依博素生物合成基因ste16性质功能、ste15-ste22双敲除及基因簇ste的异源表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies of Characterization and Function of Ste16 Involved in Ebosin Biosynthesis, Double Disruption of Ste15-ste22 and Heterologous Expression of Ste Gene Cluster
  • 作者:谢鸿观
  • 论文级别:博士
  • 学科专业名称:微生物与生化药学
  • 学位年度:2008
  • 导师:李元
  • 学科代码:100705
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2008-06-01
摘要
链霉菌Streptomyces sp.139能够产生一种新型胞外多糖依博素。研究表明其具有明显的抗类风湿性关节炎作用,已申报临床研究,有望发展成为新药。
     本室已确定依博素的生物合成基因簇(ste)由27个ORFs组成(GeneBankAccession Number:AY131229)。为了阐明依博素生物合成途径,研究依博素结构与生物活性关系并获得新型衍生物,已对不同开放阅读框的功能进行深入研究。本文以ste16基因为研究对象。
     ste16大小为1,236bp,编码一个412-aa的蛋白。经同源性分析,ste16编码的蛋白与不同微生物来源的NDP-己糖甲基转移酶具有较高同源性,因此推测ste16编码NDP-己糖甲基转移酶,该酶能催化NDP-己糖的甲基化,反应需S-腺苷甲硫氨酸(S-adenosylmethionine,AdoMet)作为甲基供体。
     为了确定ste16编码蛋白的性质,以pET-30a为载体将ste16克隆至E.coliBL21(DE3),在IPTG诱导下表达,SDS-PAGE分析表明,在47kD处出现了一条新的蛋白条带,与预计的分子量相符。采用镍亲合柱层析对表达产物进行纯化,纯度达90%。重组蛋白Ste16经酶学分析其具有催化甲基从供体分子AdoMet转移至受体分子dTDP-4-keto-6-deoxy-D-glucose的活性,因此确定Ste16是NDP-己糖甲基转移酶,Km值为0.43±0.02mM。
     为了研究ste16在依博素生物合成中的功能,对ste16进行了同源重组双交换阻断实验。经Southern杂交确证获得了基因缺失株Streptomyces sp.139(ste16~-),采用基因互补获得了该基因互补株Streptomyces sp.139(ste16c)。与依博素相比,基因缺失株产生的多糖EPS-16m单糖比略有变化;基因互补株产生的多糖EPS-16c单糖组成类似于EPS-16m。分子量测定显示,EPS-16m和EPS-16c分子量均显著低于依博素。IL-1R拮抗活性分析结果显示,与依博素比较,EPS-16m活性降低,经基因互补后EPS-16c活性可恢复。据此推测依博素分子中的6-脱氧己糖(6DOHs)鼠李糖或岩藻糖可能侧链被甲基化,ste16作为一种修饰基因参与依博素的生物合成。
     以往研究显示ste15和ste22分别编码葡萄糖糖基转移酶和鼠李糖糖基转移酶,本研究通过基因同源重组双交换,在ste15基因缺失突变株Streptomyces sp.139(ste15~-)基础上,再进行ste22基因阻断,经Southern杂交验证,得到了ste15和ste22双基因缺失突变株Streptomyces sp.139(ste15~-ste22~-)。与依博素相比,双基因缺失株产生的多糖EPS-15m22m的分子量降低了50%;IL-1R拮抗活性分析结果显示,EPS-15m22m的活性显著降低。该多糖的单糖组分分析正在进行中,本研究表明葡萄糖和鼠李糖与依博素活性密切相关,与以往结果相符。ste15-ste22双敲除对依博素重复单元聚合度有突出影响。
     为证明依博素生物合成基因簇(ste)的完整性,我们将该基因簇克隆至变铅青链霉菌TK24中,获得了克隆菌株Streptomyces lividans TK24(ste)。其胞外多糖EPS-ste与Streptomyces lividans TK24原株和Streptomyces lividans TK24(pOJ446)分别产生的EPS-TK及EPS-pOJ比较,三种EPS均没有岩藻糖和木糖,其它六种单糖组分含量基本相似,但与依博素相比差异显著。三种EPS的分子量相近,但明显低于依博素。三种EPS均无IL-1R拮抗活性。这些结果表明尽管ste基因簇已克隆至变铅青链霉菌TK24,但未成功表达依博素或新结构EPS。
     综上所述,本研究确定了ste16在依博素生物合成中的修饰基因作用,进一步证明了葡萄糖和鼠李糖与依博素活性的关系,为研究多糖结构与生物活性关系,获得具有生物活性的新结构多糖奠定了较好基础。
Streptomyces sp. 139 was identified to produce a novel exopolysaccharide (EPS) designated Ebosin. It has obvious anti-rheumatic arthritis activity in vivo and may be developed to be a new drug in the future.
