基于序列信息的膜蛋白结构、功能预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜蛋白在整个细胞生命体活动中扮演着极其重要的角色。负责包括离子运输、小分子转运以及复杂细胞信号转导过程等在内的多种生命活动。同时,膜蛋白也是很多药物的靶点,据估计将近60%的药物直接作用于膜蛋白上。然而生物学家目前所掌握的膜蛋白结构、功能信息还比较有限,这主要是因为用实验手段进行膜蛋白的结构测定以及功能研究较为复杂,科研人员难以分离出稳定的膜蛋白样品,用于电子显微镜或者X-射线晶体分析。膜蛋白结构、功能的研究仍然是生物学界最具挑战的研究领域之一。
     本学位论文以膜蛋白的结构、功能为研究对象,综合应用多种统计学和生物信息学方法,探讨膜蛋白的序列-结构、序列-功能关系的研究新方法,希望能够发展出以膜蛋白序列信息为基础的,结构、功能预测模型,解决膜蛋白研究中的结构预测、亚细胞定位预测、功能预测等重要研究问题。
     论文第一章,我们重点介绍了膜蛋白的结构、生命合成机理、折叠方式以及功能分类。然后介绍了基于生物信息学技术的膜蛋白结构、功能预测模型。最后阐述了本文所用到的膜蛋白数据库信息、序列表征以及建模方法。
     论文第二章,我们从输入信息简洁、预测方法简单、预测结果准确率高等原则出发,应用最小二乘支持向量机方法,建立了高效的α-螺旋膜蛋白跨膜氨基酸残基埋藏情况(残基暴露于磷脂分子层或者埋藏于螺旋结构当中)的预测模型。该方法使用划窗技术提取目标残基(这里指被预测残基)周围的序列信息。然后使用结构、物理化学特征、保守性指数对划窗的序列信息进行表征,并使用递归特征消去(Recursive feature elimination, RFE)方法选取和埋藏情况高度相关的序列特征。最后将所选取的描述符输入最小二乘支持向量机模型,用于建立跨膜氨基酸残基埋藏情况的预测模型。我们所建立的预测模型所选择用的训练集包括43条膜蛋白,模型的预测能力使用10条未参与建模过程的α-螺旋膜蛋白进行外部验证。结果表明,我们所建立的模型可以得到令人满意的预测结果。另一方面,通过应用特征选择方法,我们找到了影响膜蛋白跨膜残基埋藏情况的重要序列信息。
     埋藏情况预测模型只能指出暴露于磷脂分子层的跨膜残基,但是却不能给出其暴露面积的多少。为此,我们发展了可以预测α-螺旋、p-折叠跨膜残基的溶剂可及化表面积的定量预测模型。整个模型的建立是基于78条α-螺旋膜蛋白、24条p-桶装膜蛋白所组成的训练集样本。我们首先使用遗传信息表征划窗序列,并根据随机森林算法返回的描述符残差平方和(Residual sum of squares)选取和可及化表面积高相关的序列特征。最后,将选取的描述符输入支持向量机以及随机森林算法建立模型。溶剂可及化表面积的预测结果显示,随机森林算法的预测能力和拟合能力优于支持向量机。
     获取膜蛋白的亚细胞定位信息,是了解膜蛋白功能信息的重要途径之一。在本论文的第四章,我们发展了一种可以有效鉴别真核细胞膜蛋白全部亚细胞定位的预测模型。该模型的建立步骤包括:首先从UniProt数据库上下载全部膜蛋白序列、亚细胞定位信息,将其随机分为训练集和测试集。然后,通过使用序列的遗传信息、结构、物理化学性质描述膜蛋白序列特征,并运用结合周氏函数的K-临近算法建立预测模型。通过留一法交互验证、外部测试集将所建立的预测模型进行检验,结果表明我们所建立的模型具有良好的拟合能力和预测能力,预测结果令人满意。更为重要的是,由于周氏函数的引入,该模型可以直接应对具有多个亚细胞定位的膜蛋白复杂分类问题。
     论文第五章,我们提出了基于序列的膜蛋白功能预测模型。该模型可以用于膜蛋白的26个功能分类预测,并且可以直接返回一条膜蛋白的多个功能分类信息。同样,该模型完全从膜蛋白的序列信息出发,并采用基于序列的遗传信息、结构、物理化学信息对膜蛋白序列进行表征。交互验证以及外部测试集预测结果显示,该模型具有稳定的预测能力,可以用于膜蛋白的功能预测工作。
Membrane proteins are crucial players in the cell and take center role in processes ranging from ions, small molecules transport to sophisticated signaling pathways. Many are also prime contemporary or future drug targets, and it has been estimated that about60%of approved drugs are directed against membrane proteins. Despite the biological importance of membrane proteins, it is still notoriously hard for sturctural and functional studies of membrane proteins, due to the problems associated with the purification and availability in stable forms suitable for X-ray crystallography and electron microscopy (EM) studies. Therefore, membrane proteins still represent very important yet one of challenging research objects in a number of disciplines.
