载脂蛋白A-I对大鼠肾缺血再灌注损伤的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高密度脂蛋白(HDL)有抗炎的功能,并可保护肾缺血再灌注(I/R)所造成的损伤。在本实验中,我们研究了高密度脂蛋白的主要蛋白组分,载脂蛋白A-Ⅰ(Apolipoprotein A-Ⅰ,ApoA-Ⅰ)在缺血再灌注损伤中的作用。我们用改良的冷乙醇沉淀法,从血浆F-Ⅳ组分中提取纯化人血浆载脂蛋白A-Ⅰ。用SDS-聚丙烯酰胺凝胶电泳(SDS-polyacrylamide gel electrophoresis,SDS-PAGE)和蛋白免疫印迹法(western blot)鉴定分离得到的蛋白为纯化的ApoA-Ⅰ。对LPS(内毒素)激活的巨噬细胞细胞毒性抑制作用实验和LPS体外结合实验显示,制备得到的ApoA-Ⅰ具有与天然野生型ApoA-Ⅰ同样的生物学活性。
     在乌拉坦麻醉条件下,夹闭SD大鼠双侧肾蒂,造成肾组织缺血,45分钟后,血管再通,建立肾缺血再灌注(I/R)模型。缺血前30分钟股静脉给予ApoA-Ⅰ(25mg/kg)(给药组)或者生理盐水(缺血再灌注组,I/R组)处理。假手术组(sham组)除不夹闭肾蒂外,其它条件与缺血再灌注组相同。再灌注6小时后,股静脉取血,测定血清肌酐(serum creatinine)水平,血尿素氮(blood urea nitrogen,BUN)水平,血清肿瘤坏死因子α(TNF-α)和白介素1β(IL-1β)的含量。并取一部分大鼠的肾脏,测定组织匀浆中丙二醛(malondialdehyde,MDA)的含量以及超氧化物歧化酶(superoxide dismutase,SOD)和髓过氧化物酶(myeloperoxidase,MPO)的比活性,另取部分大鼠的肾脏做病理切片,观察组织病理变化。同时取大鼠肾脏做免疫组化观察血管内皮细胞间粘附分子-1(intercellular adhesion molecule-1,ICAM-1)和P-选择素(P-selectin)的表达情况。
     实验结果显示ApoA-Ⅰ能够显著降低I/R大鼠血清中肌酐和尿素氮水平:缺血再灌注组中肌酐和尿素氮水平分别为172.78±19.15μM和18.43±2.96mM,而给药组中肌酐和尿素氮水平分别为114.56±7.30μM(p<0.01)和11.25±1.94mM(p<0.01)。同时,ApoA-Ⅰ能够显著降低I/R大鼠血清中TNF-α和IL-1β的水平:缺血再灌注组中TNF-α和IL-1β的浓度分别为10.95±3.63pg/ml,355.00±52.62pg/ml,给药组中TNF-α和IL-1β的浓度分别为6.43±1.43 pg/ml(p<0.05)和208.75±37.76pg/ml(p<0.01)。另外,I/R大鼠肾组织MDA含量和MPO活性在给予ApoA-Ⅰ后也分别从34.77±2.48nmol/克湿组织和6.14±0.58U/克湿组织相应地降到23.71±2.03nmol/克湿组织(p<0.01)和3.03±0.51U/克湿组织(p<0.01);而I/R大鼠肾组织SOD活性在给予ApoA-Ⅰ后从59.38±15.86U/克湿组织升高到86.40±21.52 U/克湿组织(p<0.05)。大鼠肾脏免疫组化分析表明,再灌注6小时后,缺血再灌注组血管内皮细胞ICAM-1的表达量明显增加,ApoA-Ⅰ治疗可明显降低血管内皮细胞ICAM-1的表达水平。P-selectin的表达也有同样的变化趋势。同时,组织病理分析也表明ApoA-Ⅰ给药能够减轻缺血再灌注所造成的肾组织损伤和炎症。
     以上实验结果建议ApoA-Ⅰ在大鼠肾缺血再灌注损伤中有良好的保护作用,具有潜在的临床医用价值。
High density lipoprotein(HDL) has the anti-inflammatory function and can protect kidney from ischemia-reperfusion(I/R) injury.In present study,we investigated the function of Apolipoprotein A-Ⅰ(ApoA-Ⅰ),the major apolipoprotein of HDL,in I/R injury.Human plasma precipitateⅣwas utilized to isolate ApoA-Ⅰby cold ethanol precipitation,which is modified by us.Purified ApoA-Ⅰwas identified by SDS-PAGE and Western blot.The study on the detoxification effect of ApoA-Ⅰon LPS-mediated macrophages activation and LPS binding test of ApoA-Ⅰin vitro showed that the prepared ApoA-Ⅰhas the same biological activity as natural wild type ApoA-Ⅰ.
     We investigated the protective role of ApoA-Ⅰin renal ischemia-reperfusion injury in SD rats anesthetized with urethane.Saline(I/R group) or ApoA-Ⅰ(25 mg/kg) (ApoA-Ⅰgroup) was administered intravenously 30 min before 45min-ischemia by occlusion of the renal pedicles.Rats in sham group were subjected to the same surgical procedures as I/R rats except that the renal pedicles were not occluded.Blood samples were collected at 6 h of reperfusion for determination of serum creatinine, BUN,TNF-αand IL-1βlevels.Kidneys were harvested at 6 h of reperfusion for assay of MDA content and MPO and SOD activity,as well as for observation of histopathological changes and for immunohistochemical analysis of ICAM-1 and P-selectin expression on endothelium.
     The results showed that administration of ApoA-Ⅰcould significantly reduce serum creatinine and BUN levels in I/R group(172.78±19.15μM vs 114.56±7.30μM,p<0.05 and 18.43±2.96mM vs 11.25±1.94mM,p<0.01,respectively),and also reduce serum TNF-αlevels from 10.95±3.63pg/ml to 6.43±1.43pg/ml(p<0.05), as well as serum IL-1βlevels from 355.00±52.62pg/ml to 208.75±37.76pg/ml (p<0.01) compared with I/R group.Tissue MDA content and MPO activity in ApoA-I-treated group were significantly reduced compared with I/R group(34.77±2.48nmol/g wet tissue vs 23.71±2.03nmol/g wet tissue,p<0.01 and 6.14±0.58U/g wet tissue vs 3.03±0.51U/g wet tissue,p<0.01,respectively),whereas tissue SOD activity in ApoA-I-treated group was significantly increased compared with I/R group(86.40±21.52 U/g wet tissue vs 59.38±15.86U/g wet tissue,p<0.05).Moreover, ApoA-I treatment suppressed the expression of ICAM-1 on endothelium,and the similar trend could also be observed in the expression of P-selectin.The histopathological analysis of rat kidneys harvested at 6h of rperfusion showed that ApoA-I attenuated I/R-induced renal injury and tissue inflammation.
     These results suggest that ApoA-I can provide beneficial protective effect on renal ischemia-reperfusion injury in rats,and thus has promising clinical value for the treatment of I/R injury.
引文
[1] Weight S.C., Bell P.R., Nicholson M.L.. Renal ischemia-reperfusion injury. British Journal of Surgery, 1996, 83: 162-170.
    [2] Joosten S.A., Sijpkens Y.W., van Kooten C, Paul L.C.. Chronic renal allograft rejection: pathophysiologic considerations. Kidney International,2005,68:1-13.
    [3] Glaumann B., Cross C.E., Paller M.S., et al. Studies on the pathogenesis of ischemic cell injury. Virchons Archives, 1975, 19: 302-308.
    [4] Paller M.S.. The cell biology of reperfusion injury in the kidney. Journal of Investigative Medicine, 1994, 42: 632-639.
    [5] John J., Friedewald, Hamid R.. Inflammatory cells in ischemic acute renal failure. Kidney International, 2004, 66: 486-491.
    [6] Ysebaert D.K., De Greef K.E., Vercauteren S.R., et al. Identification and kinetics of leukocytes after severe ischemia/reperfusion renal injury. Nephrol. Dial. Transplant, 2005, 15: 1562-1574.
