子宫内膜间质细胞GJIC功能在EMs发病中的意义及ATRA调节EMs内膜间质细胞GJIC功能的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
子宫内膜异位症(EMs)是妇科的常见病、多发病,约有10%~15%的育龄妇女罹患此病。EMs的发病机制尚未阐明,现有的手术治疗及药物治疗方案均难以达到满意的效果。因此进一步探讨EMs的发病机制及寻求新的治疗靶点尤为必要。
     EMs具有类似肿瘤的粘附、侵袭、转移等生物学行为,二者在发病机制上可能具有一定的相似性,而间隙连接细胞间通讯(GJIC)功能缺陷或低下是肿瘤的普遍特征,因此我们推测在EMs的发病过程中可能也存在GJIC功能的异常。
     GJIC是相邻细胞间传递信息的主要方式,它在维持机体组织内环境的稳定、调节正常细胞的生长等方面极为重要。细胞GJIC功能受其结构单位连接子的调控,圆柱状的连接子含有一个亲水通道,它允许离子(Na+、K+、Ca2+等)及分子量小于1000的小分子(cAMP、cGMP、IP3等)自由通过。每个连接子由6个蛋白亚单位(Cx)组成,啮齿动物和人的子宫内膜中表达的连接蛋白主要有Cx43、Cx32、Cx26三种。
     在EMs的发病过程中,间质细胞起着重要的主导作用,正常间质细胞具有完善的GJIC功能,并且能通过间隙连接影响上皮细胞的GJIC功能状态,故EMs内膜间质细胞的GJIC功能理应受到更多的关注。
     研究发现全反式维甲酸(ATRA)具有上调肿瘤细胞Cx表达和GJIC功能的作用,从而诱导肿瘤细胞恢复良性表型。ATRA对正常子宫内膜间质细胞也有类似的上调作用,但尚不清楚ATRA是否能调节EMs内膜间质细胞Cx表达及GJIC功能。探讨这些问题将为ATRA尝试用于EMs的治疗提供理论依据。
     本研究分为三个部分:(1)建立EMs在位、异位和正常内膜的间质细胞和上皮细胞体外培养模型;(2)通过体外培养的内膜细胞分析EMs内膜间质细胞Cx表达及GJIC功能的差异;采用反义寡聚核苷酸技术抑制正常内膜间质细胞Cx的表达,了解GJIC功能抑制后,正常内膜间质细胞的生长、粘附及侵袭能力是否增强,以此全面分析间质细胞的GJIC功能在EMs发病中的作用;(3)探讨ATRA对EMs在位及异位内膜间质细胞GJIC功能的调节作用及相关机制,以初步解答ATRA用于EMs治疗的可能性。
     第一部分EMs在位、异位及正常内膜间质细胞和上皮细胞的体外培养
     目的:探索一种获得高产率及高纯度子宫内膜间质细胞和上皮细胞的分离培养方法,同时建立EMs在位、异位及正常内膜细胞的体外培养模型,并尝试细胞的冻存与复苏,为后续实验奠定基础。
     方法:选取重庆医科大学附属第一医院妇产科2006年2月~2007年1月住院行手术治疗的内异症患者41例,其中合并单侧或双侧卵巢巧克力囊肿24例;取同期因子宫肌瘤行子宫全切术的患者30例作对照。刮取靠近子宫底部的内膜组织或剥取卵巢巧克力囊肿的内壁。借鉴传统的细胞分离方法并加以改良,采用机械碎化、多种酶联合消化、细胞滤网分选、不同细胞贴壁时间差而将间质与上皮细胞分离纯化。
     结果:间质细胞与上皮细胞同时成功培养率分别为:异位内膜组33.3%(8/24)、EMs在位内膜组92.7%(38/41)、对照组93.3%(28/30),两组在位内膜间质细胞纯度达98%,异位内膜间质细胞纯度为95%;两组在位内膜上皮细胞纯度达95%,异位内膜上皮细胞纯度为92%。上皮细胞和间质细胞均能成功地冻存与复苏。
     结论:改良的分离方法可提高间质细胞与上皮细胞的产率与活力,而且两种细胞的纯度较高,能完全满足后续实验的要求。
     第二部分子宫内膜间质细胞的Cx表达及GJIC功能在EMs发病中的意义
     目的:找出EMs内膜间质细胞Cx表达及GJIC功能的差异,探讨间质细胞GJIC功能异常在EMs发病过程中的意义。方法:(1)以免疫荧光法检测EMs异位、在位内膜以及正常子宫内膜间质细胞和上皮细胞Cx43、Cx32、Cx26的表达。(2)采用荧光漂白后恢复技术分析三组内膜间质细胞和上皮细胞的GJIC功能,并探讨共培养体系中EMs内膜间质细胞对不同上皮细胞GJIC功能的调节作用。(3)通过Lipo介导下的反义寡聚核苷酸技术(ASODNs),特异性下调正常间质内膜细胞中Cx43蛋白表达,分析间质细胞的生长、粘附及侵袭能力的改变。
     结果:Cx43在对照组间质细胞、EMs在位内膜间质细胞、异位内膜间质细胞中表达依次降低;Cx32、Cx26仅表达于两组在位内膜的上皮细胞中,且两组间的表达量相同;异位内膜上皮细胞出现Cx43的异常表达。对照组、EMs在位内膜及异位内膜三组的上皮细胞GJIC功能无明显差异,其间质细胞GJIC功能则按对照组→EMs在位组→EMs异位组依次减弱。EMs在位、异位内膜间质细胞对不同上皮细胞GJIC的调节作用均较对照组减弱。间质细胞的GJIC功能以及对上皮细胞的调节能力与其Cx43的表达量密切相关。ASODNs+Lipo的转染效率较高,对目的蛋白Cx43的抑制作用明显,撤除ASODNs+Lipo后,抑制效果至少可持续48h以上。GJIC功能被抑制后,正常间质细胞表现出生长加速,粘附、侵袭能力增强。
     结论:间质细胞Cx43表达降低、GJIC功能减弱与EMs发病关系密切,间质细胞的Cx43或GJIC功能可能是EMs潜在的治疗靶点。
     第三部分ATRA对EMs内膜间质细胞Cx43表达、GJIC功能的调节作用及相关机制
     目的:研究全反式维甲酸(ATRA)对EMs在位及异位内膜间质细胞Cx43表达和GJIC功能的调节作用及其相关机制,初步探讨ATRA用于EMs治疗的可能性。
     方法:(1)采用不同浓度的ATRA处理EMs在位及异位内膜间质细胞,并检测其GJIC功能及Cx43 mRNA和蛋白的表达。(2)引入雌激素受体(ER)拮抗剂ICI 182 780,分析ATRA的作用与ER的关系。(3)引入TPA(佛波酯,系Cx磷酸化诱导剂),分析ATRA的作用与Cx43蛋白磷酸化状态的关系。
     结果:ATRA浓度为1μmol/L和10μmol/L时,均能有效上调EMs内膜间质细胞的GJIC功能,但上调作用至72h以后不再继续增加;ATRA浓度为0.1μmol/L时则没有上调作用。1μmol/L ATRA能诱导间质细胞Cx43 mRNA及蛋白的表达。不同浓度的ICI 182 780均不影响ATRA对间质细胞GJIC功能的上调作用。TPA能抑制ATRA对间质细胞GJIC功能的上调作用。
     结论:ATRA可上调EMs在位及异位内膜间质细胞的GJIC功能,且上调效果与ATRA的作用时间及浓度有关; ATRA能从基因和翻译水平促进Cx43的表达,诱导或维持Cx43蛋白的去磷酸化形式,从而上调EMs内膜间质细胞的GJIC功能。
Endometriosis (EMs) is a common gynecological disorder, with an incidence of 10-15% in reproductive aged women. The pathogenesis of endometriosis remains unclear, and current therapeutic effects are not satisfied. New strategies against EMs are urgently needed.