     This dissertation focuses on the sturctural and functional studies of membrane proteins using vary mathematical and bioinformatics approaches to study the relationship between sequence, structure and function. The ultimate purpose is to build sequence-based model to predict the structure and function of membrane proteins. Most important, we hope the built models could resolve major issues (structure determination, subcellular localization and functional studies) on membrane protein only from sequence information.
     In Chapter1, we first review the development and discuss the consequences for our understanding of membrane protein structure, biogenesis, folding and function. Then, we discuss current structure and function prediction methods against a background of knowledge that has been gleaned from membrane protein. At last, the data resource, sequence representation and prediction mathematical methods for membrane proteins structure, function prediction in this dissertation were introduced.
     In Chapter2, we presented a novel and concise method for predicting burial status (the residue exposure to the lipid bilayer or buried within the protein core) of transmembrane residue of a-helix membrane proteins. By using sliding window technology, the sequence information contained in the immediate neighbors of the central residues was first extracted. Then, two strategies were used for feature generation to encode the window. The main features used include the conservation index, sequence based-structural and physicochemical features. The features that highly correlated with burial status were then selected using recursive feature elimination (RFE) method. At last, least squares support vector machines (LS-SVMs) was used to develop classification model due to its good performance and less time-consuming characteristic in the classfication model development. The model was developed from43membrane protein chains and its prediction ability was evaluated by an independent test set of other non-redundant ten membrane protein chains. The prediction accuracy of our method were satisfactory. On the other hand, the position and the composition of hydrophobic amino acid propertie were proved to be very important features influencing the burial status of a TM residue.
     Burial status prediction model can only qualitative identify exposed transmembrane residue but can not figure out how much surface area is exposed. Therefore we developed a sequence-based computational model for the prediction of solvent accessible surface area of a-helix and β-barrel transmembrane residues The main proces of our model is described in Chapter3. The model was developed from78a-helix membrane protein chains and24β-barrel membrene proteins. Firstly, the evolutionary conservation in a set of a-helix and β-barrel transmembrane proteins was extracted by using sliding window technology. Thereafter, the decrease in "residual sum of squares " was used to rank all variable and the conservation score that high correlated with accessible surface area of transmembrane residues were selected to building model. At last, the prediction models were developed using support vector machine and random forest methods. The results show that our model performs well for both types of transmembrane residues and outperforms other prediction model which was developed for the specific type of transmembrane residues. The prediction results also proved that the random forest model incorporating conservation score is an effective sequence-based computation approach for predicting the solvent accessible surface area of transmembrane residues.