    [7] Mark D., Okusa.. The inflammatory cascade in acute ischemia reperfusion injury. Nephron., 2002, 90: 133-138.
    [8] Rajnoch J., Lodererova A., Szabo A., et al. Regulators of angiogenesis in renal ischemia/reperfusion injury in normotensive and hypertensive rats: effects of tacrolimus. Transplant Proc, 2005, 37: 352-354.
    [9] Molitoris B.A., Sutton T.A.. Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney International, 2004, 66:496-499.
    [10] Hyka N., Dayer J.M., Modoux C, Kohno T., Edwards C.K.,Roux-Lombard P., Burger D.. Apolipoprotein A-I inhibits the production of interleukin-1β and tumor necrosis factor-a by blocking contact-mediated activation of monocytes by T lymphocytes. Blood. 2001, 97: 2381-2389.
    [11] Wu A., Hinds C.J., Thiemermann C. High-density lipoprotein in sepsis and septic shock: metabolism, actions, and therapeutic applications. Shock,2004,21:210-221.
    [12] Brewer H.B., Jr Ronan R., Meng M.S., Bishop C. 1986. Isolation and characterization of apolipoproteins A-I, A-II, and A-IV. Methods in Enzymology, 1986, 128: 223-235.
    [13] Sirtori C.R., Calabresi L., Franceschini G. Recombinant apolipoproteins for the treatment of vascular disease. Atherosclerosis, 1999, 142: 29-40.
    [14] Calabresi L., Vecchio G., Longhi R., Gianazza E., Palm G, Wadensten H.,Hammarstrom A., Olsson A., Karlstrom A., Sejlitz T.. Molecular characterization of native and recombinant apolipoprotein A-I_(Milano) dimer.The introduction of an interchain disulfide bridge remarkably alters the physicochemical properties of apolipoprotein A-I. Journal of Biological Chemistry, 1994, 269: 32168-32174.
    [15] Pajkrt D., Doran J.E., Koster F., Lerch P.G., Arnet B., van der Poll T., ten Cate J.W., van Deventer S.J.. Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia. The Journal of Experimental Medicine, 1996, 184: 1601-1608.
    [16] Jonas A.. Reconstitution of high-density lipoprotein. Methods in Enzymology, 1986, 128: 553-582.
    [17] Calabresi L., Meng Q.H., Gastro G.R., Marcel Y.L.. Apolipoprotein A-I conformation in discoidal particles: evidence for alternate structures.Biochemistry, 1993, 32: 6477-6484.
    [18] Quezado Z.M., Natanson C, Banks S.M., Ailing D.W., Koev C.A., Danner R.L., Elin R.J., Hosseini J.M., Parker T.S., Levine D.M., et al.. Therapeutic trial of reconstituted human high-density lipoprotein in a canine model of gram-negative septic shock. The Journal of Pharmacology and Experimental Therapeutics, 1995, 272: 604-611.
    [19] Ma J., Liao X.L., Lou B., Wu M.P.. Role of apolipoprotein A-I in protecting against endotoxin toxicity. Acta Biochimca et Biophysica Sinica, 2004, 36:419-424.
    [20]Park C.T.,Wright S.D..Plasma lipopolysaccharide-binding protein is found associated with a particle containing apolipoprotein A-Ⅰ,phospholipid,and factor H-related proteins.The Journal of Biological Chemistry,1996,271:18054-18060.
    [21]Oram J.F.,Lawn R.M..ABCA1.the gatekeeper for eliminating excess tissue cholesterol.Journal of Lipid Research,2001,42:1173-1179.
    [22]司徒镇强,吴军正 主编.《细胞培养》.世界图书出版公司,1996.
    [23]Lerch P.G.,F6rtsch V.,Hodler G.,Bolli R..Production and characterization of a reconstituted high density lipoprotein for therapeutic applications.Vox Sanguinis,1996,71:155-164.
    [24]Peitsch M.C.,Kress A.,Lerch P.G.,Jacques Morgenthaler J.,Isliker H.,J(o|¨)rg Heiniger H..A purification method for apolipoprotein A-Ⅰ and A-Ⅱ.Analytical Biochemistry,1989,178:301-305.
    [25]Nanjee M.N.,Crouse J.R.,King J.M.,Hovorka R.,Rees S.E.,Carson E.R.,Jacques Morgenthaler J.,Lerch P.G.,Miller N.E..Effects of Intravenous Infusion of Lipid-Free ApoA-Ⅰ in Humans.Arteriosclerosis,Thrombosis &Vascular Biology,1996,16:1203-1214.
    [26]Tugtepe H.,Sener G.,Blylkll N.K.,Y(u|¨)ksel M.,Cetinel S.,Gedik N.,Yegen B.C..The protective effect of oxytocin on renal ischemia/reperfusion injury in rats.Regulatory Peptides,2007,140:101-108.
    [27]Thiemermann C.,Patel N.S.A.,Kvale E.O.,Cockerill G.W.,Brown P.A.J.,Stewart K.N.,Cuzzocrea S.,Britti D.,Mota-Filipe H.,Chatterjee P.K..High density lipoprotein(HDL) reduces renal ischemia/reperfusion injury.J.Am.Soc.Nephrol.,2003,14:1833-1843.
    [28]Chatterjee P.K.,Zacharowski K.,Cuzzocrea S.,Otto M.,Thiemermann C..Inhibitors of poly(ADP-ribose) synthetase reduce renal ischemia-reperfusion injury in the anesthetized rat in vivo.F.A.S.E.B.Journal,2000,14:641-651.
    [29]Sener G.,Sehirli(O|¨).,Velioglu-(O|¨)g(u|¨)n A.,Cetinel S.,Gedik N.,Caner M.,Sakarcan A.,Yegen B.C..Montelukast protects against renal ischemia/reperfusion injury in rats. Pharmacological Research, 2006, 54:65-71.
    [30] Mark L.A., Robinson A.V., Schulak J.A.. Inhibition of nitric oxide synthase reduces renal ischemia/reperfusion injury. Journal of Surgical Research,2005,129:236-241.
    [31] Reiko T., Katsuhiko Y., Yutaka F., Akira H.. Dexamethasone attenuates neutrophil infiltration in the rat kidney in ischemia/reperfusion injury: the possible role of nitroxyl. Free Radical Biology and Medicine, 2001, 31:809-815.
    [32] Rossoni G, Gomaraschi M., Berti F., Sirtori C.R., Franceschini G, Calabresi L.. Synthetic high-density lipoproteins exert cardioprotective effects in myocardial ischemia/reperfusion injury. The Journal of Pharmacology and Experimental Therapeutics, 2004, 308: 79-84.
    
