoffman D J, Rattner B A. Handbook of Ecotoxicology. 2nd ed. Boca Raton:CRC Press, 2002: 501-573
    [39] 戴树桂. 环境化学. 北京: 高等教育出版社, 1997, 235-298
    [40] 申秀英, 许晓路. 多氯联苯的生物效应研究概况. 农业环境与发展, 1995, 12(4): 26-29
    [41] Eisler R. Handbook of chemical risk assessment : Health hazards to humans, plants, and animals, Volume 2: Organics. Boca Raton: CRC Press, 2000, 532-728
    [42] Fishbein L. Toxicity of chlorinated biphenyls. Annual Review of Pharmacology and Toxicology, 1974, 14: 139-156
    [43] Kirnbrough R D. Human health effects of polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs). Annual Review of Pharmacology and Toxicology, 1987, 27: 87-111
    [44] Gierke J S, Powers S E. Increasing implementation of in situ treatment technologies through field-scale performance assessments. Water Environment Research, 1997, 69(2): 196-205
    [45] Mackay D M, Cherry J A. Groundwater contamination: pump-and-treatremediation. Environmental Science and Technology, 1989, 23(6): 630-636
    [46] Knox R C, Sabatini D A, Harwell J H, et al. Surfactant remediation field demonstration using a vertical circulation well. Ground Water, 1997, 35(6): 948-953
    [47] Sabatini D A, Knox R C, Harwell J H, et al. Design of a surfactant remediation field demonstration based on laboratory and modeling studies. Ground Water, 1997, 35(6): 954-963
    [48] Chen L, Knox R C. Using vertical circulation wells for partitioning tracer tests and remediation of DNAPLs. Ground Water Monitoring and Remediation, 1997, 17(3): 161-168
    [49] Ellis W D, Payne J R, Tafur A N, et al. Development of chemical countermeasures for hazardous waste contaminated soil. Edison: U.S. Environmental Protection Agency, EPA/600/D-84/039, 1984
    [50] Ellis W D, Payne J R, McNabb G D. Treatment of contaminated soils with aqueous surfactants. Cincinnati: U.S. Environmental Protection Agency, EPA/600/2-85/129, 1985
    [51] Abdul A S, Gibson T L, Rai D N. Selection of surfactants for the removal of petroleum products from shallow sandy aquifers. Ground Water, 1990, 28(6): 920-926
    [52] Ang C C, Abdul A S. Aqueous surfactant washing of residual oil contamination from sandy soil. Ground Water Monitoring and Remediation, 1991, 11(2): 121-127
    [53] Abdul A S, Gibson T L. Laboratory studies of surfactant-enhanced washing of polychlorinated biphenyl from sandy material. Environmental Science and Technology, 1991, 25(4): 665-671
    [54] Rosen M J. Surfactants and interfacial phenomena. 3rd ed. Hoboken: John Wiley & Sons, Inc., 2004, 10-450
    [55] Abdul A S, Gibson T L, Ang C C, et al. In situ surfactant washing of polychlorinated biphenyls and oils from a contaminated site. Ground Water, 1992, 30(2): 219-231
    [56] Abdul A S, Ang C C. In situ surfactant washing of polychlorinated biphenyls and oils from a contaminated field site: Phase II pilot study. Ground Water, 1994, 32(5): 727-734
    [57] Jafvert C T, Vanhoof P L, Chu W. The phase distribution of polychlorobiphenyl congeners in surfactant-amended sediment slurries. WaterResearch, 1995, 29(10): 2387-2397
    [58] Chu W, Kwan C Y. Remediation of contaminated soil by a solvent/surfactant system. Chemosphere, 2003, 53(1): 9-15
    [59] Chu W, Choy W K, Hunt J R. Effects of nonaqueous phase liquids on the washing of soil in the presence of nonionic surfactants. Water Research, 2005, 39(2-3): 340-348