     Knowledge of the subcellular localization of membrane proteins is very important and fundamental to understand the function of membrane proteins in many cases, such as in cellular function, biological process, signal transduction, metabolic pathway and drug design, In Chapter4, we aimed to develop a model that can be used to predict the subcellular localization of membrane proteins covering all localization sites in eukaryotic. The main process of our model is described as follows:firstly, the dataset were downloaded from the UniPort database. Then the dataset was divided into a development set and an independent test set. In order to represent the information about MPs comprehensively, the sequence-derived structural, physicochemical features and the evolution information extracted by the concept of Chou's pseudo amino acid composition were utilized. We utilized K-nearest neighbor (KNN) algorithm combined with Chou's score function in the development of the computational model. The performance of the prediction models was evaluated by cross-validation and its prediction on the test set. The results prove that our computational method performs well for predicting multiple subcellular localization sites of membrane proteins in eukaryotes.
     In Chapter5, the first sequence-based model for predicting function of membrane proteins were presented. It can be used to identify eukaryotic membrane proteins among26functions. In addition, the predictor is powerful and flexible, particularly in dealing with proteins with multiple functions. Both the sequence-based structural, physicochemical information and evolution information have been fused into the predictor. The satisfactory prediction results from cross validation and independent test set proved that our computational method is reliable to predict multiple function of membrane proteins in eukaryotes.
引文
1.Tan, S.; Tan, H. T.; Chung, M. C. M., Membrane proteins and membrane proteomics. Proteomics 2008,8,3924-3932.
    2.Fagerberg, L.; Jonasson, K.; von Heijne, G.; Uhlen, M.; Berglund, L., Prediction of the human membrane proteome. Proteomics 2010,10,1141-1149.
    3.Mulder, M., Basic principles of membrane technology. Springer:Dordrecht,1996.
    4.Phillips, R.; Ursell, T.; Wiggins, P.; Sens, P., Emerging roles for lipids in shaping membrane-protein function. Nature 2009,459,379-385.
    5.Dowhan, W.; Bogdanov, M., Lipid-dependent membrane protein topogenesis. Annu Rev Biochem 2009,78,515-540.
    6.Lucker, M., Membrane structural biology:With biochemical and biophysical foundations. Cambridge University:New York,2008.
    7.Hedin, L. E.; Illergard, K.; Elofsson, A., An introduction to membrane proteins(?). J Proteome Res 2011,10,3324-3331.
    8.Popot, J.-L.; Engelman, D. M., Helical membrane protein folding, stability and evolution. Annu Rev Biochem.2000,69,881-922.
    9.Bowie, J. U., Solving the membrane protein folding problem. Nature 2005,438,581-589.
    lO.Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E. L. L., Predicting transmembrane protein topology with a hidden markov model:application to complete genomes. J Mol Biol 2001, 305,567-580.
    11.Bernsel, A.; Von Heijne, G., Improved membrane protein topology prediction by domain assignments. Protein Sci 2005,14,1723-1728.
    12.Viklund, H.; Elofsson, A., Best α-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. Protein Sci 2004,13, 1908-1917.
    13.Imai, K.; Gromiha, M. M.; Horton, P., Mitochondrial β-barrel proteins, an exclusive club? Cell 2008,135,1158-1159.
    14.Garrow, A.; Agnew, A.; Westhead, D., TMB-Hunt:An amino acid composition based method to screen proteomes for beta-barrel transmembrane proteins. BMC Bioinform 2005,6,56.
    15.Ulmschneider, M. B.; Sansom, M. S. P.; Di Nola, A., Properties of integral membrane protein structures:Derivation of an implicit membrane potential. Proteins 2005,59,252-265.
    16.Silhavy, T. J.; Ruiz, N.; Kahne, D., Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 2006,4,57-66.
    17.White, S. H.; von Heijne, G., How translocons select transmembrane helices. Annu Rev Biophys 2008,37,23-42.
    18.Hegde, R. S.; Keenan, R. J., Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat Rev Mol Cell Biol 2011,12,787-798.
    19.Luirink, J.; Heijne, G. v.; Houben, E.; Gier, J.-W. d., Biogenesis of inner membrane proteins in eschericha coli. Annu Rev Microbiol 2005,59,329-355.
    20.von Heijne, G, Introduction to theme "membrane protein folding and insertion". Annu Rev Biochem 2011,80,157-160.