    [33] Kelly K.J.. Distant effects of experimental renal ischemia/reperfusion injury.J. Am. Soc. Nephrol., 2003, 14: 1549-1558.
    [34] Tall A.R.. Plasma high density lipoprotein. Metabolism and relationship to atherogenesis, J. Clin. Invest., 1990, 86: 379-384.
    [35] Assmann G, Nofer J.R.. Atheroprotective effects of high-density lipoproteins, Annu. Rev. Med., 2003, 54: 321-341.
    [36] Calabresi L., Rossoni G, Gomaraschi M., Sisto R, Berti R, Franceschini G.High-density lipoproteins protect isolated rat hearts from ischemia-reperfusion injury by reducing cardiac tumor necrosis factor-alpha content and enhancing prostaglandin release. Circulation Research, 2003, 92:330-337.
    [37] Chisholm J.W., Burleson E.R., Shelness G.S., Parks J.S.. ApoA-I secretion from HepG2 cells. Evidence for the secretion of both lipid-poor apoA-I and intracellularly assembled nascent HDL. Journal of Lipid Research, 2002, 43:36-44.
    [38] Kiss R.S., McManus D.C., Franklin V., Tan W.L., McKenzie A., Chimini G.,Marcel Y.L.. The lipidation by hepatocytes of human apolipoprotein A-I occurs by both ABCA1-dependent and -independent pathways. Journal of Biological Chemistry, 2003, 278: 10119-10127.
    [39] Rye K.A., Barter P.J.. Formation and Metabolism of Prebeta-Migrating,Lipid-Poor Apolipoprotein A-I. Arteriosclerosis, Thrombosis & Vascular Biology, 2004, 24: 421-428.
    [40] Brewer H.B.Jr, Remaley A.T., Neufeld E.B., Basso F., Joyce C. Regulation of plasma high -density lipoprotein levels by the ABCA1 transporter and the emerging role of high-density lipoprotein in the treatment of cardiovascular disease. Arteriosclerosis, Thrombosis & Vascular Biology, 2004, 24:1755-1760.
    [41] Tsujita M., Wu C.A., be-Dohmae S., Usui S., Okazaki M., Yokoyama S.. On the hepatic mechanism of HDL assembly by the ABCA1/apoA-I pathway.Journal of Lipid research, 2005, 46: 154-162.
    [42] Barter P.J., Nicholls S., Rye K.A., Anantharamaiah G.M., Navab M.,Fogelman A.M.. Antiinflammatory properties of HDL. Circulation Research,2004, 95: 764-772.
    [43] Kee P., Rye K.A., Taylor J.L., Barrett P.H.R., Barter P.J.. Metabolism of ApoA-I as Lipid-Free Protein or as Component of Discoidal and Spherical Reconstituted HDLs: Studies in Wild-Type and Hepatic Lipase Transgenic Rabbits. Arteriosclerosis, Thrombosis & Vascular Biology, 2002, 22:1912-1919.
    [44] Nicholls S.J., Dusting G.J., Cutri B., Bao S., Drummond G.R., Rye K.A.,Barter P.J.. Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation, 2005, 111: 1543-1550.
    [45] Chatterjee P.K., Cuzzocrea S., Brown P.A.J., Zacharowski K., Stewart K.N.,Thiemermann C. Tempol, a membrane-permeable radical scavenger,reduces oxidant stress-mediated renal dysfunction and injury in the rat .Kidney International, 2000, 58: 658-673.
    [46] Williams P., Lopez H., Britt D., Chan C., Ezrin A., Hottendorf R.. Characterization of renal ischemia/reperfusion injury in rats. J. Pharmacol.Toxicol. Meth., 1997, 37: 1-7.
    [47] Yan Y.J., Li Y., Lou B., Wu M.P.. Benefical effects of ApoA-I on LPS-induced acute lung and endotoxemia in mice. Life Sciences, 2006, 79:210-215.
    [48] Liao X.L., Lou B., Ma J., Wu M.P.. Neutrophils activation can be diminished by apolipoprotein A-I. Life Sciences, 2005, 77: 325-335.
    [49] Yao Y.M., Yu Y, Wu Y. et al.. The role of gut as a cytokine-generating organ in remote organ dysfunction after intestinal ischemia and reperfusion.Chinese Medical Journal, 1998,111:514-518.
    [50] Fouqueray B., Philippe C, Herbelin A., Perez J., Ardaillou R., Baud L..Cytokine formation within rat glomeruli during experimental endotoxemia.J. Am. Soc. Nephrol., 1993, 3: 1783-1789.
    [51] Kita T., Tanaka N., Nagano T.. The immunocytochemical localization of tumor necrosis factor and leukotriene in the rat kidney after treatment with lipopolysaccharide. Int. J. Exp. Path., 1993, 74: 471-476.
    [52] Donnahoo K.K., Shames B.D., Harken A.H., Meldrum D.R.. The role of tumor necrosis factor in renal ischemia reperfusion injury. The Journal of Urology, 1999, 162: 196-203.
    [53] Arenzana Seisdedos F.,Turpin P., Rodriguez M., Thomas D., Hay R.T.,Virelizier J.L., Dargemont C. Nuclear localization of IkB promotes active transport of NF-kB from the nucleus or the cytoplasm. Journal of Cell Science, 1997, 110:369-378.
    [54] Yin T., Sandhu G, Wolfgang C.D., Burner A., Webb R.L., Rigel D.F., Hai T.,Whelan J.. Tissue-specific pattern of stress kinase activation in ischemia/reperfused heart and kidney. J. Biol. Chem., 1992, 272:19943-19954.
    [55] Tracey K.J., Beutler B., Lowry S.F., Merryweather J., Wolpe S., Milsark I.W., et al.. Shock and tissue injury induced by recombinant human cachectin. Science, 1986, 234: 470-482.
    [56]Burnett A.L..Stimulated ischemia induces renal tubular cell apoptosis through a nuclear factor-kappa B dependent mechanism.Journal of Urology,2002,168:248-252.
    [57]Communal C.,Sumandea M.,de Tombe P.,Narula J.,Solaro R.J.,Hajjar R.J..Functional consequences of caspase activation in cardiac myocytes.Proceedings of the national Academy of Sciences of the United States of America,2002,99:6252-6256.
    [58]Patrick D.A.,Moore E.E.,Moore F.A.et al..Lipid mediators upregulate CD11b and prime for concordant superoxide and elastase in human neutrophils.The Journal of Trauma,1997,43:297-302.
    [59]金伯泉,赵修行,王成济等,细胞和分子免疫学,西安:世界图书出版社,1995.129-132.
    [60]Frangogiannis N.G.,Lindsey M.L.,Michael L.H.,Youker K.A.,Bressler R.B.,Mendoza L.H.,Spengler R.N.,Smith C.W.,Entman M.L..Resident cardiac mast cells degranulate and release preformed TNF-α initiating the cytokine cascade in myocardial ischemia/reperfusion.Circulation,1998,98:699-710.
    [61]Brown J.M.,Terada L.S.,Grosso M.A.,Whitman G.J.,Velasco S.E.,Patt A.,Harken A.H.,Repine J.E..Xanthine oxidase produces hydrogen peroxide which contributes to reperfusion injury of ischemic rat kidneys.Journal of Clinical Investigation,1988,81:1297-1301.
    [62]Guyton K.Z.,Liu Y.,Gorospe M.,Xu Q.,Holbrook N.J..Activation of mitogen-activated protein kinase by H_2O_2.Role in cell survival following oxidant injury.Journal of Biological Chemistry,1996,271:4128-4142.
    [63]Radeke HH,Meier B,Topley N,Floge J,Habermehl GG,Resch K:Interleukin-1 and tumor necrosis factor induce oxygen radical production in mesangial cells.Kidney Int.,1990;37:767-775.
    [64]Sharp J.T.,Strand V.,Leung H.,Hurley F.,Loew-Friedrich I..Treatment with leflunomide slows radiographic progression of rheumatoid arthritis.Arthritis Rheum.,2000.43:495-505.
    [65] Arnason B.G.. Treatment of multiple sclerosis with interferon beta. Biomed.Pharmacother., 1999, 53: 344-350.
    [66] Jordan J.E., Zhao Z.Q., Vinten-Johansen J.. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovascular Research, 1999, 43:860-878.
    [67] Rabb H.. Role of leukocytes and leukocyte adhesion molecules in renal ischemic-repefusion injury. Frontiers in Biosciences, 1996,1: 9-14.
    [68] Ikeda U., Ikeda M, Kano S., Shimada K.. Neutrophil adherence to rat cardiac myocyte by proinfiammatory cytokines. Journal of Cardiovascular Pharmacology, 1994, 23: 647-652.
    [69] Moore K.L., Patel K.D., Bruehl R.E., Li F., Johnson D.A., Lichenstein H.S.,Cummings R.D., Bainton D.F., McEver R.P.. P-selectin glycoprotein ligand-1 mediates rolling of human neytrophils on P-selectin. Journal of Cell Biology, 1995, 128:661-671.
    [70] McEver R.P., Cummings R.D.. Role of PSGL-1 binding to selectins in leukocyte Recruitment. Journal of Clinical Investigation, 1997, 100:485-492.
    [71] Hughes B.J., Hollers J.C., Crockett-Torabi E., Smith C.W.. Recruiment of CD11b/CD18 to the neutrophil surface and adherence-dependent cell locomotion. Journal of Clinical Investigation, 1992, 90: 1687-1696.
    [72] Jerome S.N., Dore M., Paulson J.C., Smith C.W., Korthuis R.J.. P-selectin and ICAM-1-dependent adherence reaction: role in the genesis of postischemic no-reflow. American journal of physiology, 1994, 266:H1316-H1321.
    [73] Thurman J.M.. Triggers of inflammation after renal ischemia/reperfusion.Clinical Immunology, 2006, doi: 10.1016.
    [74] Jaeschke H., Smith C.W.. Mechanisms of neutrophil-induced parenchymal cell injury. Journal of leukocyte biology, 1997, 61: 647-653.
    [75] Miyazawa S., Watanabe H., Miyaji C., et al. Leukocyte accumulation and changes in extra-renal organs during renal ischemia/reperfusion injury in mice. J. Lab. Clin. Medl., 2002, 139: 269-278.
    [76] Puranik R., Bao S., Nobecourt E., Nicholls S.J., Dusting G.J., Barter P.J.,Celermajer D.S., Rye K.A.. Low dose apolipoprotein A-I rescues carotid arteries from inflammation in vivo. Atherosclerosis, 2008, 196: 240-247.
    [77] Wicken A.J., Knox K.W.. Lipoteichoic acids: a new class of bacterial antigen. Membrane lipoteichoic acids can function as surface antigens of gram-positive bacteria. Science, 1975, 187: 1161-1167.
    [78] Grunfeld C, Marshall M., Shigenaga J.K., Moser A.H., Tobias P., Feingold K.R.. Lipoproteins inhibit macrophage activation by lipoteichoic acid.Journal of Lipid Reseach, 1999,40: 245-252.
    [1] Gordon T., Castelli W.P., Hjortland M.C., Kannel W.B., Dawber T.R.. High density Hpoprotein as a protective factor against coronary heart disease. The American Journal of Medicine, 1977, 62(5): 707-714.
    [2] Castelli W.P., Garrison R.J., Wilson P.W., Abbott R.D., Kalousdian S., Kannel W.B.. Incidence of coronary heart disease and lipoprotein cholesterol levels.The Framingham Study. JAMA, 1986,256: 2835-2838.
    [3] Barter P., Kastelein J., Nunn A., Hobbs R.. High density Hpoproteins (HDLs) and atherosclerosis: the unanswered questions. Atherosclerosis, 2003, 168:195-211.
    