     Similar to tumors’biological behaviors, EMs has the nature of adhesion, invasion and metastasis, which suggests that EMs and some tumors share the same mechanisms of pathogenesis. The dysfunction of gap junctional intercellular communication (GJIC) occurred in cancer cells, suggesting that aberrant GJIC might involve in the development of EMs.
     GJIC is the main way for adjacent cells to communicate and transmit signal, which is necessary for maintenance of tissue homeostasis. Functional GJIC is mediated by connexons consisting of proteinaceous cylinders with a hydrophilic channel. The channels allow ions (Na+, K+, Ca2+, etc) and small molecules (bellow 1000Da, such as cAMP, cGMP, IP3) to travel freely. Each connexon, structural units of GJIC, was composed of a hexamer of connexin (Cx). There are three Cxs, Cx43, Cx32, Cx26, expressing in rodents and human endometrium.
     Endometrial stromal cells may play an important role in the development of EMs. Normal stromal cells are with consummate function of GJIC, and they can modulate the status of GJIC in endometrial epithelial cells by gap junction.
     All-trans-retinoic acid (ATRA) can enhance Cx expression and up-regulate GJIC in many tumor cells, even induce the differentiation of cancers. ATRA can also up-regulate functional GJIC in normal stromal cells, but it is still ambiguity whether ATRA can modulate Cx expression and GJIC in endometrial stromal cells from patients with EMs.
     This study composed of three sections: (1) Stromal cells and epithelial cells were isolated from the ectopic endometrial lesions located in ovaries, eutopic endometria from women with EMs and normal endometria. (2) Endometrial stromal cells and epithelial cells ware cultured in vitro to explore the expression of Cx and functional GJIC. Antisense oligodeoxyribonucleotides (ASODNs) was used to suppress Cx expression in normal stomal cells. Cell growth, adhesion and invasion were investigated in normal stromal cells after treatment with ASODNs. The correlation between deficient GJIC in endometrial stromal cells and pathogenesis of EMs was analyzed. (3) ATRA was used to modulate the
     function of GJIC in stromal cells from EMs. The objective was to determine whether ATRA be an agent to cure EMs.
     PARTⅠIN VITRO CULTURE OF ENDOMETRIAL STROMAL AND EPITHELIAL CELLS FROM EMS AND NORMAL ENDOMETRIUM
     Objective: To establish an approach to purify and culture human endometrial stromal and epithelial cells from endometriotic lesions loctated in ovaries, eutopic endometria with EMs and normal endometria, respectively.
     Methods: The cases were randomly chosen from patients hospitalized receiving surgical interventions in Feb 2006-Jan 2007. Samples from eutopic endometria or endometriotic lesions were collected from 41 cases suffered from endometriosis, in all, 24 cases were accompanied with unilateral or bilateral chocolate cysts in ovaries. 30 cases received hysterectomy for uterine myoma were recruited as control. Endometrial tissue near the bottom of the uterus was scraped, and the lining of chocolate cyst located in ovary was striped. Digestion, purification and culture of endometrial stromal and epithelial cells were performed.
     Results: The success rate of isolation and culture was 33.3% (8/24) of endometriotic stromal and epithelial cells, 92.7% (38/41) of eutopic endometrial stromal and epithelial cells with EMs, and 93.3% (28/30) of normal endometrial stromal and epithelial cells. The purities of eutopic stromal and epithelial cells from endometrium with or without EMs were 98% and 95% respectively. The purities of ectopic stromal and epithelial cells were 95% and 92% respectively. Both stromal cells and epithelial cells could be cryopreservated and thawed successfully.
     Conclusion: The higher yields and viabilities were realized through this multistep procedure.
     PARTⅡTHE EXPRESSION OF CONNEXIN AND GJIC IN ENDOMETRIAL STROMAL CELLS IN THE DEVELOPMENT OF ENDOMETRIOSIS
     Objective: To investigate the different expression of Cx and functional GJIC in stromal cells in endometriotic lesion and eutopic endometrium with EMs from those of in normal endometrium, and to reveal the correlation between deficient GJIC in endometrial stromal cells and the pathogenesis of EMs.
     Methods: (1) The immumofluorescence assay manifested the expression of Cx43, Cx32 and Cx26 protein in stromal and epithelial cells from endometriotic lesions, eutopic endometria with EMs and normal endometria. (2) Fluorescence recovery after photobleaching (FRAP) was applied to analyze the function of GJIC in stromal and epithelial cells with and without EMs. Furthermore, GJIC status in epithelial cells regulated by different stromal cells was evaluated in co-culture system in vitro. (3) The abilities of growth, adhesion and invasion were investigated in normal stromal cells after downregulating Cx43 with antisense oligodeoxyribonucleotides (ASODNs).
     Results: The level of Cx43 in endometrial stromal cells was gradually decreased from normal endometrium, eutopic endometrium with EMs to endometriotic tissue. Cx32 and Cx26 protein were observed in normal endometrial epithelial cells and eutopic epithelial cells from endometrium with EMs. There was no difference of Cx32 protein expression in epithelial cells between normal endometrium and eutopic endometrium with EMs, nor did Cx26 protein. Cx43 was aberrant expression in endometriotic epithelial cells. There was similar functional GJIC status in epithelial cells from control, eutopic endometrium with EMs and endometriotic lesion. However, the function of GJIC in stromal cells from ectopic endometrial tissues was lower than those from the other two groups, the highest functional GJIC was observed in normal endometrial stromal cells, and the distinctions among these groups were significant. The ability of regulation of GJIC in epithelial cells by stromal cells from endometriotic lesion or eutopic endometrium with EMs was weaker compared with those stromal cells from control group. Stromal cells’GJIC and ability to modulate epithelial cells were closely related to their Cx43 protein. Cx43 protein and functional GJIC were suppressed when normal stromal cells were transfected with ASODNs+Lipo, resulting in a faster growth, enhanced adhesion and promoted invasion.
     Conclusion: The down-regulation of Cx43 and attenuated GJIC were related to the pathogenesis of EMs. Cx43 or GJIC in endometrial stromal cells might be used as potent target for treatment of EMs.
     PARTⅢMECHANISMS OF REGULATION OF CONNEXIN43 EXPRESSION AND GJIC IN STROMAL CELLS FROM ENDOMETRIOTIC LESIONS AND ENDOMETRIA WITH ENDOMETRIOSIS BY ATRA IN VITRO
     Objective: To explore mechanisms involving in the regulation of GJIC by ATRA in stromal cells from endometriotic lesions and eutopic endometria with EMs.