     The biosynthesis gene cluster consisting of 27 ORFs for Ebosin was confirmed in our laboratory. The individual roles of the putative genes in the cluster have been characterized for studying of the relationship between structure and activity of Ebosin and obtaining new derivatives. In this research, the objective of present investigation was to functionally assess ste16.
     ste16 (1,236bp) was predicted to specify a protein with homology to known NDP-hexose methyltransferases from different sources of microbes, which has the ability catalyzing transfer of the methyl group from S-adenosylmethionine (AdoMet) to dTDP-4-keto-6-deoxy-D-glucose.
     For characterization of the protein encoded by ste16, the gene was expressed in E. coli BL21 and the recombinant protein was purified to ~ 90% with a Mw 47kD in agreement with the expected size. Enzymatic reaction showed that Ste16 protein possesses the methyltransferase activity which catalyzes transfer of the methyl group from S-adenosylmethionine (AdoMet) to dTDP-4-keto-6-deoxy-D-glucose and then production of S-adenosylhomocysteine (AdoHcy). So that Ste16 was identified as a NDP-hexose methyltransferase with Km 0.43±0.02mM.
     For understanding the function of ste16 in the biosynthesis of Ebosin, the gene was disrupted with a double crossover via homologous recombination. The mutant strain Streptomyces sp.139 (ste16~-) was confirmed with Southern blot. The monosaccharide composition of EPS-16m produced by the mutant strain was found varied from that of Ebosin. The monosaccharide analysis of EPS-16c produced by the ste16 complemented mutant strain showed no remarkable changes compared with EPS-16m. The Mw for both of EPS-16m and EPS-16c were remarkably smaller than Ebosin. The antagonist activity of EPS-16m for IL-1R was significantly lower than Ebosin, but the activity of EPS-16c recovered partially compared with that of EPS-16m. According to these results, we assume Ste16 transfers methyl groups to rhamnose or fucose residues (6DOHs) of Ebosin in vivo, although the direct evidence has yet to be provided. Ste16 may be as a modificator gene during the biosynthesis of Ebosin.
     The products encoded by ste15 and ste22 were identified as the glucosyltranferase and the rhamnose-glycosyltranferase respectively. The ste22 was disrupted with a double crossover via homologous recombination in Streptomyces sp.139 (ste15~-). Southern blot demonstrated the mutant strain Streptomyces sp.139 (ste15~- ste22~-). The Mw of EPS-15m22m produced by the mutant strain was smaller more than 50% comparing with Ebosin. The antagonist activity of EPS-15m22m for IL-1R was significantly lower than the original levels of Ebosin. The monosaccharide analysis of EPS-15m22m has been carried out. From these research data, it can be concluded that both of stel5 and ste22 played essential roles in relationship between structure and activities in Ebosin and affected tremendously the polymerization of the repeating units of Ebosin also.
     The biosynthesis gene cluster (ste) of Ebosin was cloned into Streptomyces lividans TK24 with cosmid pOJ446 as vector. The monosaccharide analysis of EPS-TK, EPS-pOJ and EPS-ste produced by Streptomyces lividans TK24, Streptomyces lividans TK24 (pOJ446) and Streptomyces lividans TK24 (ste) separately showed that them were similar for the EPSs. The Mw of EPSs were remarkably lower than Ebosin and all of them had not the antagonist activities for IL-1R. From the results mentioned above, the biosynthesis gene cluster (ste) of Ebosin has not been expressed in Streptomyces lividans TK24. More detail research works should be performed further.
     In a word, the presenting studies identified the function of ste16 in the biosynthesis of Ebosin as a modificator gene and the essential roles of glucose, rhamnose in the bioactivity of Ebosin. These studies have laid the better groundwork for studying the relationship between structure and bioactivity of EPSs and obtaining more novel derivatives of Ebosin with new activities.
引文
[1]Leigh J.A.and Coplin DL.Exopolysaccharides in plant-bacterial interactions.Annu.Rev.Microbiol,1992,46:307-346.
    [2]Whitfield C.and Valvano MA.Biosynthesis and expression of cell surface polysaccharides in gram-negative bacteria.Adv.Micro.Physiol,1993,35:135-246.
    [3]Sutherland I.W.Novel and established applications of microbial polysaccharides.Trends Biotechnol,1998,16:41-46.
    [4]Hosono A,Lee J,Ametani A,et al.Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4.Biosci Biotechnol Biochem,1997,61:312-316.
    [5]Kitazawa H,Toba T,Itoh T,et al.Antitumoral activity of slime-forming,encapsulated Lactococcus lactis subsp,cremoris isolated from Scandinavian ropy sour mick,'viili'.Anim Sci Technol,1991,62:277-283.