    [4] Zhang Y., Zanotti I., Reilly M.P., Glick J.M., Rothblat G.H., Rader D.J..Overexpression of apolipoproteinA-I promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation, 2003, 108:661-663.
    
    [5] Levine D.M., Parker T.S., Donnelly T.M., Walsh A., Rubin A.L.. In vivo protection against endotoxin by plasma high density lipoprotein. Proceedings of the National Academic Sciences of USA, 1993, 90(24): 12040-12044.
    
    [6] Murugesan G., Sa G., Fox P.L.. High-density lipoprotein stimulates endothelial cell movement by a mechanism distinct from basic fibroblast growth factor. Circulation Research, 1994, 74(6): 1149-1156.
    
    [7] Sugatani J., Miwa M., Komiyama Y., Ito S.. High-density lipoprotein inhibits the synthesis of platelet-activating factor in human vascular endothelial cells. Journal of Lipid Mediators and Cell Signalling, 1996, 13(1): 73-88.
    [8] Epand R.M., Stafford A., Leon B., Lock P.E., Tytler E.M., Segrest J..P,Anantharamaiah G.M.. HDL and apolipoprotein A-I protect erythrocytes against the generation of procoagulant activity. Arteriosclerosis and Thrombosis, 1994, 14(11): 1775-1783.
    
    [9] Fleisher LN, Tall AR, Witte LD, Miller RW, Cannon PJ. Stimulation of arterial endothelial cell prostacyclin synthesis by high density Hpoproteins. The Journal of Biological Chemistry, 1982. 257(12): 6653-6655.
    
    [10] Yui Y., Aoyama T., Morishita H., Takahashi M., Takatsu Y., Kawai C. Serum prostacyclin stabilizing factor is identical to apolipoprotein A-I (Apo A-I). Anovel function of Apo A-I. The Journal of Clinical Investigation, 1988, 82(3):803-807.
    
    [11] Ko Y., Haring R., Stiebler H., Wieczorek A.J., Vetter H., Sachinidis A..High-density lipoprotein reduces epidermal growth factor-induced DNA synthesis in vascular smooth muscle cells. Atherosclerosis, 1993, 99(2):253-259.
    
    [12] Viswambharan H., Ming X.F., Zhu S., Hubsch A., Lerch P., Vergeres G.,Rusconi S., Yang Z.. Reconstituted high-density lipoprotein inhibits thrombin-induced endothelial tissue factor expression through inhibition of RhoA and stimulation of phosphatidylinositol 3-kinase but not Akt/endothelial nitric oxide synthase. Circulation Research, 2004, 94(7):918-925.
    
    [13] O'Connell B.J., Genest J. Jr.. High density lipoproteins and endothelial function. Circulation, 2001, 104(16): 1978-1983.
    
    [14] Zeiher A.M., Schachinger V.. Coronary endothelial vasodilator dysfunction:clinical relevance and therapeutic implications. Zeitschrift fur Kardiologie,1994, 83(Suppl 4):7-14.
    
    [15] Navab M., Hama S., Cooke C.J., Anantharamaiah G.M., Chaddha M., Jin L.,Subbanagounder G., Fogelman A.M.. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1. J Lipid Res., 2000, 41: 1481-1494.
    [16] Navab M., Hama S., Anantharamaiah G.M., Hassan K., Hough G.P.,Watson A.D., Reddy S.T., Sevanian A., Fonarow G.C., Fogelman A.M..Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 2 & 3. J Lipid Res., 2000, 41:1495-1508.
    [17] Navab M., Hama S., Hough G.P., Subbanagounder G., Reddy S.T.,Fogelman A.M.. A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids. J Lipid Res., 2001,42: 1308-1317.
    [18] Navab M., Berliner J.A., Subbanagounder G., Hama S., Lusis A.J.,Castellani L.W., Reddy S., Shih D., Shi W., Watson A.D., Van Lenten B.J.,Vora D., Fogelman A.M.. HDL and the inflammatory response induced by LDL-derived oxidized phospholipids. Arteriosclerosis Thrombosis Vascular Biology, 2001, 21(4): 481-488.
    