     Methods: (1) Stromal cells from endometriotic lesions and eutopic endometria with EMs were treated with ATRA with concentrations of 0.1μmol/L, 1μmol/L and 10μmol/L for 24, 48, 72, 96 and 120 h, respectively, Laser scanning confocal microscope was applied to determine the function of GJIC in cells. The mRNA and protein levels of Cx43 were investigated. (2) ICI 182 780, an estrogen receptor downregulator, was introduced to analyze the relationship between the effects of ATRA and estrogen receptor. (3) An inductor, 12-o-tetradecanoylphorbol-13-acetate (TPA), was used to judge that the dephosphorylated form or phosphorylated species of Cx43 would contribute to the up-regulation of functional GJIC in stromal cells.
     Results: GJIC was enhanced significantly either in ectopic stromal cell or eutopic stromal cell from endometrium with EMs after being exposed to 1μmol/L and 10μmol/L ATRA. The up-regulation persisted up to 72h. No evidence for enhanced GJIC was confirmed in these stromal cells treatment with 0.1μmol/L ATRA. Treatment of stromal cells with 1μmol/L ATRA up regulated the expressions of Cx43 mRNA and protein. TPA inhibited the effect of ATRA on modulation of functional GJIC in ectopic stromal cells and eutopic stromal cells from endometrium with EMs. However, ICI 182 780 didn’t have the inhibitory effect similar to TPA.
     Conclusions: GJIC in ectopic stromal cells and eutopic stromal cells from endometrium with EMs was up-regulated by ATRA in a manner of time- and dosedependent. ATRA enhanced Cx43 expression on both gene and protein levels, and induced or maintained the dephosphorylated form of Cx43 protein in these stromal cells.
引文
[1] 石一复. 子宫内膜异位症[M]. 上海:上海科学技术出版社, 2002.12-29.
    [2] 郎景和. 子宫内膜异位症的基础与临床研究[M]. 北京:中国协和医科大学出版社, 2003.1-159.
    [3] 郎 景 和 . 子 宫 内 膜 异 位 症 的 研 究 与 设 想 [J]. 中 华 妇 产 科 杂 志 . 2003,38(8):478-480.
    [4] 郎景和. 子宫内膜异位症研究的新里程[J]. 中华妇产科杂志. 2005,40(1):3-4.
    [5] 郎景和. 子宫内膜异位症研究的任务与展望(之一)[J]. 中华妇产科杂志.2006,41(5):288-289.
    [6] Gogusev J, Bouquet de Joliniere J, Telvi L, et al. Cellular and genetic constitution of human endometriosis tissues[J]. J Soc Gynecol Investig. 2000,7(2):79-87.
    [7] Taylor RN, Lebovic DI, Mueller MD. Angiogenic factors in endometriosis[J]. Ann N Y Acad Sci. 2002,955:89-100:discussion 118,396-406.
    [8] Zhou HE, Nothnick WB. The relevancy of the matrix metalloproteinase system to the pathophysiology of endometriosis[J]. Front Biosci, 2005,10:569-75.
    [9] Simpson JL, Bischoff FZ, Kamat A, et al. Genetics of endometriosis[J]. Obstet Gynecol Clin North Am. 2003,30(1):21-40.
    [10] Siristatidis C, Nissotakis C, Chrelias C, et al. Immunological factors and their role in the genesis and development of endometriosis[J]. J Obstet Gynaecol Res. 2006, 32(2):162-170.
    [11] Liu L, Davidson S, Singh M. Mullerian adenosarcoma of vagina arising in persistent endometriosis: report of a case and review of the literature[J]. Gynecol Oncol. 2003, 90(2):486-490.
    [12] Starzinski-Powitz A, Handrow-Metzmchen H, Kotzian S. The putative role of cell adhesion molecules in endometriosis: can we learn from tumour metastasis? Mol Med Today.1999,5(7):304-309.
    [13] Trosko JE, Ruch RJ. Gap junctions as targets for cancer chemoprevention and chemotherapy[J]. Curr Drug Targets. 2002;3(6):465-482.
    [14] Trosko JE, Chang CC. Modulation of cell-cell communication in the cause and chemoprevention/chemotherapy of cancer[J]. Biofactors. 2000, 12(1-4): 259-263.
    [15] Krutovskikh V, Yamasaki H. The role of gap junctional intercellular communication (GJIC) disorders in experimental and human carcinogenesis[J]. Histol Histopathol.1997,12(3):761-768.
    [16] Yamasaki H, Mesnil M, Omori Y, et al. Intercellular communication and carcinogenesis[J]. Mutat Res. 1995,333(1-2):181-188.
    [17] Saito T, Nishimura M, Kudo R, et al. Suppressed gap junctional intercellular communication in carcinogenesis of endometrium[].Int J Cancer. 2001,93(3):317-23.
    [18] Saito T, Tanaka R, Wataba K, et al. Overexpression of estrogen receptor-alpha gene suppresses gap junctional intercellular communication in endometrial carcinoma cells[J]. Oncogene. 2004,23(5):1109-1116.
    [19] Leithe E, Sirnes S, Omori Y, et al. Down regulation of gap junctions in cancer cells [J]. Crit Rev Oncog. 2006,12(3-4):225-256.
    [20] Segretain D, Falk MM. Regulation of connexin biosynthesis, assembly, gap junction formation, and removal[J]. Biochim Biophys Acta. 2004,1662(1-2):3-21.
    [21] 张晓峰, 李百祥. 细胞间隙连接通讯与肿瘤关系的研究进展[J].卫生毒理学杂志. 2002,16(3):185-187.
    [22] 谯建. 子宫内膜异位症间隙连接细胞间通讯的研究[D]. 重庆:重庆医科大学图书馆, 2005.
    [23] Cunha GR, Bigsby RM, Cooke PS, et al. Stromal-epithelial interactions in adultorgans.[J]] Cell Differ. 1985,17(3):137-148.
    [24] Beliard A, Noel A,Goffin F, et al. Role of endocrine status and cell type in adhesion of human endometrial cells to the peritoneum in nude mice[J]. Fertil Steril. 2002,78(5):973-978.
    [25] Wilder RA, Zhang RJ, Medders D. Whole endometrial fragments form characterics of in vivo endomtriosis in a mesothelial cell co-culture system: an in vitro model for the study of the histogenesis of endometriosis. J Soc Gynecol Investig. 1994,1(1):65-68.
    [26] Bruner KL, Matrisian LM, Rodgers WH. et al. Suppression of matrix metalloproteinasea inhibitis establishment of ectopic lesions by human endometrium in nude mice[J]. J Clin Invest. 1997,99(12):2851-2857.
    [27] Schlemmer SR, Kaufman DG. Endometrial stromal cells regulate gap-junction function in normal human endometrial epithelial cells but not in endometrial carcinoma cells[J]. Mol Carcinog. 2000,28(2):70-75.
    [28] Misao R, Fujimoto J, Nakanishi Y, et al. Expression of estrogen and progesterone receptors and their mRNAs in ovarian endometriosis[J]. Gynecol-Endocrinol. 1996,10(5):303-310.
    [29] Collette T, Maheux R, Mailloux J, et al. Increased expression of matrix metalloproteinase-9 in the eutopic endometrial tissue of women with endometriosis[J]. Hum Reprod. 2006,21(12):3059-3067.