    [6]Nakajima H,Suzuki Y,Kaizu H,Hirota T.Cholesterol lowering activity of ropy fermented milk.J Food Sci,1992,57:1327-1329.
    [7]Sutherland IW.Biosynthesis and composition of Gram-negative bacterial extracellular and wall polysaccharide.Annu Rev Microbiol,1985,39:243-300.
    [8]Morona JK,Morona R,Paton JC.Characterization of the locus encoding the Streptomyces pneumoniae types 19F capsular polysaccharide biosynthetic pathway.Mol Microbiol,1997,23:751-763.
    [9]Munoz R,Mollerach M,Lopez R,et al.Molecular organization of the genes required for the synthesis of type 1 capsular polysaccharide of Streptomyces pneumoniae:formation of the binary encapsulated pneumococci and identification of crytic dTDP-rhamnose biosynthesis genes.Mol Microbiol,1997,25:79-92.
    [10]Sau S,Sun J,Lee CY.Molecular characterization and transcriptional analysis of type 1capsule genes in Staphylococcus aureus.J Bacteriol,1997,179:1614-1621.
    [11]吴倩,吴剑波,李元.白细胞介素1受体拮抗剂139A的理化性质及体内活性研究.中国抗生素杂志,1999,24(6):401-403.
    [12]陈晶,吴剑波,刘叶民,徐桂芸.一种微生物来源的白细胞介素1受体拮抗剂-多糖139A的化学结构研究.药学学报,2001,36(10):787-789.
    [13]萨姆布鲁克,弗里奇,曼尼阿蒂斯著,金冬雁,黎孟枫等译,分子克隆实验指南(第二版),科学出版社。
    [14]Kieser T,Bibb MJ,Buttner MJ,et al.Practical Streptomyces Genetics,2000,The John Innes Foundation.
    [15]Bierman M,Logan R,O'Brien K.Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp.Gene,1992,116:43-49
    [16]MaNeil D,Gewain KM,Ruby CL,et al.Analysis of Streptornyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector.Gene,1992,111:61-68.
    [17]Bierman M,Logan R,O'Brien K,et al.Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp.Gene,1992,116(1):43-9.
    [18]萨姆布鲁克,弗里奇,曼尼阿蒂斯著,金冬雁,黎孟枫等译.分子克隆实验指南(第三版),科学出版社.
    [19]Kieser T,Bibb MJ,Buttner MJ,et al.Practical Streptomyces Genetics,2000,The John Innes Foundation.
    [20]Evys C,Jean FC,Stacie B,Raymond C T.A coupled fluorescent assay for histone methyltransfesases.Analytical Biochemistry,2005,342:86-92.
    [21]赵永芳,等.生物化学技术原理及应用(第三版).北京:科学出版社,2002.
    [22]Xu G,Chang W,Fei LH.Composition analysis of carbohydrate released from bovine sumaxillarymucin by capillary gas chromatography.Chinese J Anal Chem,1998,26:922-926.
    [23]Bitter T,Muir HM.A modified uronic acid carbazole reaction.Anal Biochem,1962,4:330-4.
    [24]Bentley SD,Chater KF,Cerdeno-Tarraga AM,et al.Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2).Nature,2002,417(6885):141-147.
    [25]Vizcaino N,Cloeckaert A,Zygmunt MS,et al.Characterization of a Brucella species 25-kilobase DNA fragment deleted from Brucella abortus reveals a large gene cluster related to the synthesis of a polysaccharide.Infect Immun,2001,69(11):6738-6748.
    [26] Paulsen I, Seshadri R, Nelson KE, et al. The Brucellasuis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci.U.S.A., 2002, 99 (20): 13148-13153.
    [27] Chaing, P.K., et al. S-Adenosylmethionine and Methylation. FASEB J., 1996, 10: 471-480.
    [28] Cantoni, G.L. Biological methylation: selected aspects. Annu. Rev. Biochem., 1975, 44:435-451.
    [29] Walsh, C.T. Protein Methylation in Postransaltional Modifications of Proteins,Expanding Nature's Inventory. Roberts and Co. Pub., Englewood, USA.
    [30] Hayashi, K. et al. A Histone H3 Methyltransferase Controls Epigenetic Events Required for Meiotic Prophase. Nature, 2005, 438(17):374-378.
    [31] Mavrodi, D.V. et al. Functional Analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1-Carboxamide from Pseudomonas aeruginosa PAO1. J. Bact., 2001,183(21):6454-6465.
    [32] Chubb, J.R. et al. Developmental Timing in Dictyostelium is Regulated by the SET1 Histone Methyltransferase. Devel. Bio., 2006, 292:519-532.
    [33] Miao, F. et al. Coactivator-Associated Arginine mthyltransferase-1 Enhances Nuclear Factor-kB-Mediated Gene Transcription Thought Methyaltion of Histone H3 at Arginine 17. Mol. Endocrin., 2006, 20(7): 1562-1573.