    21.Jaud, S.; Fernandez-Vidal, M.; Nilsson, I.; Meindl-Beinker, N. M.; Hubner, N. C.; Tobias, D. J.; von Heijne, G.; White, S. H., Insertion of short transmembrane helices by the Sec61 translocon. Proc Natl Acad Sci U S A 2009,106,11588-11593.
    22.Dalbey, R. E.; Wang, P.; Kuhn, A., Assembly of Bacterial Inner Membrane Proteins. Annu Rev Biochem 2011,80,161-187.
    23.Harris D, B., The biogenesis and assembly of bacterial membrane proteins. Curr Opin Microbiol 2000,3,203-209.
    24.Hessa, T.; Kim, H.; Bihlmaier, K.; Lundin, C.; Boekel, J.; Andersson, H.; Nilsson, I.; White, S. H.; von Heijne, G., Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 2005,433,377-381.
    25.Hessa, T.; Meindl-Beinker, N. M.; Bernsel, A.; Kim, H.; Sato, Y.; Lerch-Bader, M.; Nilsson, I.; White, S. H.; von Heijne, G, Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 2007,450,1026-1030.
    26.Hessa, T.; White, S. H.; von Heijne, G, Membrane insertion of a potassium-channel voltage sensor. Science 2005,307,1427.
    27.Contreras, F. X.; Ernst, A. M.; Haberkant, P.; Bjorkholm, P.; Lindahl, E.; Gonen, B.; Tischer, C.; Elofsson, A.; von Heijne, G.; Thiele, C.; Pepperkok, R.; Wieland, F.; Brugger, B., Molecular recognition of a single sphingolipid species by a protein/'s transmembrane domain. Nature 2012, 481,525-529.
    28.Ojemalm, K.; Higuchi, T.; Jiang, Y.; Langel,U.; Nilsson, I.; White, S. H.; Suga, H.; von Heijne, G., Apolar surface area determines the efficiency of translocon-mediated membrane-protein integration into the endoplasmic reticulum. Proc Natl Acad Sci U S A 2011,108, E359-E364.
    29.MacKinnon, R., Membrane protein insertion and stability. Science 2005,307,1425-1426.
    30.Zimmer, J.; Nam, Y.; Rapoport, T. A., Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 2008,455,936-943.
    31.Maclntyre, S.; Freudl, R.; Eschbach, M. L.; Henning, U., An artificial hydrophobic sequence functions as either an anchor or a signal sequence at only one of two positions within the Escherichia coli outer membrane protein OmpA. J Biol Chem 1988,263,19053-9.
    32.Hagan, C. L.; Silhavy, T. J.; Kahne, D., β-Barrel membrane protein assembly by the bam complex. Annu Rev Biochem 2011,80,189-210.
    33.Arbely, E.; Arkin, I. T., Experimental measurement of the strength of a C a-H…O bond in a lipid bilayer. J Am Chem Soc 2004,126,5362-5363.
    34.Yohannan, S.; Faham, S.; Yang, D.; Grosfeld, D.; Chamberlain, A. K.; Bowie, J. U., A Ca-H…O hydrogen bond in a membrane protein is not stabilizing. J Am Chem Soc 2004,126, 2284-2285.
    35.Senes, A.; Ubarretxena-Belandia, I.; Engelman, D. M., The Ca-H…O hydrogen bond:A determinant of stability and specificity in transmembrane helix interactions. Proc Natl Acad Sci U S A 2001,98,9056-9061.
    36.Brzezinski, P.; Adelroth, P., Design principles of proton-pumping haem-copper oxidases. Curr Opin Struct Biol 2006,16,465-472.
    37.Miao, J.; Chapman, H. N.; Kirz, J.; Sayre, D.; Hodgson, K. O., Taking X-ray diffraction to limt: macromolecular structures from femtosecond X-ray pulses and diffraction microscopy of cells with synchrotron radiation*. Annu Rev Biophys Biomol Struct 2004,33,157-176.
    38.Toyoshima, C.; Nomura, H.; Tsuda, T., Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 2004,432,361-368.