    [60] Villiers A. Sur la transformation de la fécule en dextrine par le ferment butyrique. Compt Rend Acad Sci, 1891, 112(6): 536-538
    [61] Dodziuk H. Molecules with holes-cyclodextrins. In:Dodziuk H. Cyclodextrins and their complexes: chemistry, analytical methods, applications. Weinheim:WILEY-VCH, 2006, 1-26
    [62] 高士祥. 环糊精和表面活性剂对有机污染物的增溶及在土壤修复中的应用研究:[南京大学博士学位论文]. 南京: 南京大学环境学院, 1999, 14-15
    [63] Wang X, Brusseau M L. Solubilization of some low-polarity organic compounds by hydroxypropyl-β-cyclodextrin. Environmental Science and Technology. 1993, 27(13): 2821-2825
    [64] Brusseau M L, Wang X, Hu Q. Enhanced transport of low-polarity organic compounds through soil by cyclodextrin. Environmental Science and Technology, 1994, 28(5): 952-956
    [65] Wang X, Brusseau M L. Simultaneous complexation of organic compounds and heavy metals by a modified cyclodextrin. Environmental Science and Technology, 1995, 29(10): 2632-2635
    [66] Brusseau M L, Wang X, Wang W. Simultaneous elution of heavy metals and organic compounds from soil by cyclodextrin. Environmental Science and Technology, 1997, 31(4): 1087-1092
    [67] McCray J E, Brusseau M L. Cyclodextrin-enhanced in situ flushing of multiple-component immiscible organic liquid contamination at the field scale: mass removal effectiveness. Environmental Science and Technology, 1998, 32(9): 1285-1293
    [68] McCray J E, Brusseau M L. Cyclodextrin-enhanced in situ flushing of multiple-component immiscible organic liquid contamination at the field scale: analysis of dissolution behavior. Environmental Science and Technology, 1999, 33(1): 89-95
    [69] Wang J M, Marlowe E M, Miller-Maier R M, et al. Cyclodextrin-enhanced biodegradation of phenanthrene. Environmental Science and Technology, 1211998, 32(13): 1907-1912
    [70] Allan I J, Semple K T, Hare R, et al. Cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and phenols in contaminated soil slurries. Environmental Science and Technology, 2007, In Press
    [71] Bardi L, Martini C, Opsi F, et al. Cyclodextrin-enhanced in situ bioremediation of polyaromatic hydrocarbons-contaminated soils and plant uptake. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57(1): 439-444
    [72] Fenyvesi E, Gruiz K, Verstichel S, et al. Biodegradation of cyclodextrins in soil. Chemosphere, 2005, 60(8): 1001-1008
    [73] Turro N J. Modern molecular photochemistry. Menlo Park: Benjaming/Cummings Publishing Co Inc, 1978, 15-500
    [74] 张建成, 王夺元. 现代光化学. 北京: 化学工业出版社, 2006, 8-95
    [75] MacNeil J D, Safe S, Hutzinger O. The ultraviolet absorption spectra of some chlorinated biphenyls. Bulletin of Environmental Contamination and Toxicology, 1976, 15(1): 66-77
    [76] Bunce N J. Photodechlorination of PCB's: Current status. Chemosphere, 1982, 11(8): 701-714
    [77] Ruzo L O, Zabik M J, Schuetz R D. Photochemistry of bioactive compounds. Photoproducts and kinetics of polychorinated biphenyls. Journal of Agriculture and Food Chemistry, 1974, 22(2): 199-202
    [78] Ruzo L O, Zabik M J, Schuetz R D. Photochemistry of bioactive compounds. Photochemical processes of polychlorinated biphenyls. Journal of the American Chemical Society, 1974, 96(12): 3809-3813
    [79] 雷乐成, 汪大翚. 水处理高级氧化技术. 北京: 化学工业出版社, 2001, 186-288