    [1] Mylonas I, Speer R, Makovitzky J, et al. Immunohistochemical analysis of steroid receptors and glycodelin A (PP14) in isolated glandular epithelial cells of normal human endometrium[J]. Histochem Cell Biol. 2000,114(5):405-411.
    [2] Zhang L, Rees MC, Bicknell R. The isolation and long-term culture of normal human endometrial epithelium and stroma. Expression of mRNAs for angiogenic polypeptides basally and on oestrogen and progesterone challenges[J]. J Cell Sci. 1995,108(Pt1):323-331.
    [3] Osteen KG, Hill GA, Hargrove JT, et al. Development of a method to isolate and culture highly purified populations of stromal and epithelial cells from human endometrial biopsy specimens[J]. Fertil Steril. 1989,52(6):965-972.
    [4] Sharpe KL, Zimmer RL, Khan RS, et al. Proliferative and morphogenic changes induced by the coculture of rat uterine and peritoneal cells: a cell culture model for endometriosis[J]. Fertil Steril. 1992,58(6):1220-1229.
    [5] 司徒镇强, 吴军亚. 细胞培养[M]. 西安:世界图书出版西安公司, 2004.84-88.
    [6] Trent JM, Davis JR, Payne CM. The establishment and morphologic characterization of finite cell lines from normal human endometrium[J]. Am J Obstet Gynecol. 1980,136(3):352-362.
    [7] Ryan IP, Schriock ED, Taylor RN. Isolation, characterization, and comparison of human endometrial and endometriosis cells in vitro[J]. J Clin Endocrinol Metab. 1994,78(3):642-649.
    [8] 谭先杰, 刘东远, 郎景和, 等. 子宫内膜腺上皮及基质细胞分离、培养作为子宫内膜异位症体外细胞模型的探索[J]. 现代妇产科进展. 2002,11(1):30-32.
    [9] Merviel P, Degeorges A, Salat-Baroux J, et al. Normal human endometrial cells in culture: characterization and immortalization of epithelial and stromal cells by SV 40 large T antigen[J]. Biol Cell. 1995,84(3):187-193.
    [10] Wang G, Johnson GA, Spencer TE, et al. Isolation, immortalization, and initial characterization of uterine cell lines: an in vitro model system for the porcine uterus[J]. In Vitro Cell Dev Biol Anim. 2000,36(10):650-656.
    [11] Vigano P, Di-Blasio AM, Dell'Antonio G, et al. Culture of human endometrial cells: a new simple technique to completely separate epithelial glands[J]. Acta Obstet Gynecol Scand. 1993,72(2):87-92.
    [12] Matthews CJ, Redfern CP, Hirst BH, et al. Characterization of human purified epithelial and stromal cells from endometrium and endometriosis in tissue culture[J]. Fertil Steril. 1992,57(5):990-997.
    [13] Khan KN, Masuzaki H, Fujishita A, et al. Interleukin-6 and tumour necrosis factor alpha-mediated expression of hepatocyte growth factor by stromal cells and its involvement in the growth of endometriosis[J]. Hum Reprod. 2005,20(10):2715-2723.
    [14] Bentin-Ley U, Pedersen B, Lindenberg S, et al. Isolation and culture of human endometrial cells in a three-dimensional culture system[J]. J Reprod Fertil. 1994,101(2):327-332.
    [15] 石书芳, 俞超芹, 刘玉环, 等.人在位和异位子宫内膜腺上皮细胞和间质细胞的原代培养[J]. 第二军医大学学报. 2004,25(11):1228-1231.
    [16] 李华军. 体外培养的子宫内膜异位症在位内膜细胞生物学行为及对不同药物反应性的研究[D]. 北京:中国协和医科大学研究生院, 2004.
    [17] 赵学英. 子宫内膜异位症细胞芳香化酶的表达与芳香化酶抑制剂对细胞凋亡的调节及子宫内膜异位症的蛋白指纹图谱研究[D]. 北京:中国协和医科大学研究生院, 2004.
    [18] 鲍远红, 王秀霞. 一种新的子宫内膜腺上皮细胞和基质细胞的分离纯化及培养方法的探讨[J]. 中国医科大学学报. 2007,36(5):608-610.
    [1] Winterhager E, Grummer R, Jahn E, et al. Spatial and temporal expression of connexin26 and connexin43 in rat endometrium during trophoblast invasion[J]. Dev Biol. 1993,157(2):399-409.
    [2] Grummer R, Chwalisz K, Mulholland J, et al. Regulation of connexin26 and connexin43 expression in rat endometrium by ovarian steroid hormones[J]. Biol Reprod. 1994,51(6):1109-1116.
    [3] Jahn E, Classen-Linke I, Kusche M, et al. Expression of gap junction connexins in the human endometrium throughout the menstrual cycle[J]. Hum Reprod. 1995,10(10): 2666-2670.
    [4] Roberts DK, Walker NJ, Lavia LA. Ultrastructural evidence of stromal/epithelial interactions in the human endometrial cycle[J]. Am J Obstet Gynecol. 1988,158(4):854-861.
    [5] Parmley TH, Roberts DK, Walker NJ, et al. Intercellular contacts between stromal cells in the normal human endometrium throughout the menstrual cycle[J]. Human Pathology, 1990,21(10):1063-1066.
    [6] Trent JM, Davis JR, Payne CM. The establishment and morphologic characterization of finite cell lines from normal human endometrium[J]. Am J Obstet Gynecol. 1980,136(3):352-362.
    [7] Schlemmer SR, Kaufman DG. Endometrial stromal cells regulate gap-junction function in normal human endometrial epithelial cells but not in endometrial carcinoma cells[J]. Mol Carcinog. 2000,28(2):70-75.
    [8] 谯 建. 子宫内膜异位症细胞间隙连接通讯的研究[D]. 重庆: 重庆医科大学图书馆, 2005.
    [9] Abbaci M, Barberi-Heyob M, Stines JR, et al. Gap junctional intercellular communication capacity by gap-FRAP technique: a comparative study[J]. Biotechnol J. 2007,2(1):50-61.
    [10] Wade MH, Trosko J E, Schindler M. A fluorescence photobleaching assay of gap junction-mediated communication between human cells[J]. Science. 1986,232(4749):525-528.
    [11] Granot I, Dekel N, Bechor E, et al. Temporal analysis of connexin43 protein and gene expression throughout the menstrual cycle in human endometrium[J]. Fertil Steril. 2000,73(2):381-386.
    [12] Regidor PA, Regidor M, Schindler AE, et al. Aberrant expression pattern of gap junction connexins in endometriotic tissues[J]. Mol Hum Reprod. 1997;3(5):375-381.
    [13] 郎景和.子宫内膜异位症的基础与临床研究[M]. 北京:中国协和医科大学出版社, 2003:14-17.
    [14] Willecke K, Hennemann H, Dahl E, et al. The diversity of connexin genes encoding gap junctional proteins[J]. Eur J Cell Biol. 1991,56(1):1-7.
    [15] Eghbali B, Kessler JA, Reid LM, et al. Involvement of gap junctions in tumorigenesis: transfection of tumor cells with connexin 32 cDNA retards growth in vivo[J]. Proc Natl Acad Sci USA. 1991,88(23):10701-10705.
    [16] Ruch RJ. The role of gap junctional intecelular communication in neoplasia IJ]. Ann Clin Lab Sci. 1994,24(3):216-231.