    39.Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E., The Protein Data Bank. Nucleic Acids Res 2000,28,235-242.
    40.Bill, R. M.; Henderson, P. J. F.; Iwata, S.; Kunji, E. R. S.; Michel, H.; Neutze, R.; Newstead, S.; Poolman, B.; Tate, C. G.; Vogel, H., Overcoming barriers to membrane protein structure determination. Nat Biotech 2011,29,335-340.
    41.Cross, T. A.; Sharma, M.; Yi, M.; Zhou, H.-X., Influence of solubilizing environments on membrane protein structures. Trends Biochem Sci 2011,36,117-125.
    42.Elofsson, A.; Heijne, G. v., Membrane protein structure:prediction versus reality. Annu Rev Biochem 2007,76,125-140.
    43.Henderson, R.; Baldwin, J. M.; Ceska, T. A.; Zemlin, F.; Beckmann, E.; Downing, K. H., Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 1990,213,899-929.
    44.Engel, A.; Gaub, H. E., Structure and mechanics of membrane proteins. Annu Rev Biochem 2008,77,127-148.
    45.Kawate, T.; Gouaux, E., Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 2006,14,673-681.
    46.Murakami, M.; Kouyama, T., Crystal structure of squid rhodopsin. Nature 2008,453,363-367.
    47.Rasmussen, S. G. F.; Choi, H.-J.; Rosenbaum, D. M.; Kobilka, T. S.; Thian, F. S.; Edwards, P. C; Burghammer, M.; Ratnala, V. R. P.; Sanishvili, R.; Fischetti, R. F.; Schertler, G. F. X.; Weis, W. I.; Kobilka, B. K., Crystal structure of the human [bgr]2 adrenergic G-protein-coupled receptor. Nature 2007,450,383-387.
    48.Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H.-J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C., High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 2007,318, 1258-1265.
    49.Scheerer, P.; Park, J. H.; Hildebrand, P. W.; Kim, Y. J.; Krausz, N.; Choe, H.-W.; Hofmann, K. P.; Ernst, O. P., Crystal structure of opsin in its G-protein-interacting conformation. Nature 2008, 455,497-502.
    50.Shinoda, T.; Ogawa, H.; Cornelius, F.; Toyoshima, C., Crystal structure of the sodium-potassium pump at 2.4A resolution. Nature 2009,459,446-450.
    51.Olesen, C.; Picard, M.; Winther, A.-M. L.; Gyrup, C.; Morth, J. P.; Oxvig, C.; Moller, J. V.; Nissen, P., The structural basis of calcium transport by the calcium pump. Nature 2007,450, 1036-1042.
    52.Fang, Y.; Jayaram, H.; Shane, T.; Kolmakova-Partensky, L.; Wu, F.; Williams, C.; Xiong, Y.; Miller, C., Structure of a prokaryotic virtual proton pump at 3.2A resolution. Nature 2009,460, 1040-1043.
    53.Gao, X.; Lu, F.; Zhou, L.; Dang, S.; Sun, L.; Li, X.; Wang, J.; Shi, Y., Structure and mechanism of an amino acid antiporter. Science 2009,324,1565-1568.
    54.Ressl, S.; Terwisscha van Scheltinga, A. C.; Vonrhein, C.; Ott, V.; Ziegler, C., Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 2009,458,47-52.
    55.Shimamura, T.; Weyand, S.; Beckstein, O.; Rutherford, N. G.; Hadden, J. M.; Sharples, D.; Sansom, M. S. P.; Iwata, S.; Henderson, P. J. F.; Cameron, A. D., Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhpl. Science 2010,328, 470-473.
    56.Weyand, S.; Ma, P.; Saidijam, M.; Baldwin, J.; Beckstein, O.; Jackson, S.; Suzuki, S. i.; Patching, S. G.; Shimamura, T.; Sansom, M. S. P.; Iwata, S.; Cameron, A. D.; Baldwin, S. A.; Henderson, P. J. F., The Nucleobase-Cation-Symport-1 Family of Membrane Transport Proteins. In Handbook of Metalloproteins, John Wiley & Sons, Ltd:2006.