    [34] Ehrenhofer-Murray, A.E. Chrmatin Dynamics at DNA Replication, Transcription and Repair. Eur. J. Biochem., 2004, 271:2335-2349.
    [35] Kouskouti, A., et al. Gene-Specific Modulation of TAF10 Function by SET9-Mediated Methylation. Mol. Cell, 2004, 14:175-182.
    [36] Chulkov, S. et al. Regulation of p53 Activity Through Lysine Methylation. Nature,2004, publ on-line (doi: 10.1038/nature03117).
    [37] Fuks, F. et al. The DNA Methyltransferases Associate with HP1 and the SUV399H1 Histone Methyltransferase. Nucl. Acids Res., 2003, 31(9):2305-2312.
    [38] Eugenio PP, Gloria B, Carsten F, Alfredo FB, Jurgen R, Carmen M, Jose AS.Deoxysugar methylation during biosynthesis of the antitumor polyketide ellomycin by Streptomyces olivaceus. J Biol Chem, 2001, 276:18765-18774.
    [39] Ta TTT, Hei CL, Chun GK, Lutz H, Jae KS. Functional characterizations of novWUS involved in novobiocin biosynthesis from Streptomyces spheroids. Arch Biochem Biophys, 2005, 436: 161-167.
    [40] Gustavo S, Tounkang S, Marcelo G, Nathalie B, Frederic B, Jana K, Patricila C, Pedro MA, Anne L, Mamadou D, Germain P, Brigitte G, Michel Riviere, Mary J. Genetic basis for the biosynthesis of methylglucose lipopolysaccharides in Mycobacterium tuberculosis.J Biol Chem, 2007, 282: 27270-27276.
    [41] M.E. Langmuir, J.-R. Yang, A.M. Moussa, R. Laura, K.A. LeCompte. New naphthopyranone based fluorescent thiol probes. Tetrahedron Lett., 1995, 36: 3989-3992.
    [42] Becker A, Ruberg S, Kuster H, et al. The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products. J Bacteriol, 1997, 179(4): 1375-1384.
    [43] Stover CK, Pham X-QT, Erwin AL, et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 2000, 406 (6799): 959-964.
    [44] Finan TM, Weidner S, Wong K, et al. The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Natl Acad Sci U.S.A., 2001, 98 (17): 9889-9894.
    [45] Ogata H, Audic S, Renesto-Audiffren P, et al. Mechanisms of evolution in Rickettsia conorii and R. Prowazekii. Science, 2001, 293 (5537): 2093-2098.
    [46] Stingele F, Neeser J-R, Mollet B. Identification of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus. J Bacteriol, 1996, 178: 1680-1690.
    [47] van Kranenburg R, Marugg JD, van Swam II, et al. Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol Microbiol, 1997, 24: 387-397.
    [48] Lamothe GT, Jolly L, Mollet B, Genetic and biochemical characterization of exopolysaccharide biosynthesis by Lactobacillus delbrueckii subsp. bulgaricus. Arch Microbiol, 2002, 178(3):218-28.
    [49] Jolly L, Stingele F. Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int Dairy J, 2001, 11: 733-745.
    [50] van Kranenburg R, Vos HR, van Swam II, et al. Functional analysis of glycosyltransferase genes from Lactococcus lactis and other Gram-positive cocci:Complementation, expression, and diversity. J Bacteriol, 1999, 181: 6347-6353.
    
    [51] van Kranenburg R, van Swam II, Marugg JD, et al. Exopolysaccharide biosynthesis in Lactococcus lactis NIZO B40: functional analysis of the glycosyltransferase genes involved in synthesis of the polysaccharide backbone. J Bacteriol, 1999, 181(1):338-40.
    
    [52] Kolkman MA, Wakarchuk W, Nuijten PJ, et al. Capsular polysaccharide synthesis in Streptococcus pneumoniae serotype 14: molecular analysis of the complete cps locus and identification of genes encoding glycosyltransferases required for the biosynthesis of the tetrasaccharide subunit. Mol Microbiol, 1997, 26(1): 197-208.
    
    [53] Wang L, Li S, Li Y. Isolation and sequencing of glycosyltransferase gene and UDP-glucose dehydrogenase gene that are located on a gene cluster involved in a new exopolysaccharide biosynthesis in Streptomyces. DNA Seq, 2003, 14(2): 141-5.
    
    [54] Wang LY, Li ST, Guo LH, et al. Cloning and identification of the priming glycosyltransferase gene involved in exopolysaccharide 139A biosynthesis in Streptomyces. Yi Chuan Xue Bao, 2003, 30(8):723-9.