    [19] Navab M., Anantharamaiah G.M., Reddy S., Van Lenten B.J., Ansell B.J.,Fonarow G.C.,Vahabzadeh K., Hama S., Hough G.P., Kamranpour N.,Berliner J.A., Lusis A.J., Fogelman A.M.. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res.,2004,45:993-1007.
    
    [20] Barter P.J., Rye K-A.. High density lipoproteins and coronary heart disease.Atherosclerosis, 1996, 121: 1-12.
    
    [21] Barter P.J., Baker P.W., Rye K-A.. Effect of high density lipoproteins on the expression of adhesion molecules in endothelial cells. Current Opinion in Lipidology, 2002, 13: 285-288.
    
    [22] Shah P.K., Yano J., Reyes O., Chyu K.Y., Kaul S., Bisgaier C.L., Drake S.,Cercek B.. High-dose recombinant apolipoproteinsA-I_(Milano) mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophages content in apolipoproteins E-deficient mice: potential implications for acute plaque stabilization. Circulation, 2001, 103: 3047-3050.
    
    [23] Hessler J.R., Robertson A.L., Chisolm G.M.. LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Atherosclerosis, 1979, 32: 213-229.
    
    [24] Fogelman A.M., Shechter I., Seager J., Hokom M., Child J.S., Edwards P.A..Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester acculation in human monocyte-macrophages. Proc. Natl. Acad. Sci.USA, 1980,77:2214-2218.
    
    [25] Henricksen T., Mahoney E.M., Steinberg D.. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptor for acetylated low density lipoproteins. Proc. Natl. Acad. Sci. USA. 1981, 78, 6499-6503.
    
    [26] Parthasarathy S.. Modified Lipoproteins in the Pathogenesis of Atherosclerosis. Austin TX: RG Landes Co; 1994: 91-119.
    [27] Nievelstein P.F., Fogelman A.M., Mottino G., Frank J.S.. Lipid accumulation in rabbit aortic intima two hours after bolus infusion of low density lipoprotein: A deep-etch and immuno-localization study of ultrarapidly frozen tissue. Arterioscler. Thromb., 1991, 17: 1795-1805.
    
    [28] Tsimikas S., Lau H.K., Han K-R., et al. Percutaneous coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a).Short- term and long-term immunologic responses to oxidized low density lipoprotein. Circulation, 2004, 111: 1252-1257.
    
    [29] Cyrus T., Pratico D., Zhao L., Witztum J.L., Rader D.J., Rokach J.,FitzGerald G.A., Funk C.D.. Absence of 12/15-lipoxygenase expression decreases lipid peroxidation and atherogenesis in apolipoproteinE-deficient mice. Circulation, 2001, 103: 2277-2282.
    
    [30] George J., Afek A., Shaish A., levkovitz H., Bloom N., Cyrus T., Zhao L.,Funk C.D., Sigal E., Harats D.. 2/15-lipoxygenase gene disruption attenuates atherogenesis in LDL receptor-deficient mice. Circulation, 2001,104: 1646-1650.
    
    [31] Zhao L., Cuff C.A., Moss E., Wille U., Cyrus T., Klein E.A., Pratico D.,Rader D.J., Hunter C.A., Pure E., Funk C.D.. Selective interleukin-12 synthesis defect in in 12/15-lipoxygenase deficient macrophages associated with reduced atherosclerosis in a mouse model of familial hypercholesterolemia. J. Biol. Chem., 2002, 277: 35350-35356.
    
    [32] McDonald M.C, Dhadly P., Cockerill G.W., Cuzzocrea S., Mota-Filipe H.,Hinds C.J., Miller N.E., Thiemermann C. Reconstituted high-density lipoprotein attenuates organ injury and adhesion molecule expression in a rodent model of endotoxic shock. Shock, 2003, 20(6): 551-557.
    
    [33] Hubsch A.P., Casas A.T., Doran J.E.. Protective effects of reconstituted high-density lipoprotein in rabbit gram-negative bacteraemia models. The Journal of Laboratory and Clinical Medicine, 1995, 126(6): 548-558.
    
    [34] Cockerill G.W., McDonald M.C., Mota-Filipe H., Cuzzocrea S., Miller N.E.,Thiemermann C. High density lipoproteins reduce organ injury and organ dysfunction in a rat model of hemorrhagic shock.. Official publication of the Federation of American Societies for Experimental Biology, 2001, 15(11):1941-1952.
    [35] Dipiro J.T., Cue J.I., Richards C.S., Hawkins M.L., Doran J.E., Mansberger A.R.. Pharmacokinetics of reconstituted human high-density lipoprotein in pigs after hemorrhagic shock with resuscitation. Critical Care Medicine,1996, 24(3): 440-444.
    
    [36] Hyka N., Dayer J.M., Modoux C., Kohno T., Edwards C.K. 3rd,Roux-Lombard P., Burger D.. Apolipoprotein A-I inhibits the production of interleukin-1β and tumor necrosis factor-a by blocking contact-mediated activation of monocytes by T lymphocytes. Blood, 2001, 97(8): 2381-2389.
    
    [37] Thiemermann C, Patel N.S., Kvale E.O., Cockerill G.W., Brown P.A.,Stewart K.N., Cuzzocrea S., Britti D., Mota-Filipe H., Chatterjee P.K.. High density lipoprotein (HDL) reduces renal ischemia/reperfusion injury. Journal of the American Society Nephrology, 2003, 14(7): 1833-1843.
    
    [38] Carr A.C., McCall M.R., Frei B.. Oxidation of LDL by myeloperoxidase and reactive nitrogen species oxidation of f LDL by myeloperoxidase and reactive nitrogen species. Arterioscler. Thromb. Vasc. Biol., 2000, 20:1716-1723.
    
    [39] Zhang R., Brenann M.L., Shen Z., MacPherson J.C., Schmitt D., Molenda C.E., Hazen S.L.. Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J. Biol. Chem.,2002,277:46116-46122.
    
    [40] Calabresi L., Rossoni G., Gomaraschi M., Sisto F., Berti F., Franceschini G..High-density lipoprotein protect rat hearts from ischemia-reperfusion injury by reducing cardiac TNF-content and enhancing prostaglandin release.Circulation Research, 2003, 92(3): 330-337.
    
    [41] Brown J.M., Terada L.S., Grosso M.A., Whitman G.J., Velasco S.E., Patt A.,Harken A.H., Repine J.E.. Xanthine oxidase produces hydrogen peroxide which contributes to reperfusion injury of ischemic isolated rat hearts.Journal of Clinical Investigation, 1988, 81(4): 1297-1301.
    
    [42] Brenann M.L., Hazen S.L.. Emerging role of myeloperoxidase and oxidant stress markers in cardiovascular risk assessment. Curr. Opin. Lipidol., 2003,14: 352-359.
    
    [43] Gaut J.P., Byun J., Tran H.D., Lauber W.M., Carroll J.A., Hotchkiss R.S., Belaaouaj A., Heinecke J.W.. Myeloperoxidase produces nitrating oxidants in vivo. J. Clin. Invest, 2002, 109: 1311-1319.
    
    [44] Ambrosio G, Flaherty J.T., Duilio C, Tritto I., Santoro G., Elia P.P.,Condorelli M.. Oxygen radicals generated at reflow induce peroxidation of membrane lipids in reperfused hearts. The Journal of Clinical Investigation,1991, 87(6): 2056-2066.
    
    [45] Riedemann N.C., Ward P.A.. Anti-inflammatory strategies for the treatment of sepsis. Expert Opinion on Biological Therapy, 2003, 3(2): 339-350.
    