    [17] Rinehart CA, Torti VR. Aging and cancer: the role of stromal interactions with epithelial cells[J]. Mol Carcinog. 1997,18(4):187-192.
    [18] Cuha GR, Young P. Role of stroma in oestrogen-induced epithelial cell proliferation[J]. Epithelial Cell Biol. 1992,1(1):18-31.
    [19] Roberts DK, Walker NJ, Lavia LA. Ultrastructural evidence of stromal/epithelial interactions in the human endometrial cycle.Am J Obstet Gynecol.1988,158(4):854-862.
    [20] 徐营, 雷蕾, 刘忠华,等. 应用激光扫描共聚焦显微镜 FRAP 技术研究兔早期胚胎发育中细胞间隙连接介导通讯[J]. 细胞生物学杂志. 2002,24(5):310-313.
    [21] Boni R, Tosti E, Roviello S, et a1. Intercellular communication in in vivo and in vitro produced bovine embryos[J]. BiolReprod. l999,61(4):1052-l055.
    [22] Cronier L, Defamie N, Dupays L, et al. Connexin expression and gap junctional intercellular communication in human first trimester trophoblast[J]. Mol Hum Reprod. 2002,8(11):1005-1013.
    [23] Orlando-Mathur CE, Bechberger JF, Goldberg GS, et al. Rat endometrial stromal cells express the gap junction genes connexins 26 and 43 and form functional gap junctions during in vitro decidualization[J]. Biol Reprod. 1996,54(4):905-913.
    [24] Grummer R, Hewitt SW, Traub O, et al. Different regulatory pathways of endometrial connexin expression: preimplantation hormonal-mediated pathway versus embryo implantation-initiated pathway[J]. Biol Reprod. 2004,71(1):273-281.
    [25] Malassine A, Cronier L. Involvement of gap junctions in placental functions and development[J]. Biochim Biophys Acta. 2005,1719(1-2):117-124.
    [26] Ambrus G, Rao CV. Novel regulation of pregnant human myometrial smooth muscle cell gap junctions by human chorionic gonadotropin[J]. Endocrinology. 1994,135(6): 2772-2779.
    [27] Mellor SJ, Thomas EJ. The actions of estradiol and epidermal growth factor in endometrial and endometriotic stroma in vitro[J]. Fertil Steril. 1994,62(3):507-513.
    [28] 李华军. 体外培养的子宫内膜异位症在位内膜细胞生物学行为及对不同药物反应性的研究[D]. 北京:中国协和医科大学研究生院, 2004.
    [1] Down MJ, Philipp EE. The history of obstetrics and gynecology[M]. New York: The Parthenon Publishing Group, 2000. 523.
    [2] 郎景和. 子宫内膜异位症研究的新里程[J]. 中华妇产科杂志. 2005,40(1):3-4.
    [3] Gaetje R, Kotzian S, Herrmann G, et al. Nonmalignant epithelial cells, potentially invasive in human endometriosis, lack the tumor suppressor molecule E-cadherin[J]. Am J Pathol. 1997,150(2):461-467.
    [4] Fishman G, Eddy R, Shows T, et al. The human connexin gene family of gap junction proteins: distinct chromosomal locations but similar structures[J]. Genomics. 1991,10(1):250-256.
    [5] Frendo JL, Cronier L, Bertin G, et al. Involvement of connexin 43 in human trophoblast cell fusion and differentiation[J]. J Cell Sci. 2003,116(Pt 16): 3413-3421.
    [6] 程立华. 反义寡核苷酸肝靶向制剂的研究[D]. 沈阳: 沈阳药科大学, 2005.
    [7] Bichko V, Netter HJ, Taylor J. Introduction of hepatitis delta virus into animal cell lines via cationic liposomes[J]. J Virol. 1994,68(8):5247-5252.
    [8] Felgner JH, Kumar R, Sridhar CN, et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations[J]. J Biol Chem. 1994,269(4):2550-2561.
    [9] 谭先杰. 子宫内膜异位症血管形成调控分子的研究[D]. 北京, 中国协和医科大学. 2000.
    [10] 王含必. 子宫内膜异位症血管形成及抗血管形成治疗的研究[D]. 北京, 中国协和医科大学,2004.
    [11] 艾星子, 丁 岩. 子宫内膜异位症在位子宫内膜的研究进展[J]. 新疆医科大学学报. 2005, 28(8):800-802.
    [12] Witz CA, Monotoya-Rodriguez IA, Schenken RS. Whole explants of peritoneum and endometrium: a novel model of the early endometriosis lesion[J]. Fertil Steril. 1999,71(1):56-60.
    [13] 赵昀, 张宏, 李亚里, 等. 子宫内膜细胞的培养和侵袭性研究[J]. 解放军医学杂志. 2003,28(5):425-428.
    [14] Nicolson GL. Tumor cell instability, diversification, and progression to the metastatic phenotype: from oncogene to oncofetal expression[J]. Cancer Res. 1987,47(6):1473-1487.
    [15] 张晓峰, 李百祥. 细胞间隙连接通讯与肿瘤关系的研究进展[J]. 卫生毒理学杂志. 2002,1(3):185-187.
    [16] Saunders MM, Seraj MJ, Li Z, et a1. Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication[J]. Cancer Res. 2001,61(5):1765-1767.
    [17] Gaetje R, Kotzian S, Herrmann G, et al. Invasiveness of endometriotic cells in vitro[J]. Lancet. 1995,346(8988):1463-1464.
    [18] 张永兴, 徐洪涛, 齐凤杰, 等. 连接蛋白 43 在肺癌组织中表达及对E-cadherin 的影响[J]. 中华病理学杂志. 2006,35(6):339-343.
    [19] Jongen WM, Fitzgerald DJ, Asamoto M, et al. Regulation of connexin 43-mediated gap junctional intercellular communication by Ca2+ in mouse epidermal cells is controlled by E-cadherin[J]. J Cell Biol. 1991,114(3):545-55.
    [20] Renaud S, Leppert D. Matrix metalloproteinases in neuromuscular disease[J]. Muscle Nerve. 2007,36(1):1-13.
    [21] Lafleur MA, Handsley MM, Edwards DR. Metalloproteinases and their inhibitors in angiogenesis[J]. Expert Rev Mol Med. 2003,5(23):1-39.
    [22] Gilabert-Estelles J, Ramon LA, Espana F, Gilabert J. Expression of angiogenic factors in endometriosis: relationship to fibrinolytic and metalloproteinase systems[J]. Hum Reprod. 2007,22(8):2120-2127.
    [23] Collette T, Maheux R, Mailloux J, et al. Increased expression of matrix metalloproteinase-9 in the eutopic endometrial tissue of women with endometriosis[J]. Hum Reprod. 2006,21(12):3059-3067.
    [24] Braundmeier AG, Fazleabas AT, Lessey BA, et al. Extracellular matrix metalloproteinase inducer regulates metalloproteinases in human uterine endometrium[J]. J Clin Endocrinol Metab. 2006,91(6):2358-2365.
    [25] Sharpe-Timms KL. Endometrial anomalies in women with endometriosis[J]. Ann N Y Acad Sci. 2001,943: 131-147.