    [80] Pelizzetti E, Borgarello M, Minero C, et al. Photocatalytic degradation of polychlorinated dioxins and polychlorinated biphenyls in aqueous suspensions of semiconductors irradiated with simulated solar light. Chemosphere, 1988, 17(3): 499-510
    [81] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bulletin of Environmental Contamination and Toxicology, 1976, 16(6): 697-701
    [82] Chiarenzelli J, Scrudato R, Wunderlich M, et al. Photodecomposition of PCBs absorbed on sediment and industrial waste: implications for photocatalytictreatment of contaminated solids. Chemosphere, 1995, 31(5): 3259-3272
    [83] Wang Y, Hong C S. TiO2-mediated photomineralization of 2-chlorobiphenyl: the role of O2. Water Research, 2000, 34(10): 2791-2797
    [84] Herrmann J M, Guillard C, Pichat P. Heterogeneous photocatalysis : an emerging technology for water treatment. Catalysis Today, 1993, 17(1-2): 7-20
    [85] Tunesi S, Anderson M A. Photocatalysis of 3,4-DCB in TiO2 aqueous suspensions; effects of temperature and light intensity; CIR-FTIR interfacial analysis. Chemosphere, 1987, 16(7): 1447-1456
    [86] Zhang P C, Scrudato R J, Pagano J J, et al. Photodecomposition of PCBs in aqueous systems using TiO2 as catalyst. Chemosphere, 1993, 26(6): 1213-1223
    [87] Caruana C. Photocatalysts aim to make light work of pollution cleanup. Chemical Engineering Progress, 1995, 91(2): 11-20
    [88] Chiarenzelli J, Scrudato R, Arnold G, et al. Volatilization of polychlorinated biphenyls from sediment during drying at ambient conditions. Chemosphere, 1996, 33(5): 899-911
    [89] Huang I, Hong C, Bush B. Photocatalytic degradation of PCBs in TiO2 aqueous suspensions. Chemosphere, 1996, 32(9): 1869-1881
    [90] Wong K H, Tao S, Dawson R, et al. Optimization of photocatalytic oxidation of 2,2',3,3'-tetrachlorobiphenyl. Journal of Hazardous Materials, 2004, 109(1-3): 149-155
    [91] Hawari J, Demeter A, Samson R. Sensitized photolysis of polychlorobiphenyls in alkaline 2-propanol: dechlorination of Aroclor 1254 in soil samples by solar radiation. Environmental Science and Technology, 1992, 26(10): 2022-2027
    [92] Lin Y, Gupta G, Baker J. Photodegradation of polychlorinated biphenyl congeners using simulated sunlight and diethylamine. Chemosphere, 1995, 31(5): 3323-3344
    [93] Chaudhary S K, Mitchell R H, West P R. Photodechlorination of polychlorinated biphenyls in the presence of hydroquinone in aqueous alcoholic media. Chemosphere, 1984, 13(10): 1113-1131
    [94] Hawari J, Demeter A, Greer C, et al. Acetone-induced photodechlorination of Aroclor 1254 in alkaline 2-propanol: Probing the mechanism by thermolysis in the presence of di-t-butyl peroxide. Chemosphere, 1991, 22(12): 1161-1174
    [95] Lin Y, Gupta G, Baker J. Photodegradation of Aroclor 1254 using simulated sunlight and various sensitizers. Bulletin of Environmental Contamination and Toxicology, 1996, 56(4): 566-570
    [96] Lin Y, Teng L, Lee A, et al. Effect of photosensitizer diethylamine on the photodegradation of polychlorinated biphenyls. Chemosphere, 2004, 55(6): 879-884
    [97] Freeman P K, Srinivasa R, Campbell J A, et al. The photochemistry of polyhaloarenes. 5. Fragmentation pathways in polychlorobenzene radical anions. Journal of the American Chemical Society, 1986, 108(18): 5531-5536
    [98] Lin Y, Gupta G, Baker J. Photodegradation of Aroclor 1254 using diethylamine and simulated sunlight. Journal of Hazardous Materials, 1996, 45(2-3): 259-264