    
    [55] Zhang TL, Wang G, Xu Y, et al. Disruption of the ste22 gene encoding a glycosyltransferase and its function in biosynthesis of Ebosin in Streptomyces sp. 139.Curr Microbiol, 2006, 52: 55-9.
    
    [56] Sun QL, Wang LY, Shan JJ, Jiang R, Guo LH, Zhang Y, Zhang R, Li Y. Knockout of the gene (stel5) encoding a glycosyltransferase and its function in biosynthesis of exopolysaccharide in Streptomyces sp. 139. Arch Microbiol, 2007, 188: 333-340.
    
    [57] 白利平,中国协和医科大学博士论文,2007,6.
    
    [58] Suzuki T, Kanagawa T, Kamagata Y. Identification of a gene essential for sheathed structure formation in Sphaerotilus natans, a filamentous sheathed bacterium. Appl Environ Microbiol, 2002, 68(1):365-71.
    [59] Yi W, Zhu L, Guo H, et al. Formation of a new O-polysaccharide in Escherichia coli O86 via disruption of a glycosyltransferase gene involved in O-unit assembly. Carbohydr Res, 2006, 341(13):2254-60.
    [60] Senthilkumar V, Rameshkumar N, Busby SJ, et al. Disruption of the Zymomonas mobilis extracellular sucrase gene (sacC) improves levan production. J Appl Microbiol,2004,96(4):671-6.
    [61] Soulie MC, Piffeteau A, Choquer M, et al. Disruption of Botrytis cinerea class I chitin synthase gene Bcchsl results in cell wall weakening and reduced virulence. Fungal Genet Biol, 2003,40(1):38-46.
    [62] Francesca Stingele, John W. Newell, et al. Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363:production and characterization of an altered polysaccharide. Molecular Microbiology,1999,32: 1287-1295.
    [63] Bimala Subba, Nagendra Prasad Kurumbang, Young Soo Jung, Yeo Joon Yoon, Hei Chan Lee, Kwangkyoung Liou and Jae Kyung Sohng. Production of aminoglycosides in non-aminoglycoside producing Streptomyces lividans TK24. Bioorganic & Medicinal Chemistry Letters, 2007, 17: 1892-1896.
    [1]Chaing,P.K.,et al.S-Adenosylmethionine and Methylation.FASEB J.1996,10:471-480.
    [2]Cantoni,G.L.Biological methylation:selected aspects.Annu.Rev.Biochem.,1975,44:435-451.
    [3]姜红燕等.国外医学遗传学分册,2005,8(5):309-312.
    [4]Renson J et al.Arch Int Physiol Biochim,1960,68:534-547.
    [5]Walsh,C.T.Protein Methylation in Postransaltional Modifications of Proteins,Expanding Nature's Inventory.Roberts and Co.Pub.,Englewood,USA.
    [6]Hayashi,K.et al.A Histone H3 Methyltransferase Controls Epigenetic Events Required for Meiotic Prophase.Nature(2005) 438(17):374-378.
    [7]Mavrodi,D.V.et al.Functional Analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1-Carboxamide from Pseudomonas aeruginosa PAO1.J.Bact.(2001) 183(21):6454-6465.
    [8]Chubb,J.R.et al.Developmental Timing in Dictyostelium is Regulated by the SET1 Histone Methyltransferase.Devel.Bio.(2006) 292:519-532.
    [9]Miao,F.et al.Coactivator-Associated Arginine mthyltransferase-1 Enhances Nuclear Factor-kB-Mediated Gene Transcription Thought Methyaltion of Histone H3 at Arginine 17.Mol.Endocrin.(2006)20(7):1562-1573.
    [10]Ehrenhofer-Murray,A.E.Chrmatin Dynamics at DNA Replication,Transcription and Repair.Eur.J.Biochem.(2004) 271:2335-2349.
    [11]Kouskouti,A.,et al.Gene-Specific Modulation of TAF10 Function by SET9-Mediated Methylation.Mol.Cell(2004) 14:175-182.
    [12]Chulkov,S.et al.Regulation of p53 Activity Through Lysine Methylation.Nature(2004) publ on-line(doi:10.1038/nature03117).