    57.Aller, S. G.; Yu, J.; Ward, A.; Weng, Y.; Chittaboina, S.; Zhuo, R.; Harrell, P. M.; Trinh, Y. T.; Zhang, Q.; Urbatsch, I. L.; Chang, G, Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 2009,323,1718-1722.
    58.Gerber, S.; Comellas-Bigler, M.; Goetz, B. A.; Locher, K. P., Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science 2008,321,246-250.
    59.Hilf, R. J. C.; Dutzler, R., Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 2009,457,115-118.
    60.Yernool, D.; Boudker, O.; Jin, Y.; Gouaux, E., Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 2004,431,811-818.
    61.Hedfalk, K.; Tornroth-Horsefield, S.; Nyblom, M.; Johanson, U.; Kjellbom, P.; Neutze, R., Aquaporin gating. Curr Opin Struct Biol 2006,16,447-456.
    62.Granseth, E.; von Heijne, G.; Elofsson, A., A Study of the Membrane-Water Interface Region of Membrane Proteins. J Mol Biol 2005,346,377-385.
    63.Liang, J.; Adamian, L.; Jackups Jr, R., The membrane-water interface region of membrane proteins:structural bias and the anti-snorkeling effect. Trends Biochem Sci 2005,30,355-357.
    64.Joseph P.R.O, O., Sequence context and modified hydrophobic moment plots help identify 'horizontal' surface helices in transmembrane protein structure prediction. J Struct Biol 2004,148, 51-65.
    65.Hong, M.; Zhang, Y.; Hu, F., Membrane protein structure and dynamics from NMR spectroscopy. Annu Rev Phys Chem 2012,63, null.
    66.Nugent, T.; Jones, D., Transmembrane protein topology prediction using support vector machines. BMC Bioinform 2009,10,159.
    67.Lomize, M. A.; Pogozheva, I. D.; Joo, H.; Mosberg, H. I.; Lomize, A. L., OPM database and PPM web server:resources for positioning of proteins in membranes. Nucleic Acids Res 2011,40, D370-D376.
    68.Raman, P.; Cherezov, V.; Caffrey, M., The Membrane Protein Data Bank. Cell. Mol. Life Sci 2006,63,36-51.
    69.Saier, M. H.; Yen, M. R.; Noto, K.; Tamang, D. G.; Elkan, C., The Transporter Classification Database:recent advances. Nucleic Acids Res 2009,37, D274-D278.
    70.Bhardwaj, N.; Stahelin, R. V.; Zhao, G.; Cho, W.; Lu, H., MeTaDoR:a comprehensive resource for membrane targeting domains and their host proteins. Bioinformatics 2007,23,3110-3112.
    71.Tusnady, G. E.; Dosztanyi, Z.; Simon, I., Transmembrane proteins in the Protein Data Bank: identification and classification. Bioinformatics 2004,20,2964-2972.
    72.Whitmore, L.; Wallace, B. A., The Peptaibol Database:a database for sequences and structures of naturally occurring peptaibols. Nucleic Acids Res 2004,32, D593-D594.
    73.Tusnady, G. E.; Dosztanyi, Z.; Simon, I., PDB_TM:selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res 2005,33, D275-D278.
    74.Engelman, D. M.; Steitz, T. A., The spontaneous insertion of proteins into and across membranes:The helical hairpin hypothesis. Cell 1981,23,411-422.
    75.Kyte, J.; Doolittle, R. F., A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982,157,105-132.
    76.Gunnar, v. H., Membrane protein structure prediction:Hydrophobicity analysis and the positive-inside rule. J Mol Biol 1992,225,487-494.
    77.Tusnady, G. E.; Simon, I., The HMMTOP transmembrane topology prediction server. Bioinformatics 2001,17,849-850.
    78.Tusnady, G. E.; Simon, I., Principles governing amino acid composition of integral membrane proteins:application to topology prediction. J Mol Biol 1998,283,489-506.