    [99] Chu W, Kwan C Y. The direct and indirect photolysis of 4,4'-dichlorobiphenyl in various surfactant/solvent-aided systems. Water Research, 2002, 36(9): 2187-2194
    [100] Chu W, Kwan C Y. Reactor design and kinetics study of 4,4'-dichlorobiphenyl photodecay in surfactant solution by using a photosensitizer and hydrogen source. Water Research, 2003, 37(10): 2442-2448
    [101] Crosby D G, Moilanen K W. Photodecomposition of chlorinated biphenyls and dibenzofurans. Bulletin of Environmental Contamination and Toxicology, 1973, 10(6): 372-377
    [102] Bunce N J. Photolysis of 2-chlorobiphenyl in aqueous acetonitrile. Chemosphere, 1978, 7(8): 653-656
    [103] Moore T, Pagni R M. Unusual photochemistry of 4-chlorobiphenyl in water. Journal of Organic Chemistry, 1987, 52(5): 770-773
    [104] Miao X S, Chu S G, Xu X B. Photodegradation of 2,2',5,5'-tetrachlorobiphenyl in hexane. Bulletin of Environmental Contamination and Toxicology, 1996, 56(4): 571-574
    [105] Miao X S, Chu S G, Xu X B. Degradation pathways of PCBs upon UV irradiation in hexane. Chemosphere, 1999, 39(10): 1639-1650
    [106] Nordblom G D, Miller L L. Photoreduction of 4,4'-dichlorobiphenyl. Journal of Agricultural and Food Chemistry, 1974, 22(1): 57-58
    [107] Ondrey G. An easier way to decompose PCBs. Chemical Engineering, 1999, 106(6): 25
    [108] Wong K H, Wong P K. Degradation of polychlorinated biphenyls byUV-catalyzed photolysis. Human and Ecological Risk Assessment, 2006, 12(2): 259-269
    [109] Jakher A, Achari G, Langford C H. Photodechlorination of Aroclor 1254 in a pilot-scale flow through photoreactor. Journal of Environmental Engineering-ASCE, 2007, 133(6): 646-654
    [110] Ramamurthy V. Organic-photochemistry in organized media. Tetrahedron, 1986, 42(21): 5753-5839
    [111] Kalyanasundaram K. Photochemistry in microheterogeneous. Orlando: Academic Press Inc, 1987, 1-141
    [112] Epling G A, Florio E M, Bourque A J, et al. Borohydride, micellar, and exciplex-enhanced dechlorination of chlorobiphenyls. Environmental Science and Technology, 1988, 22(8): 952-956
    [113] Chu W, Jafvert C T, Diehl C A, et al. Phototransformations of polychlorobiphenyls in Brij 58 micellar solutions. Environmental Science and Technology, 1998, 32(13): 1989-1993
    [114] Shi Z. Surfactant-enhanced dissolution and photolysis of chlorinated aromatic compounds (CACS):[Ph.D. dissertation]. Knoxville: University of Tennessee, 1998, 59-131
    [115] 施周, 余健, 袁玉梅等. 表面活性剂溶液中四氯联苯光降解机理研究. 环境科学学报, 2000, 20(增刊): 110-114
    [116] Chu W, Kwan C Y. Amphoteric effect of humic acids in surfactant-aided photolysis of polychlorobiphenyls. Journal of Environmental Engineering-ASCE, 2003, 129(8): 716-722
    [117] Chu W, Chan K H, Kwan C Y, et al. Acceleration and quenching of the photolysis of PCB in the presence of surfactant and humic materials. Environmental Science and Technology, 2005, 39(23): 9211-9216
    [118] Shi Z, LaTorre K A, Ghosh M M, et al. Biodegradation of UV-irradiated polychlorinated biphenyls in surfactant micelles. Water Science and Technology, 1998, 38(7): 25-32
    [119] Parker C A. A new sensitive chemical actinometer .I. Some trials with potassium ferrioxalate. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1953, 220(1140): 104-116