    [26] Jones RK, Searle RF, Bulmer JN. Apoptosis and bcl-2 expression in normal human endometrium, endometriosis and adenomyosis[J]. Hum Reprod. 1998,13(12):3496-3502.
    [27] 高颖, 罗丽兰, 何福仙. 异位子宫内膜细胞的凋亡与增殖的研究[J]. 中华妇产科杂志. 1999,34(9):536-539.
    [1] Armer RE, Smelt KH. Non-peptidic GnRH receptor antagonists[J]. Curr Med Chem. 2004,11(22):3017-3028.
    [2] Yap C, Furness S, Farquhar C. Pre and post operative medical therapy for endometriosis surgery[J]. Cochrane Database Syst Rev. 2004,(3):CD003678.
    [3] Emmanuel KR, Davis C. Outcomes and treatment options in rectovaginal endometriosis[J]. Curr Opin Obstet Gynecol. 2005,17(4):399-402.
    [4] Vercellini P, Vigano P, Somigliana E. The role of the levonorgestrel-releasing intrauterine device in the management of symptomatic endometriosis[J]. Curr Opin Obstet Gynecol. 2005,17(4):359-365.
    [5] Ferrero S, Abbamonte LH, Anserini P, et al. Future perspectives in the medical treatment of endometriosis[J]. Obstet Gynecol Surv. 2005,60(12):817-826.
    [6] Nothnick WB, D'Hooghe TM. Medical management of endometriosis: novel targets and approaches towards the development of future treatment regimes[J]. Gynecol Obstet Invest. 2003,55(4):189-198.
    [7] Nothnick WB. Novel targets for the treatment of endometriosis[J]. Expert Opin Ther Targets. 2004,8(5):459-471.
    [8] Barlow DH, Kennedy S. Endometriosis: new genetic approaches and therapy[J]. Annu Rev Med. 2005,56:345-356.
    [9] 陈必良, 马向东, 王德堂, 等. 维甲酸对人子宫颈癌细胞系HeLa细胞间隙连接蛋白转导途径调控作用的研究[J]. 中华妇产科杂志. 2001,36(4):233-235.
    [10] Okuno M, Kojima S, Matsushima-Nishiwaki R, et al. Retinoids in cancer chemoprevention[J]. Curr Cancer Drug Targets. 2004,4(3):285-298.
    [11] Tanmahasamut P, Sidell N. Up-regulation of gap junctional intercellular communication and connexin43 expression by retinoic acid in human endometrial stromal cells [J]. J Clin Endocrinol Metab. 2005,90 (7):4151-4156.
    [12] Dukes M, Waterton JC, Wakeling AE. Antiuterotrophic effects of the pure antioestrogen ICI 182,780 in adult female monkeys (Macaca nemestrina): quantitative magnetic resonance imaging[J]. J Endocrinol. 1993,138(2):203-210.
    [13] Coopman P, Garcia M, Brunner N, et al. Anti-proliferative and anti-estrogenic effects of ICI 164,384 and ICI 182,780 in 4-OH-tamoxifen-resistant human breast-cancer cells[J]. Int J Cancer. 1994,56(2):295-300.
    [14] Lesmeister MJ, Jorgenson RL, Young SL, et al. 17Beta-estradiol suppresses TLR3-induced cytokine and chemokine production in endometrial epithelial cells[J]. Reprod Biol Endocrinol. 2005,3:74 (This article is available from: http://www.rbej.com/content/3/1/74)
    [15] Clagett-Dame M, DeLuca HF. The role of vitamin A in mammalian reproduction and embryonic development[J]. Annu Rev Nutr. 2002,22:347-381.
    [16] Otsuki T, Sakaguchi H, Hatayama T, et al. Effects of all-trans retinoic acid (ATRA) on human myeloma cells[J]. Leuk Lymphoma. 2003,44(10):1651-1656.
    [17] Clagett-Dame M, McNeill EM, Muley PD. Role of all-trans retinoic acid in neurite outgrowth and axonal elongation[J]. J Neurobiol. 2006,66(7):739-756.
    [18] Njar VC, Gediya L, Purushottamachar P, et al. Retinoic acid metabolism blocking agents (RAMBAs) for treatment of cancer and dermatological diseases[J]. Bioorg Med Chem. 2006,14(13):4323-4340.
    [19] Manor D, Shmldt EN, Budhu A et a1. Marmmary carcinoma suppression by cellular retinoic acid binding protein-II[J]. Cancer Res. 2003,63(15):4426-4433.
    [20] Siddiqui NA, Loughney A, Thomas EJ, et al. Cellular retinoid binding proteins and nuclear retinoic acid receptors in endometrial epithelial cells[J]. Hum Reprod. 1994,9(8):1410-1416.
    [21] Loughney AD, Redfern CP. Menstrual cycle related differences in the proliferative responses of cultured human endometrial stromal cells to retinoic acid[J]. J Reprod Fertil. 1995,105(1):153-159.
    [22] Brar AK, Kessler CA, Meyer AJ, et al. Retinoic acid suppresses in-vitro decidualization of human endometrial stromal cells[J]. Mol Hum Reprod. 1996,2(3):185-193.
    [23] Jelitai M, Anderova M, Chvatal A, et al. Electrophysiological characterization of neural stem/progenitor cells during in vitro differentiation: study with an immortalized neuroectodermal cell line[J]. J Neurosci Res. 2007,85(8):1606-1617.
    [24] Vine AL, Leung YM, Bertram JS. Transcriptional regulation of connexin 43 expression by retinoids and carotenoids: similarities and differences[J]. Mol Carcinog. 2005,43(2):75-85.
    [25] Bertram JS, Vine AL. Cancer prevention by retinoids and carotenoids: independent action on a common target[J]. Biochim Biophys Acta. 2005,1740(2):170-178.
    [26] Pulukuri S, Sitaramayya A. Retinaldehyde, a potent inhibitor of gap junctional intercellular communication[J]. Cell Commun Adhes. 2004,11(1):25-33.
    [27] Hotz-Wagenblatt A, Shalloway D. Gap junctional communication and neoplastic transformation[J]. Crit Rev Oncog. 1993,4(5):541-558.
    [28] Laird DW. Life cycle of connexins in health and disease [J]. Biochem J. 2006,394(Pt 3):527–543.
    [29] Ballarini F, Biaggi M, Ottolenghi A, et al. Cellular communication and bystander effects: a critical review for modelling low-dose radiation action[J]. Mutat Res. 2002,501(1-2):1-12.
    [30] Portsmouth D, Hlavaty J, Renner M. Suicide genes for cancer therapy[J]. Mol Aspects Med. 2007,28(1):4-41.
    [31] Park JY, Elshami AA, Amin K, et al. Retinoids augment the bystander effect in vitro and in vivo in herpes simplex virus thymidine kinase/ganciclovir-mediated gene therapy[J]. Gene Ther. 1997,4(9):909-917.
    [32] Carystinos GD, Alaoui-Jamali MA, Phipps J, et al. Upregulation of gap junctional intercellular communication and connexin 43 expression by cyclic-AMP and all-trans-retinoic acid is associated with glutathione depletionand chemosensitivity in neuroblastoma cells[J]. Cancer Chemother Pharmacol. 2001,47(2):126-132.