    [46] Xu K.Y., Zweier J.L., Becker L.C.. Hydroxyl radical inhibits sarcoplasmic reticulum Ca~(2+)-ATPase function by direct attack on the ATP binding site.Circulation Research, 1997, 80(1): 76-81.
    
    [47] Sorescu D., Szocs K., Griendling K.K.. NAD(P)H oxidases and their relevance to atherosclerosis. Trends Cardiovasc. Med., 2001, 11: 124-131.
    
    [48] Suzuki S., Kaneko M., Chapman D.C., Dhalla N.S.. Alterations in cardiac contractile proteins due to oxygen free radicals. Biochimica et Biophysica Acta, 1991, 1074(1): 95-100.
    
    [49] Lee S.H., Oe T., Blair I.A.. Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins. Sciences, 2001, 292: 2083-2086.
    
    [50] Elgebaly S.A., Hashmi F.H., Houser S.L., Allam M.E., Doyle K..Cardiac-derived neutrophil chemotactic factors: detection in coronary sinus effluents of patients undergoing myocardial revascularization. The Journal of Thoracic and Cardiovascular Surgery, 1992, 103(5): 952-959.
    
    [51] Kumar A., Thota V., Dee L., Olson J., Uretz E., Parrillo J.E.. Tumor necrosis factor-alpha and interleukin 1-beta are responsible for the in vitro myocardial cell depression induced by human septic shock serum. The Journal of Experimental Medicine, 1996, 183(3): 949-958.
    
    [52] Sattler W., Stocker R.. Greater selective uptake by Hep G2 cells of high-density lipoprotein cholesteryl ester hydroperoxides than of unoxidized cholesteryl ester. Biochem. J., 1993, 294: 771-778.
    
    [53] Svendsen J.H., Bjerrum P.J.. Effects of exogenous oxygen derived free radicals on myocardial capillary permeability, vascular tone, and incidence of ventricular arrhythmias in the canine heart. Cardiovascular Research,1992,26(12): 1181-1188.
    
    [54] Mackness B., Hine D., Liu Y., Mastorikou M., Mackness M.. Paraoxonase-1 inhibits oxidized LDL-induced MCP-1 production by endothelial cells.Biochem. Biophys. Res. Commun., 2004, 318: 680-683.
    
    [55] Parrillo J.E., Burch C, Shelhamer J.H., Parker M.M., Natanson C, Schuette,W.. A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. The Journal of Clinical Investigation, 1985, 76(4): 1539-1553.
    
    [56] Tward A., Xia Y.R., Wang X.P., Shi Y.S., Park C, Castellani L.W., Lusis A.J.,Shih D.M.. Decreased atherolerotic lesion formation in human serum paraoxonase transgenic mice. Circulation, 2002,106: 484-490.
    
    [57] Reddy S.T., Wadleigh D.J., Grijalva V., Ng C., Hama S., Gangopadhyay A.,Shih D.M., Lusis A.J., Navab M., Fogelman A.M.. Human paraoxonase-3 is an HDL-associated enzyme with biological activity similar to paraoxonase-1 protein but is not regulated by oxidized lipids. Arterioscler. Thromb. Vasc.Biol., 2001, 21: 542-547.
    
    [58] Shakhov A.N., Collart M.A., Vassalli P., Nedospasov S.A., Jongeneel C.V..Kappa B-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor-α gene in primary macrophages. The Journal of Experimental Medicine, 1990, 171(1): 35-47.
    
    [59] Marchesi M., Booth E.A., Davis T., Bisgaier C.L., Lucchesi B.R..Apolipoprotein A-I_(Milano) and l-Palmitoyl-2-oleoyl phosphatidylcholine complex (ETC-216) protects the in vivo rabbit heart from regional ischemia-reperfusion injury. The Journal of Pharmacology and Experimental Therapeutics, 2004, 311 (3): 1023-1031.
    
    [60] Forte T.M., Subbanagounder G., Berliner J.A., Blanche P.J., Clermont A.O.,Jia Z., Oda M.N., Krauss R.M., Bielicki J.K.. Altered activities of anti-atherogenic enzymes LCAT, paraoxonase, and platelet-activating factor acetylhydrolase in atherosclerosis-susceptible mice. J. Lipid Res., 2002, 43:477-485.
    [61] Jaeschke H, Smith C.W.. Mechanisms of neutrophil-induced parenchymal cell injury. Journal of Leukocyte Biology, 1997, 61(6):647-653.
    [62] Finkel M.S., Oddis C.V., Jacob T.D., Watkins S.C., Hattler B.G., Simmons R.L.. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science, 1992, 257(5068): 387-389.
    [63] Rossi F.. The O)2~--forming NADPH oxidase of the phagocytes: nature,mechanisms of activation and function. Biochimica et Biophysica Acta,1986, 853(1): 65-89.
    [64] Burger D., Dayer J.M.. High-density lipoprotein-associated apolipoproteinA-I: the missing link between infection and chronic inflammation? Autoimmunity Rev., 2002, 1: 111-117.
    [65] Van Lenten B.J., Wagner A.C., Navab M., Anantharamaiah GM., Nayak D.P.,Fogelman A.M.. D-4F, an apoA-I mimetic peptide, inhibits the inflammatory response induced by influenza A infection of human type-II pneumocytes.Circulation, 2004, 95: 764-772.
    [66] Beckman, J.S., Crow J.P.. Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochemical Society Transaction,1993,21(2):330-334.
    [67] Davenport P., Tipping P.G.. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am. J.Pathol., 2003, 163: 1117-1125.
    [68] Gomaraschi M., Basilico N., Sisto F., Taramelli D., Eligini S., Colli S.,Sirtori C.R., Franceschini G, Calabresi L.. High-density lipoproteins attenuate interleukin-6 production in endothelial cells exposed to pro-inflammatory stimuli. Biochimica et Biophysica Acta, 2005, 1736(2):136-143.
    [69] Libby P., Ridker P.M.. Inflammation and atherosclerosis. Circulation, 2002, 105:1135-1143.
    
    [70] Lefer A.M., Campbell B., Scalia R., Lefer D.J.. Synergism between platelets and neutrophils in provoking cardiac dysfunction after ischemia and reperfusion: role of selectins. Circulation, 1998, 98(13): 1322-1328.
    
    [71] Shih P.T., Elices M.J., Fang Z.T., Ugarova T.P., Strahl D., Territo M.C.,Frank J.S., Kovach N.L., Cabanas C., Berliner J.A., Vora D.K.. Minimally modified low-density lipoprotein induces monocyte adhesion to endothelial connecting segment-1 by activating beta integrin. J. Clin. Invest., 1999, 103:613-625.
    
    [72] Carlos T.M., Schwartz B.R., Kovach N.L., Yee E., Rosa M., Osborn L.,Chi-Rosso G., Newman B., Lobb R., Rosa M.. Vascular cell adhesion molecule-1 mediates lymphocyte adherence to cytokine-activated cultured human endothelial cells. Blood, 1990, 76: 956-970.
    
    [73] Acton S., Rigotti A., Landschulz K.T., Xu S., Hobbs H.H., Krieger M..Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science, 1996, 271(5248): 518-520.
    
    [74] Gulick T., Chung M.K., Pieper S.J., Lange L.G., Schreiner, G.F.. Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte adrenergic responsiveness. Proceedings of the National Academic Sciences of USA,1989, 86(17): 6753-6757.
    
    [75] Jha P., Jacobs H., Bose D., Wang R., Yang J., Light R.B., Mink S.. Effects of E.coli sepsis and myocardial depressant factor on interval-force relations in the dog ventricle. The American Journal of Physiology, 1993, 264 (5 pt 2):H1402-H1410.
    