    [13]Fuks,F.et al;The DNA Methyltransferases Associate with HP1 and the SUV399H1 Histone Methyltransferase.Nucl.Acids Res.(2003) 31(9):2305-2312
    [14]朱凌冬等.肿瘤防治研究,2005,32(12):802-804
    [15]侯雷平等.植物生理学通讯,2001,37(6):584-592
    [16]Cheng,X.et al.(1993) Crystal structure of the HhaI DNA methyltransferase complexed with S-adenosyl-L-methionine.Cell 74,299-307
    [17] Galperin, M.Y. et al. (1998) Analogous enzymes: independent inventions in enzyme evolution. Genome Res. 8, 779-790
    [18] O'Brien, P.J. and Herschlag, D. (1999) Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6, R91-R105
    [19] Anantharaman, V. et al. (2003) Emergence of diverse biochemical activities in evolutionarily conserved structural scaffolds of proteins. Curr. Opin. Chem. Biol. 7,12-20
    [20] Gerlt, J.A. and Babbitt, P.C. (2001) Divergent evolution of enzymatic function:mechanistically diverse superfamilies and functionally distinct suprafamilies. Annu.Rev. Biochem. 70, 209-246
    [21] Fauman, E.B. et al. (1999) Structure and evolution of AdoMetdependent methyltransferases. In S-Adenosylmethionine-dependent Methyltransferases:Structures and Functions (Cheng, X. and Blumenthal, R.M., eds) pp. 1-38, World Scientific Publishing
    [22] Martin, J.L. and McMillan, F.M. (2002) SAM (dependent) I AM: the S-adenosylmethionine dependent methyltransferase fold. Curr. Opin. Struct. Biol.12,783-793
    [23] Huang, Y. et al. (2000) Mechanisms for auto-inhibition and forced product release in glycine N-methyltransferase: crystal structures of wild-type, mutant R175K and S-adenosylhomocysteine-bound R175K enzymes. J. Mol. Biol. 298,149-162
    [24] Vidgren, J. et al. (1994) Crystal structure of catechol O-methyltransferase.Nature 368, 354-357
    [25] Skinner, M.M. et al. (2000) Crystal structure of protein isoaspartyl methyltransferase: a catalyst for protein repair. Structure 8, 1189-1201
    [26] Zhang, X. et al. (2000) Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J. 19, 3509-3519
    [27] Gong, W. et al. (1997) Structure of Pvu II DNA-(cytosine N4) methyltransferase,an example of domain permutation and protein fold assignment. Nucleic Acids Res.25,2702-2715
    [28] Scavetta, R.D. et al. (2000) Structure of RsrI methyltransferase, a member of the N6-adenine b class of DNA methyltransferases. Nucleic Acids Res. 28, 3950-3961
    [29] Bujnicki, J.M. et al. (2002) Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m6A methyltransferase. J. Mol. Evol. 55, 431-444
    [30] Klimasauskas, S. et al. (1994) Hhal methyltransferase flips its target base out of the DNA helix. Cell 76, 357-369
    [31] Cheng, X. and Roberts, R.J. (2001) AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res. 29, 3784-3795
    [32] Dixon, M.M. et al. (1996) The structure of the C-terminal domain of methionine synthase: presenting S-adenosylmethionine for reductive methylation of B12.Structure 4, 1263-1275
    [33] Jarrett, J.T. et al. (1998) Methionine synthase exists in two distinct conformations that differ in reactivity toward methyltetrahydrofolate, adenosylmethionine, and flavodoxin. Biochemistry 37, 5372-5382
    [34] Schubert, H.L. et al. (1998) The X-ray structure of a cobalamin biosynthetic enzyme, cobalt- precorrin-4 methyltransferase. Nat. Struct. Biol. 5, 585-592
    [35] Anantharaman, V. et al. (2002) SPOUT: a class of methyltransferases that includes spoU and trmD RNA methylase superfamilies, and novel superfamilies of predicted prokaryotic RNA methylases. J. Mol. Microbiol. Biotechnol. 4, 71-75
    [36] Michel, G. et al. (2002) The structure of the RlmB 23S rRNA methyltransferase reveals a new methyltransferase fold with a unique knot. Structure 10, 1303-1315
    [37] Nureki, O. et al. (2002) An enzyme with a deep trefoil knot for the active-site architecture. Acta Crystallogr. D. Biol. Crystallogr. 58, 1129-1137
    [38] Lim, K. et al. (2003) Structure of YibK methyltransferase from Haemophilus influenzae (HI0766): a cofactor bound at a site formed by a knot. Proteins 51,56-67
    [39] Zhang, X. et al. (2002) Structure of the neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell 111, 117-127
    [40] Trievel, R. et al. (2002) Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell 111, 91-103
    [41] Wilson, J. et al. (2002) Crystal structure and functional analysis of the histone methyltransferase SET7/9. Cell 111, 105-115
    [42] Min, J. et al. (2002) Structure of the SET domain histone lysine methyltransferase Clr4. Nat. Struct. Biol. 9, 828-832
    [43]Jacobs,S.A.et al.(2002) The active site of the SET domain is constructed on a knot.Nat.Struct.Biol.9,833-838
    [44]Kwon,T.et al.(2003) Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet.EMBO J.22,292-303
    [45]Doerks,T.et al.(2002) Systematic identification of novel protein domain families associated with nuclear functions.Genome Res.12,47-56
    [46]Yeates,T.(2002) Structures of SET domain proteins:protein lysine methyltransferases make their mark.Cell 111,5-7
    [47]刘东辉等.沈阳医学院学报,1999,1(1):52-56
    [48]朱志良中华劳动卫生职业病志,2002,20(2):151-154
    [49]Klimasauskas S et al.Cell,1994,76(2):357-369
    [50]Huang N et al.Proc Natl Acad Sci USA,2003,100(1):68-73
    [51]Turner BM.Cellular memory and the histone code.Cell,2002,111(3):285-291.