    [33] Lee SW, Tomasetto C, Paul D, et al. Transcriptional downregulation of gap-junction proteins blocks junctional communication in human mammary tumor cell lines[J]. J Cell Biol. 1992,118(5):1213-1221.
    [34] Reuss B, Hellmann P, Dahl E, et al. Connexins and E-cadherin are differentially expressed during trophoblast invasion and placenta differentiation in the rat[J]. Dev Dyn. 1996,205(2):172-182.
    [35] Kidder GM, Winterhager E. Intercellular communication in preimplantation development: the role of gap junctions[J]. Front Biosci. 2001,6:D731-736.
    [36] Grummer R, Reuss B, Winterhager E. Expression pattern of different gap junction connexins is related to embryo implantation[J]. Int J Dev Biol. 1996,40(1):361-367.
    [37] Grummer R, Traub O, Winterhager E. Gap junction connexin genes cx26 and cx43 are differentially regulated by ovarian steroid hormones in rat endometrium[J]. Endocrinology. 1999,140(6):2509-2516.
    [38] Gulinello M, Etgen AM. Sexually dimorphic hormonal regulation of the gap junction protein, Cx43, in rats and altered female reproductive function in Cx43+/- mice[J]. Brain Res. 2005,1045(1-2):107-115.
    [39] Grummer R, Chwalisz K, Mulholland J, et al. Regulation of connexin26 and connexin43 expression in rat endometrium by ovarian steroid hormones[J]. Biol Reprod. 1994,51(6):1109-1116.
    [40] Petrocelli T, Lye SJ. Regulation of transcripts encoding myometrial gap junction protein connexin43, by estrogen and progesterone[J]. Endocrinology. 1993,133(1):284-290.
    [41] Fontana JA, Mezo AB, Cooper BN, et al. Retinoid modulation of estradiol-stimulated growth and of protein synthesis and secretion in human breast cancer cells[J]. Cancer Res. 1990,50(7):1997-2002.
    [42] Robertson JF. Faslodex (ICI 182,780), a novel estrogen receptor downregulator-future possibilities in breast cancer[J]. J Steroid Biochem Mol Biol. 2001,79(1-5):209-212.
    [43] Boverhof DR, Kwekel JC, Humes DG, et al. Dioxin induces an estrogen-like, estrogen receptor-dependent gene expression response in the murine uterus[J]. Mol-Pharmacol. 2006,69(5):1599-1606.
    [44] Elango A, Shepherd B, Chen TT. Effects of endocrine disrupters on the expression of growth hormone and prolactin mRNA in the rainbow trout pituitary[J]. Gen Comp Endocrinol. 2006,145(2):116-127.
    [45] Kimura S, Suzuki K, Sagara T, et al. Regulation of connexin phosphorylation and cell-cell coupling in trabecular meshwork cells[J]. Invest Ophthalmol Vis Sci. 2000,41(8):2222-2228.
    [46] Lampe PD, TenBroek EM, Burt JM, et al. Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication[J]. J Cell Biol. 2000,149(7):1503-1512.
    [47] Ogawa H, Oyamada M, Mori T, et al. Relationship of gap junction formation to phosphorylation of connexin43 in mouse preimplantation embryos[J]. Mol Reprod Dev. 2000,55(4):393-398.
    [48] Cameron SJ, Malik S, Akaike M, et al. Regulation of epidermal growth factor-induced connexin 43 gap junction communication by big mitogen-activated protein kinasel/ERK5 but not ERK1/2 kinase activation [J] . Biol Chem. 2003,278(20):18682-18688.
    [49] Abdelmohsen K, von Montfort C, Stuhlmann D, et al. Doxorubicin induces EGF receptor-dependent downregulation of gap junctional intercellular communication in rat liver epithelial cells[ J]. Biol Chem. 2005,386(3):217-223.
    [50] Nakagawa S, Fujii T, Yokoyama G, et al. Cell growth inhibition by all-trans retinoic acid in SKBR-3 breast cancer cells: involvement of protein kinase Calpha and extracellular signal-regulated kinase mitogen-activated protein kinase[J]. Mol Carcinog. 2003,38(3):106-116.
    [51] Bamberger AM, Briese J, Gotze J, et al. Stimulation of CEACAM1 expression by 12-O-tetradecanoylphorbol-13-acetate (TPA) and calcium ionophore A23187 in endometrial carcinoma cells[J]. Carcinogenesis. 2006,27(3):483-490.
    [52] Rivedal E, Opsahl H. Role of PKC and MAP kinase in EGF- and TPA-induced connexin43 phosphorylation and inhibition of gap junction intercellular communication in rat liver epithelial cells[J]. Carcinogenesis. 2001,22(9):1543-1550.
    [53] Long AC, Colitz CM, Bomser JA. Regulation of gap junction intercellular communication in primary canine lens epithelial cells: role of protein kinase C[J]. Curr Eye Res. 2007,32(3): 223-231.
    [1] Trosko JE, Ruch RJ. Gap junctions as targets for cancer chemoprevention and chemotherapy[J]. Curr Drug Targets. 2002;3(6):465-482.
    [2] Trosko JE, Chang CC. Modulation of cell-cell communication in the cause and chemoprevention/chemotherapy of cancer[J]. Biofactors. 2000,12(1-4):259-263.
    [3] Krutovskikh V, Yamasaki H. The role of gap junctional intercellular communication (GJIC) disorders in experimental and human carcinogenesis[J]. Histol Histopathol.1997,12(3):761-768.
    [4] Yamasaki H, Mesnil M, Omori Y, et al. Intercellular communication and carcinogenesis[J]. Mutat Res. 1995,333(1-2):181-188.
    [5] Saito T, Nishimura M, Kudo R, et al. Suppressed gap junctional intercellular communication in carcinogenesis of endometrium[].Int J Cancer. 2001,93(3): 317-23.
    [6] Saito T, Tanaka R, Wataba K, et al. Overexpression of estrogen receptor-alpha gene suppresses gap junctional intercellular communication in endometrial carcinoma cells[J]. Oncogene. 2004,23(5):1109-1116.
    [7] Leithe E, Sirnes S, Omori Y, et al. Down regulation of gap junctions in cancer cells [J]. Crit Rev Oncog. 2006,12(3-4):225-256.
    [8] Segretain D, Falk MM. Regulation of connexin biosynthesis, assembly, gap junction formation, and removal[J]. Biochim Biophys Acta. 2004,1662(1-2): 3-21.
    [9] 张晓峰, 李百祥. 细胞间隙连接通讯与肿瘤关系的研究进展[J].卫生毒理学杂志. 2002,16(3):185-187.
    [10] Lee SW, Tomasetto C, Paul D, et al. Transcriptional downregulation of gap-junction proteins blocks junctional communication in human mammary tumor cell lines[J]. J Cell Biol. 1992,118(5):1213-1221.
    [11] Willecke K, Hennemann H, Dahl E, et al. The diversity of connexin genes encoding gap junctional proteins[J]. Eur J Cell Biol. 1991,56(1):1-7.
    [12] Eghbali B, Kessler JA, Reid LM, et al. Involvement of gap junctions in tumorigenesis: transfection of tumor cells with connexin 32 cDNA retards growth in vivo[J]. Proc Natl Acad Sci USA. 1991,88(23):10701-10705.