    [76] Davies M.J., Gordon J.L., Gearing A.J., Pigott R., Woolf N., Katz D.,Kyriakopoulos A.. The expression of the adhesion molecules ICAM-1,VCAM-1, PECAM, and E-selectin in human atherosclerosis. J. Pathol.,1993, 171:223-229.
    
    [77] Frangogiannis N.G., Smith C.W., Entman M.L.. The inflammatory response in myocardial infarction. Cardiovascular Research, 2002, 53(1): 31-47.
    [78] Parker M.M., Shelhammer J.H., Bacharach S.L., Green M.V., Natanson C.,Frederick T.M., Damske B.A., Parillo J.E.. Profound but reversible myocardial depression in patients with septic shock. Annals of Internal Medicine, 1984, 100(4): 483-490.
    
    [79] Li H., Cybulsky M.I., Gimbrone M.A., Libby P.. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler. Thromb., 1993, 13:197-204.
    
    [80] Dinarello C.A.. Biologic basis for interleukin 1 in disease. Blood, 1996,87(6): 2095-2147.
    [81] Wurfel M.M., Kunitake S.T., Lichenstein H., Kane J.P., Wright S.D..Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS. The Journal of Experimental Medicine, 1994, 180(3): 1025-1035.
    
    [82] Meldrum D.R., Cleveland J.C., Rowland R.T., Banerjee A., Harken, A.H..Calcium induced inotropy is in part mediated by protein kinase C. The Journal of Surgical Research, 1996, 63(2): 400-405.
    
    [83] Dansky H.M., Barlow C.B., Lominska C., Sikes J.L., Kao C., Weinsaft J.,Cybulsky M.I., Smith J.D.. Adhesion of monocytes to arterial endothelium and initiation of atherosclerosis are critically dependent on vascular cell adhesion molecule-1 gene dosage. Arterioscler. Thromb. Vasc. Biol., 2001,21: 1662-1667.
    
    [84] Baumberger C, Ulevitch R.J., Dayer J.M.. Modulation of endotoxic activity of lipopolysaccharide by high-density lipoprotein. Pathobiology,1991, 59(6):378-383.
    
    [85] Weil M.H., MacLean L.D., Visscher M.B., Spink W.W.. Studies on the circulatory changes in the dog produced by endotoxin from gram-negative microorganisms. The Journal of Clinical Investigation, 1956, 35(11):1191-1198.
    
    [86] Das U.N.. Free radicals, cytokines and nitric oxide in cardiac failure and myocardial infarction. Molecular and Cellular Biochemistry, 2000, 215(1-2):.145-152.
    [87] Calvin J.E., Driedger A.A., Sibbald W.J.. An assessment of myocardial function in human sepsis utilizing ECG gated cardiac scintigraphy. Chest,1981, 80(5): 579-586.
    [88] Marchesi M, Booth E.A., Davis T., Bisgaier C.L., Lucchesi B.R..Apolipoprotein A-I_(Milano) and l-Palmitoyl-2-oleoyl phosphatidylcholine complex (ETC-216) protects the in vivo rabbit heart from regional ischemia-reperfusion injury. The Journal of Pharmacology and Experimental Therapeutics, 2004, 311 (3): 1023-1031.
    [89] Ellrodt A.G., Riedinger M.S., Kimchi A., Berman D.S., Maddahi J., Swan H.J.C., Murata G.H.. Left ventricular performance in septic shock: reversible segmental and global abnormalities. American Heart Journal, 1985, 110(2):402-409.
    [90] Blankenberg S., Rupprecht H.J., Bickle C., Peetz D., Hafner G., Tiret L.,Meyer J.. Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation, 2001: 1336-1342.
    [91] Meldrum D.R.. Tumor necrosis factor in the heart. The American Journal of Physiolgy, 1998, 274(3 pt 2): R577-R595.
    [92] Parker M.M., McCarthy K.E., Ognibene F.P., Parillo, J.E.. Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest, 1990, 97(1):126-131.
    
    [93] Cockerill G.W., Huehns T.Y., Weerasinghe A., Stocker C, Lerch P.G.,Miller N.E., Haskard D.O.. Elevation of plasma high-density lipoprotein concentration reduces interleukin-1 -induced expression of E-selectin in an in vivo model of acute inflammation. Circulation, 2001, 103(1): 108-112.
    
    [94] Last-Barney K., Homon C.A., Faanes R.B., Merluzzi V.J.. Synergistic and overlapping activities of tumor necrosis factor-α and IL-1. Jouranal of Immunology, 1988, 141(2): 527-530.
    [95] Emancipator K., Csako G., Elin R.J.. In vitro inactivation of bacterial endotoxin by human lipoproteins and apolipoproteins. Infection and Immunity, 1992, 60(2): 596-601.
    
    [96] Cockerill G.W., Rye K-A, Gamble J.R., Vadas M.A., Barter P.J.. High density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arteriosclerosis, Thrombosis, and Vascular Biology,1995,15(11): 1987-1994.
    
    [97] Calabresi L., Franceschini G., Sirtori C.R., de Palma A., Saresella M.,Ferrante P., Taramelli D.. Inhibition of VCAM-1 expression in endothelial cells by reconstituted high density lipoproteins. Biochemical and Biophysical Research Communication, 1997,238(1): 61-65.
    
    [98] Garner B., Waldeck A.R., Witting P.K., Rye K.A., Stocker R.. Oxidation of high density lipoproteins: II. Evidence for direct reduction of lipid hydroperoxides by methionine residues of apolipoproteins AI and AII. The Journal of Biological Chemistry, 1998, 273(11): 6088-6095.
    
    [99] Xia P., Vadas M.A., Rye K.A., Barter P.J., Gamble J.R.. High density lipoprotein (HDL) interrupt the sphingosine kinase signaling pathway. A possible mechanism for protection against atherosclerosis by HDL. J. Biol.Chem., 1999, 274: 33143-33147.
    
    [100] Rossoni G., Gomaraschi M., Berti F., Sirtori C.R., Franceschini G.,Calabresi L.. Synthetic high-density lipoproteins exert cardioprotective effects in myocardial ischemia/reperfusion injury. The Journal of Pharmacology and Experimental Therapeutics, 2004, 308(1): 79-84.
    
    [101] Ashby D.T., Rye K.A., Clay M.A., Vadas M.A., Gamble J., Barter P.J..Factors influencing the ability of HDL to inhibit the expression of vascular cell adhesion molecule-1 in endothelial cells. Arterioscler Thromb. Vasc.Biol., 1998, 18: 1450-1455.
    
    [102] Baker P.W., Rye K.A., Gamble J., Vadas M.A., Barter P.J.. Ability of reconstituted high density lipoproteins to inhibit cytokine-induced expression of vascular cell adhesion melocule-1 in human umbilical cell endothelial cells. J. lipid Res., 1999, 40: 345-353.
    
    [103] Baker P.W., Rye K.A., Gamble J., Vadas M.A., Barter P.J.. Phospholipid composition of reconstituted high density lipoproteins influences their ability to inhibit endothelial cell adhesion melocule expression. J. lipid Res.,2000,41: 1261-1267.
    
    [104] De Caterina R., Bernini W., Carluccio M.A., Liao J.K., Libby P.. Structural requirements for inhibition of cytokine-induced endothelial activation by unsaturated fatty acids. J. lipid Res., 1998, 39: 1062-1070.
    
    [105] Stannard A.K., Khan S., Graham A., Owen J.S., Allen S.P.. Inability of plasma high-density lipoproteins to inhibit cell adhesion molecule expression in human coronary artery endothelial cells. Atherosclerosis, 2001,154:31-38.
    