    [120] Hatchard C G, Parker C A. A new sensitive chemical actinometer .II. Potassium ferrioxalate as a standard chemical actinometer. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1956,235(1203): 518-536
    [121] Leifer A. The Kinetics of Environmental Aquatic Photochemistry. Washington DC: American Chemical Society, 1988: 148-150
    [122] Mackay D, Shiu W Y, Ma K, et al. Handbook of physical-chemical properties and environmental fate for organic chemicals. 2nd ed. Boca Raton: CRC Press, 2006, 1484-2047
    [123] Iwasaki I, Utsumi S, Ozawa T. New colorimetric determination of chloride using mercuric thiocyanate and ferric ion. Bulletin of the Chemical Society of Japan, 1952, 25(3): 226
    [124] 王政华. 阴离子表面活性剂(SDS)溶液中PCBs的光降解研究:[湖南大学硕士学位论文]. 长沙: 湖南大学土木工程学院, 2002, 33-56
    [125] Zepp R G. Quantum yields for reaction of pollutants in dilute aqueous solution Environmental Science and Technology, 1978, 12(3): 327-329
    [126] Draper W M, Stephens R D, Ruzo L O. Photochemical surface decontamination: application to a polychlorinated biphenyl spill site. In:Exner J H. Solving hazardous waste problems: learning from dioxins. Washington DC:American Chemical Society, 1987, 350-366
    [127] Epling G A, Florio E. Enhanced photodehalogenation of chlorobiphenyls. Tetrahedron Letters, 1986, 27(6): 675-678
    [128] Lepine F, Milot S, Brochu F. Formation of cyclohexyl-PCBs upon uv irradiation of PCBs in cyclohexane. Bulletin of Environmental Contamination and Toxicology, 1992, 49(4): 514-519
    [129] 芮旻, 高乃云, 徐斌等. 水中腐殖酸对高级氧化联用技术去除内分泌干扰物(DMP)的影响. 环境科学, 2006, 27(12): 2495-2501
    [130] Chu W, Jafvert C T. Photodechlorination of polychlorobenzene congeners in surfactant micelle solutions. Environmental Science and Technology, 1994, 28(13): 2415-2422
    [131] Dulin D, Drossman H, Mill T. Products and quantum yields for photolysis of chloroaromatics in water. Environmental Science and Technology, 1986, 20(1): 72-77
    [132] Freeman P K, Lee Y S. Photochemistry of polyhaloarenes. 12. The photochemistry of pentachlorobenzene in micellar media. Journal of Organic Chemistry, 1992, 57(10): 2846-2850
    [133] Bunce N J, Kumar Y, Ravanal L, et al. Photochemistry of chlorinated biphenyls in iso-octane solution. Journal of the Chemical Society: PerkinTransactions II, 1978(9): 880-884
    [134] Shi Z, LaTorre K A, Ghosh M M, et al. Biodegradation of UV-irradiated polychlorinated biphenyls in surfactant micelles. Water Science and Technology, 1998, 38(7): 25-32
    [135] Shi Z, Wang Z. Photodechlorination of polychlorinated biphenyls (PCBs) dissolved in surfactant solutions. Changsha: Science Press, 2003: 573-578
    [136] 薛定宇, 陈阳泉. 高等应用数学问题的MATLAB求解. 北京: 清华大学出版社, 2004, 212-223
    [137] Nevalainen T, Kolehmainen E. New QSAR models for polyhalogenated aromatics. Environmental Toxicology and Chemistry, 1994, 13(10): 1699-1706
    [138] 童林荟. 环糊精化学—基础与应用. 北京: 科学出版社, 2001: 10-247
    [139] 任朝辉. 多氯联苯的测定方法研究及应用:[四川大学工程硕士学位论文]. 成都: 四川大学化学工程学院, 2004, 22-67
    [140] 刘建立, 徐绍辉, 刘慧. 参数模型在壤土类土壤颗粒大小分布中的应用. 土壤学报. 2001, 41(3): 375-379
    [141] 夏玉宇. 化学员实习手册. 第2版. 北京: 化学工业出版社, 2005, 178-179
    [142] Frame G M, Wagner R E, Carnahan J C, et al. Comprehensive, quantitative, congener-specific analyses of eight aroclors and complete PCB congener assignments on DB-1 capillary GC columns. Chemosphere, 1996, 33(4): 603-623