    [52]Peterson CL,Laniel MA.Histones and histone modifications.Curr Biol,2004,14(14):546-551.
    [53]Margueron R,Trojer P,Reinberg D.The key to development:interpreting the histone code? Curr Opin Genet,2005,15(2):163-176.
    [54]Metivier R.Estrogen receptor-alpha directs ordered,cyclinal,and combinatorial recruitment of cofactor on a natural target promoter.Cell,2003,115(2):751-763.
    [55]Pray Grant MG,Daniel JA,Schieltz D,Yates JR,Grant PA.Chdi chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation.Nature,2005,433(7024):434-438.
    [56]Kobor M,Greenblatt J.Regulation of transcription elongation by phosphorylation.Biochim Biophys Acta,2002,1577(2):261-275.
    [57]Freitag M,Hickey PC,Khlafallah TK,Read ND,Selker EU.HP1 is essential for DNA methylation in Neurospora.Mol Cell,2004,13(3):427-434.
    [58]Henry KW,Wyco A,Lo WS.Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation,mediated by SAGA-associated Ubp8.Gene,2003,17(21):2648-2663.
    [59]Li J,Moazed D,Gygi SP.Association of the histone methyltransferase Set2 with RNA polymerase Ⅱ plays a role in transcription elongation.J Biol Chem,2002,277(51):49383-49388.
    [60] Morris SA, Shibata Y, Noma K, Tsukamoto Y, Warren E, Temple B, Grewal SIS,Strahl BD. Histone H3 K36 methylation is associated with transcription elongation in Schizosaccharomyces pombe. Eukaryot Cell, 2005, 4(8): 1446-1454.
    [61] Czermin B, Schotta G, Hulsmann BB. Physical and functional association of Su(var)3-9 and HDAC1 in Drosophila. EMBO Reports, 2001, 2(10): 915-919.
    [62] Fraga MF. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet, 2005, 37(4): 391-400.
    [63] Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y,Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell,2004, 119(7): 941-953.
    [64] Shi YC, Matson F, Lan S, Iwase T, Baba, Shi Y. Regulation of LSD1 histone demethylase activity by its associated factors. Molecular Cell, 19(6): 857-864.
    [65] Whetstine A, Nottke F, Lan M, Huarte S, Smolikov Z, Chen E, Spooner E, Li G,Zhang MJ. Colaiacovo,Reversal of Histone Lysine Trimethylation by the JMJD2 Family of Histone Demethylases. Cell, 3(125): 467-481.
    [66] Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol, 2007, 8(4): 307-318.
    [67] Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P,Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins.Nature, 2006,439(7078), 811-816.
    
    [68] Yang Y et al. Arch Biochem Biophys, 2006, 448(1-2): 123-132.
    [69] Kassis ES, Zhao M, Hong JA, et al. Depletion of DNA methyltransferase 1 and/or DNA methyltransferase 3b mediates growth arrest and apoptosis in lung and esophageal cancer and malignant pleural mesothelioma cells. J Thorac Cardiovasc Surg,2006, 131(2):298-306.
    [70] Xiong Y, Dowdy SC, Xue A, et al. Opposite alterations of DNA methyltransferase gene expression in endometrioid and serious endometrial cancers.Gynecol Oncol, 2005,96(3):601-609.
    [71] Etoh T, Kanai Y, Ushijima S, et al. Increased DNA methyltransferase 1(DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol, 2004,164(2):689-699.
    [72]Chen CL,Yan X,Gao YN,et al.Expression of DNA methyltransferase 1,3A,and 3B mRNA in the epithelial ovarian carcinoma.Zhonghua Fu Chan Ke Za Zhi,2005,40(11):770-774.
    [73]Nakagwa T,Kanai Y,Ushijima S,et al.DNA hypermethylation on multiple CpG islands associated with increased DNA methyltransferase DNMT1 protein expression during multistage urothelial carcinogenesis.J Urol,2005,173(5):1767-1771.
    [74]Fang JY,Lu R,Mikovits JA,et al.Regulation ofhMSH2 and hMLH1 expression in the human colon cancer cell line SW1116 by DNA methyltransferase 1.Cancer Lett,2006,233(1):124-130.
    [75]Suzuki M,Sunaga N,Shames DS,et al.RNA interference-mediated knockdown of DNA methyltransferase 1 leads to promoter demethylation and gene re-expression in human lung and breast cancer cells.Cancer Res,2004,64(9):3137-3143.