    [106] Zhang W.J., Stocker P., McCall M.R., Forte T.M., Frei B.. Lack of inhibitory effect of HDL on TNF alpha-induced adhesion melocule expression in human aortic endothelial cells. Atherosclerosis, 2002, 165;241-249.
    
    [107] Cockerill G.W., Saklatvala J., Ridley S.H., Yarwood H., Miller N.E., Oral B., Nithyanathan S., Taylor G., Haskard D.O.. High-density lipoproteins differentially modulate cytokine-induced expression of E-selectin and cyclooxygenase-2. Arterioscler Thromb. Vasc. Biol., 1999, 19: 910-917.
    
    [108] Matsunaga T., Hokari S., Koyama I., Harada T., Komoda T.. NF-kappa Bactivation in endothelial cells treated with oxidized high-density lipoprotein..Biochem. Biophys. Res. Commun., 2003, 303: 313-319.
    
    [109] Robbesyn F., Garcia V., Auge N., Vieira O., Frisach M.F., Salvayre R.,Negre-Salvayre A.. HDL counterbalance the proinflammatory effect of oxidized LDL by inhibiting intracellular reactive oxygen species rise,proteasome activation, and subsequent NF-kappa B activation in smooth muscle cells. F.A.S.E.B. J., 2003, 17: 743-745.
    
    [110] Rong J.X., Li J., Reis E.D., Choudhury R.P., Dansky H.M., ElmalemV.I.,Fallon J.T., Breslow L.J., Fisher E.A.. Elevating high-density lipoprotein cholesterol in apolipoprotein E-deficient mice remodels advanced atherosclerotic lesion by decreasing macrophage and increasing smooth muscle cell content. Circulation, 2001, 104: 2447-2452.
    [111] Pasceri V., Willerson J.T., Yeh E.T.. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation, 2000,102:2165-2168.
    
    [112] Pasceri V., Cheng J.S., Willerson J.T., Yeh E.T., Chang J.. Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drug. Circulation, 2001,103:2531-2534.
    
    [113] Venugopal S.K., Devaraj S., Yuhanna I., Shaul P., Jialal I.. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation, 2002, 106: 1439-1441.
    [114] Wadham C., Albanese N., Roberts J., Wang L., Bagley C.J., Gamble J.R.,Rye K.A., Barter P.J., Vadas M.A., Xia P.. High-density lipoprotein neutralize C-reactive protein inflammatory activity. Circulation, 2004, 109:2116-2122.
    
    [115] Ma J., Liao X.L., Lou B., Wu M.P.. Role of apolipoprotein A-I in protecting against endotoxin toxicity. Acta Biochimca et Biophysica Sinica, 2004,36(6): 419-424.
    [116] Liao X.L., Lou B., Ma J., Wu M.P.. Neutrophils activation can be diminished by apolipoprotein A-I. Life Sciences, 2005, 77(3): 325-335.
    [117] Garner B., witting P.K., Waldeck A.R., Christison J.K., Raftery M., Stocker R.. Oxidation of high-density lipoproteins. I. formation of methionine sulfoxide in apolipoprotein AI and AII is an early event that accompanies lipid peroxidation and can be enhanced by alpha-tocopherol. J. Biol. Chem.,1998,273:6080-6087.
    
    [118] Dimayuga P., Zhu J., Oguchi S., Chyu K.Y., Xu X.O., Yano J., Shah P.K.,Nilsson J., Cercek B.. Reconstituted HDL containing human apolipoprotein AI reduces VCAM-1 expression and neointima formation following periadventitial cuff-induced carotid injury in apoE null mice. Biochem. Biophys. Res. Commun., 1999, 264: 465-468.
    
    [119] Cockerill G.W., huehns T.Y., Weerasinghe A., Stocker C., Lerch P.G., Miller N.E., Haskard D.O.. Elevation of plasma high-density lipoprotein concentration reduces interleukin-1 induced expression of E-selectin in an in vivi model of acute inflammation. Circulation, 2001, 103: 108-112.
    
    [120] Dansky H.M., Charlton S.A., Barlow C.B., Tamminen M., Smith J.D.,Frank J.S., Breslow J.L.. ApoA-I inhibits foam cell formation in apoE-deficient mice after monocyte adherence to endothelium. J. Clin.Invest., 1999, 104:31-39.
    
    [121] Spieker L.E., Sudano J., Hurlimann D., Lerch P.G., Lang M.G., Binggeli C.,Corti R., Rischitzka F., Luscher T.F., Noll G. High-density lipoprotein restores endothelial function in hypercholesterolemic men. Circulation,2002, 105: 1399-1402.
    
    [122] Bisoendial R.J., Hovingh G.K., Levels J.H., Lerch P.G., Andresen I.,Hayden M.R., Kastelein J.J., Stroes E.S.. Restoration of endothelial function by increasing high-density lipoprotein in subjects with islated low high-density lipoprotein. Circulation, 2003, 107: 2944-2948.
    
    [123] Chiesa G., Monteggia E., Marchesi M., Lorenzon P., Laucello M., Lorusso V., Di Mario C, Karvouni E., Newton R.S., Bisgaier C.L., Franceschini G.,Sirtori C.R.. Recombinant apolipoproteinA-I (Milano) infusion into rabbit carotid artery rapidly removes lipid from fatty streaks. Circ. Res., 2002, 90:974-980.
    
    [124] Nissen S.E., Tsunoda T., Tuzcu E.M., Schoenhagen P., Cooper C.J., Yasin M., Eaton G.M., Lauer M.A., Sheldon W.S., Grines C.L., Halpern S.,Crowe T., Blankenship J.C., Kerensky R.. Effect of recombinant apolipoproteinA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes. A ramdomized controlled trial. JAMA, 2003,290: 2292-2300.
    
    [125] Levels J.H., Abraham P.R., van den Ende A., van Deventer S.J..Distribution and kinetics of lipoprotein-bound endotoxin. Infection and Immunity, 2002, 69: 2821-2828.
    
    [126] Kitchens R.L., Wolfbauer G, Albers J.J., Munford R.S., Plasma lipoproteins promote the release of bacterial lipopolysaccharide from the monocyte cell surface. J. Biol. Chem, 1999, 274: 34116-34122.
    
    [127] Wicken A.J., Knox K.W.. Lipoteichoic acids: a new class of bacterial antigen. Membrane lipoteichoic acids can function as surface antigens of gram-positive bacteria. Science, 1975,187: 1161-1167.
    
    [128] Grunfeld C, Marshall M., Shigenaga J.K., Moser A.H., Tobias P., Feingold K.R.. Lipoproteins inhibit macrophage activation by lipoteichoic acid. J.Lipid Res., 1999,42: 245-252.
    
    [129] Navab M., Anantharamaiah G.M., Hama S., Garber D.W., Chaddha M.,Hough G, Lallone R., Fogelman A.M.. Oral administration of an apoA-Imimetic peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice in dependent of plasma cholesterol. Circulation,2002,105:290-292.
    
    [130] Navab M., Anantharamaiah G.M., Reddy S.T., Hama S., Hough G., Grijalva V.R., Wagner A.C., Frank J.S., Datta G, Garber D.W., Fogelman A.M..Oral D-4F causes formation of pre- 3 high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoproteinE-null mice.Circulation, 2004, 109: r120-r125.
    
    [131] Calabresi L., Gomaraschi M., Villa B., Omoboni L., Dmitrieff C.,Franceschini G. Elevated cellular adhesion molecules in subjects with low HDL-cholesterol. Arterioscler. Thromb. Vasc. Biol., 2002, 22: 656-661.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700