    [13] Naus CC, Elisevich K, Zhu D, et al. In vivo growth of C6 glioma cells transfected with connexin43 cDNA[J]. Cancer Res. 1992,52(15):4208-4213.
    [14] Hellmann P, Grummer R, Schirrmacher K, et al. Transfection with different connexin genes alters growth and differentiation of human choriocarcinoma cells[J]. Exp Cell Res. 1999,246(2):480-490.
    [15] Lampe PD, TenBroek EM, Burt JM, et al. Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication[J]. J Cell Biol. 2000,149(7):1503-1512.
    [16] Ogawa H, Oyamada M, Mori T, et al. Relationship of gap junction formation to phosphorylation of connexin43 in mouse preimplantation embryos[J]. Mol Reprod Dev. 2000,55(4):393-398.
    [17] Cameron SJ, Malik S, Akaike M, et al. Regulation of epidermal growth factor-induced connexin 43 gap junction communication by big mitogen- activated protein kinasel/ERK5 but not ERK1/2 kinase activation [J]. Biol Chem. 2003,278(20):18682-18688.
    [18] Abdelmohsen K, von Montfort C, Stuhlmann D, et al. Doxorubicin induces EGF receptor-dependent downregulation of gap junctional intercellular communication in rat liver epithelial cells[ J]. Biol Chem. 2005,386(3):217-223.
    [19] Chen SC, Pelletier DB, Ao P, et al. Connexin43 reverses the phenotype of transformed cells and alters their expression of cyclin/cyclin-dependent kinases[J]. Cell Growth Differ. 1995,6(6):681-690.
    [20] Zhang YW, Morita I, Ikeda M, et al. Connexin43 suppresses proliferation of osteosarcoma U2OS cells through post-transcriptional regulation of p27[J]. Oncogene. 2001,20(31):4138-4149.
    [21] Zhang YW, Kaneda M, Morita I.The gap junction-independent tumor-suppressing effect of connexin 43[J]. J Biol Chem. 2003,278(45):44852- 44856.
    [22] King TJ, Fukushima LH, Hieber AD, et al. Reduced levels of connexin43 in cervical dysplasia: inducible expression in a cervical carcinoma cell line decreases neoplastic potential with implications for tumor progression[J]. Carcinogenesis. 2000,21(6):1097-1109.
    [23] King TJ, Fukushima LH, Yasui Y, et al. Inducible expression of the gap junction protein connexin43 decreases the neoplastic potential of HT-1080 human fibrosarcoma cells in vitro and in vivo[J]. Mol Carcinog. 2002,35(1):29-41.
    [24] 林仲翔, 张志谦, 王耐勤. 间隙连接基因 Cx43 表达对肺癌细胞体内成瘤生长的抑制[J]. 中华肿瘤杂志. 1997,19(4):253-255.
    [25] Moennikes O, Buchmann A, Ott T, et al. The effect of connexin32 null mutation on hepatocarcinogenesis in different mouse strains[J]. Carcinogenesis. 1999 Jul; 20(7):1379-1382.
    [26] Mesnil M, Asamoto M, Piccoli C, et al. Possible molecular mechanism of loss of homologous and heterologous gap junctional intercellular communication in rat liver epithelial cell lines[J]. Cell Adhes Commun. 1994,2(5):377-384.
    [27] Nicolson GL. Tumor cell instability, diversification, and progression to the metastatic phenotype: from oncogene to oncofetal expression[J]. Cancer Res. 1987,47(6):1473-1487.
    [28] Saunders MM, Seraj MJ, Li Z, et a1. Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication[J]. Cancer Res. 2001,61(5):1765-1767.
    [29] Bertram JS, Kolonel LN, Meyskens FL Jr. Rationale and strategies for chemoprevention of cancer in humans[J]. Cancer Res. 1987,47(11):3012-3031.
    [30] Meyskens FL Jr, Surwit E, Moon TE, et al. Enhancement of regression of cervical intraepithelial neoplasia II (moderate dysplasia) with topically applied all-trans-retinoic acid: a randomized trial[J]. J Natl Cancer Inst. 1994,86(7): 539-543.
    [31] Hong WK, Lippman SM, Itri LM, et al. Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck[J]. N Engl J Med. 1990,323(12):795-801.
    [32] Merriman RL, Bertram JS. Reversible inhibition by retinoids of3-methylcholanthrene-induced neoplastic transformation in C3H/10T1/2 clone 8 cells[J]. Cancer Res. 1979,39(5):1661-1666.
    [33] Zhang LX, Cooney RV, Bertram JS. Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/10T1/2 cells: relationship to their cancer chemopreventive action[J]. Carcinogenesis. 1991,12(11):2109- 2114.
    [34] Hossain MZ, Wilkens LR, Mehta PP, et al. Enhancement of gap junctional communication by retinoids correlates with their ability to inhibit neoplastic transformation[J]. Carcinogenesis. 1989,10(9):1743-1748.
    [35] 李甘地, 来茂德. 病理学[M]. 北京:人民卫生出版社, 2003:136-155.
    [36] Curiel DT, Gerritsen WR, Krul MR. Progress in cancer gene therapy[J]. Cancer Gene Ther. 2000,7(8):1197-1199.
    [37] Au JL, Jang SH, Zheng J, et al. Determinants of drug delivery and transport to solid tumors[J]. J Control Release. 2001,74(1-3):31-46.
    [38] Chen X, Batist G. Sensitization effect of L-2-oxothiazolidine-4-carboxylate on tumor cells to melphalan and the role of 5-oxo-L-prolinase in glutathione modulation in tumor cells[J]. Biochem Pharmacol. 1998,56(6):743-749.
    [39] Wang T, Chen X, Schecter RL, et al. Modulation of glutathione by a cysteine pro-drug enhances in vivo tumor response[J]. J Pharmacol Exp Ther. 1996,276(3):1169-1173.
    [40] Huang RP, Hossain MZ, Huang R, et al. Connexin 43 (Cx43) enhances chemotherapy-induced apoptosis in human glioblastoma cells[J]. Int J Cancer. 2001,92(1):130-138.
    [41] Fernstrom MJ, Koffler LD, Abou-Rjaily G, et al. Neoplastic reversal of human ovarian carcinoma cells transfected with connexin43[J]. Exp Mol Pathol. 2002,73(1):54-60.
    [42] Tanaka M, Grossman HB. Connexin 26 gene therapy of human bladder cancer: induction of growth suppression, apoptosis, and synergy with Cisplatin[J]. Hum Gene Ther. 2001,12(18):2225-2236.
    [43] Ballarini F, Biaggi M, Ottolenghi A, et al. Cellular communication and bystander effects: a critical review for modelling low-dose radiation action[J]. Mutat Res. 2002,501(1-2):1-12.
    [44] Portsmouth D, Hlavaty J, Renner M. Suicide genes for cancer therapy[J]. Mol Aspects Med. 2007,28(1):4-41.
    [45] Park JY, Elshami AA, Amin K, et al. Retinoids augment the bystander effect in vitro and in vivo in herpes simplex virus thymidine kinase/ganciclovir-mediated gene therapy[J]. Gene Ther. 1997,4(9):909-917.
    [46] Hotz-Wagenblatt A, Shalloway D. Gap junctional communication and neoplastic transformation[J]. Crit Rev Oncog. 1993,4(5):541-558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700