    [76]Ting AH,Jair KW,Suzuki H,et al.CpG island hypermethylation is maintained in human colorectal cancer cells after RNAi-mediated depletion of DNMT1.Nat Genet,2004,36(6):582-584.
    [77]Karpf AR,Matsui S.Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells.Cancer Res,2005,65(19):8635-8639.
    [78]Rhee I,Backman KE,Park BH,et al.DNMT1 and DNMT3b cooperate to silence genes in human cancer cells.Nature,2002,416(6880):552-556.
    [79]嵇保中等.生命科学,2007,19(1):90-96
    [80]Gunawardene YS et al.Peptides,2003,24(10):1591-1597
    [81]Shinoda T et al.Proc Natl Acad Sci USA,2003,100(21):11986-11991
    [82]Lee,Y.C.,and Ballou,C.E.(1964) J.Biol.Chem.239,PC3602-PC3603
    [83]Lee,Y.C.(1966) J.Biol.Chem.241,1899-1908
    [84]Gray,G.R.,and Ballou,C.E.(1971)J.Biol.Chem.246,6835-6842
    [85]Maitra,S.K.,and Ballou,C.E.(1977) J.Biol.Chem.252,2459-2469
    [86]Yabusaki,K.K.,and Ballou,C.E.(1978) Proc.Natl.Acad.Sci.U.S.A.75,691-695
    [87]Yabusaki,K.K.,Cohen,R.E.,and Ballou,C.E.(1979) J.Biol.Chem.254,7282-7286
    [88] Maggio, J. E. (1980) Proc. Natl. Acad. Sci. U. S. A. 77,2582-2586
    [89] Hindsgaul, O., and Ballou, C. E. (1984) Biochemistry 23, 577-584
    [90] Tuffal, G., Tuong, A., Dhers, C., Uzabiaga, F., Rivie're, M., Picard, C., and Puzo,G. (1998) Anal. Chem. 70, 1853-1858
    
    [91] Ferguson, J. A, and Ballou, C. E. (1970) J. Biol. Chem. 245,4213-4223
    [92] Grellert, E., and Ballou, C. E. (1972) J. Biol. Chem. 247, 3236-3241
    [93] Kamisango, K., Dell, A., and Ballou, C. E. (1987) J. Biol. Chem. 262,4580-4586
    
    [94] Weisman, L. S., and Ballou, C. E. (1984) J. Biol. Chem. 259, 3457-3463
    [95] Yamada, H., Cohen, R. E, and Ballou, C. E. (1979) J. Biol. Chem. 254,1972-1979
    
    [96] Weisman, L. S., and Ballou, C. E. (1984) J. Biol. Chem. 259, 3464-3469
    [97] Eugenio P.Patallo, Gloria Blanco, Carsten Fischer, Alfredo F.Bran, Jurgen Rohr,Carmen Mendez, and Jose A.Salas. Deoxysugar Methylation during Biosynthesis of the Antitumor Polyketide Elloramycin by Streptomyces olivaceus. THE JOURNAL OF BIOLOGICAL CHEMISTRY (2001) 276,18765-18774
    [98] Shu-Ming Li, Lucia Westrich, Jurgen Schmidt, Christine Kuhnt and Lutz Heide.Methyltransferase genes in Streptomyces rishiriensis: new coumermycin derivatives from gene-inactivation experiments. Microbiology (2002), 148,3317-3326
    [99] T.T. Thu Thuy et al. Functional characterizations of novWUS involved in novobiocin biosynthesis from Streptomyces spheroids. Archives of Biochemistry and Biophysics 436 (2005) 161-167
    [100] G. Weitnauer, S. Gaisser, L. Kellenberger, P. F. Leadlay and A. Bechthold.Analysis of a C-methyltransferase gene (aviG1) involved in avilamycin biosynthesis in Streptomyces viridochromogenes Tu 57 and complementation of a Saccharopolyspora erythraea eryBIII mutant by aviGl Microbiology. (2002), 148,373-379
    
    [101] Bate, N., and Cundliffe, E. (1999) J. Ind. Microbiol. Biotechnol. 23, 118-122
    [102] Fouces, R., Mellado, E., Diez, B., and Barredo, J. L. (1999) Microbiology 145,855-868
    [103] Aguirrezabalaga, I., Olano, C., Allende, N., Rodriguez, L., Brana, A. F.,Mendez, C, and Salas, J. A. (2000) Antimicrob. Agents Chemother. 44, 1266-1275
    [104]朱凌冬等.肿瘤防治研究,2005,32(12):802-804
    [105]董云洲.华北农学报,1999,14(增刊):40-44
    [106]Li JR et al.J Virol,2005,79(21):13373-13384

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700