    [143] 鲁如坤 . 土壤农业化学分析方法 . 北京 : 中国农业科技出版社 , 2000, 195-201
    [144] AWWA. Standard methods for the examination of water and wastewater. 20th ed. Washington DC: American Public Health Association, 1999, 897-1023
    [145] Gould S, Scott R C. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food and Chemical Toxicology, 2005, 43(10): 1451-1459
    [146] Bedard D L, Wagner R E, Brennan M J, et al. Extensive degradation of Aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Applied and Environmental Microbiology, 1987, 53(5): 1094-1102
    [147] 王连生, 王晓栋. 有机污染物定量结构-活性关系研究进展. 见:戴树桂. 环境化学进展. 北京: 化学工业出版社, 2005, 440-463
    [148] Levine I N. Quantum chemistry. 5th ed. Upper Saddle River: Prentice Hall Inc, 2000, 163-693
    [149] Karelson M, Lobanov V S, Katrizky A R. Quantum-chemical descriptors in QSAR/QSPR studies. Chemical Reviews, 1996, 96(3): 1027-1043
    [150] 周公度, 段连运. 结构化学基础. 第3版. 北京: 北京大学出版社, 2002, 163-168
    [151] Jensen F. Introduction to computational chemistry. 2nd ed. Chichester: John Wiley & Sons Ltd, 2007, 115-125
    [152] Mizukami Y. Exploratory ab initio MO calculations on the structures of polychlorinated biphenyls(PCBs): a possible way to make a coplanar PCB stable at coplanar conformation. Journal of Molecular Structure: THEOCHEM, 1999, 488(1-3): 11-19
    [153] Chirico R D, Knipmeyer S E, Nguyen A, et al. The thermodynamic properties of biphenyl. Journal of Chemical Thermodynamics, 1989, 21(12): 1307-1331
    [154] Smith N K, Mccullough J P, Gorin G, et al. Heats of combustion sublimation + formation of 4 dihalobiphenyls. Journal of Physical Chemistry, 1964, 68(4): 940-946
    [155] Platonov V A, Simulin Y N. Experimental determination of the standard enthalpies of formation of polychlorobenzenes. Zhurnal Fizicheskoi Khimii, 1984, 58(8): 1630-1632
    [156] Yan H K, Gu J G, An X W, et al. Standard enthalpies of formation and enthalpies of isomerization of trichlorobenzenes. Acta Chimica Sinica, 1987, 45(12): 1184-1187
    [157] Platonov V A, Simulin Y N. Experimental definition of standard enthalpies of polychlorobenzene formations 3. Standard enthalpies of mono- tetrachlorobenzene, 1,2,4-tetrachlorobenzene, 1,3,5-tri-tetrachlorobenzene, 1,2,3,4-tetrachlorobenzene and 1,2,3,5-tetrachlorobenzene formations. Zhurnal Fizicheskoi Khimii, 1985, 59(2): 300-304
    [158] Platonov V A, Simulin Y N. Standard formation enthalpies of 1,2,3-trichlorbenzene, 1,2,4,5-tetrachlorbenzene and hexachlorbenzene. Zhurnal Fizicheskoi Khimii, 1983, 57(6): 1387-1391
    [159] 杨曦, 余刚, 王连生. 多氯代二苯并二恶英降解性的量子化学初探. 计算机与应用化学, 2002, 19(1): 86-88
    [160] Katagi T. Application of molecular orbital calculation to the estimation of environmental and metabolic fates of pesticides. In:Draber W, Fujita T. Rational approaches to structure, activity, and ecotoxicology of agrochemicals. Boca Raton:CRC Press, 1992: 544-564
    [161] Bayliss N S. The effect of the electrostatic polarization of the solvent on electronic absorption spectra in solution. Journal of Chemical Physics, 1950, 18(3): 292-296
    [162] Lide D R. CRC handbook chemistry and physics. 87th ed. Boca Raton: Taylor and Francis, 2007, 1002-1235
    [163] Suzuki J, Sato T, Ito A, et al. Photochemical reaction of biphenyl in water containing nitrite or nitrate ion. Chemosphere, 1987, 16(6): 1289-1300

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700