    79.Jones, D. T.; Taylor, W. R.; Thornton, J. M., A Model Recognition Approach to the Prediction of All-Helical Membrane Protein Structure and Topology. Biochemistry 1994,33,3038-3049.
    80.Melen, K.; Krogh, A.; von Heijne, G., Reliability Measures for Membrane Protein Topology Prediction Algorithms. J Mol Biol 2003,327,735-744.
    81.Dai, S. Y.; Chalmers, M. J.; Bruning, J.; Bramlett, K. S.; Osborne, H. E.; Montrose-Rafizadeh, C.; Barr, R. J.; Wang, Y.; Wang, M.; Burris, T. P.; Dodge, J. A.; Griffin, P. R., Prediction of the tissue-specificity of selective estrogen receptor modulators by using a single biochemical method. Proc Natl Acad Sci U S A 2008,105,7171-7176.
    82.Viklund, H.; Elofsson, A., OCTOPUS:improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 2008,24,1662-1668.
    83.Kail, L.; Krogh, A.; Sonnhammer, E. L. L., A Combined Transmembrane Topology and Signal Peptide Prediction Method. J Mol Biol 2004,338,1027-1036.
    84.Petersen, T. N.; Brunak, S.; von Heijne, G.; Nielsen, H., SignalP 4.0:discriminating signal peptides from transmembrane regions. Nat Meth 2011,8,785-786.
    85.Nakai, K.; Horton, P., PSORT:a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 1999,24,34-35.
    86.Dyrle(?)v Bendtsen, J.; Nielsen, H.; von Heijne, G.; Brunak, S., Improved Prediction of Signal Peptides:SignalP 3.0. J Mol Biol 2004,340,783-795.
    87.Martelli, P. L.; Fariselli, P.; Krogh, A.; Casadio, R., A sequence-profile-based HMM for predicting and discriminating β barrel membrane proteins. Bioinformatics 2002,18, S46-S53.
    88.Bagos, P. G.; Liakopoulos, T. D.; Spyropoulos, I. C.; Hamodrakas, S. J., PRED-TMBB:a web server for predicting the topology of β-barrel outer membrane proteins. Nucleic Acids Res 2004, 32, W400-W404.
    89.Bigelow, H. R.; Petrey, D. S.; Liu, J.; Przybylski, D.; Rost, B., Predicting transmembrane beta-barrels in proteomes. Nucleic Acids Res 2004,32,2566-2577.
    90.Kauko, A.; Hedin, L. E.; Thebaud, E.; Cristobal, S.; Elofsson, A.; von Heijne, G, Repositioning of Transmembrane a-Helices during Membrane Protein Folding. J Mol Biol 2010,397,190-201.
    91.Walz, T.; Hirai, T.; Murata, K.; Heymann, J. B.; Mitsuoka, K.; Fujiyoshi, Y.; Smith, B. L.; Agre, P.; Engel, A., The three-dimensional structure of aquaporin-1. Nature 1997,387,624-627.
    92.Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A.; Kuo, A.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon, R., The structure of the potassium channel:molecular basis of K+ conduction and selectivity. Science 1998,280,69-77.
    93.Viklund, H.; Granseth, E.; Elofsson, A., Structural classification and prediction of reentrant regions in a-helical transmembrane proteins:application to complete genomes. J Mol Biol 2006, 361,591-603.
    94.Granseth, E.; Viklund, H.; Elofsson, A., ZPRED:Predicting the distance to the membrane center for residues in a-helical membrane proteins. Bioinformatics 2006,22, e191-el96.
    95.Gerstein, M., Patterns of protein-fold usage in eight microbial genomes:A comprehensive structural census. Proteins:Struct Funct Genet 1998,33,518-534.
    96.Wallin, E.; Heijne, G. V., Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 1998,7,1029-1038.
    97.Liu, J.; Rost, B., Comparing function and structure between entire proteomes. Protein Sci 2001, 10,1970-1979.
    98.Daley, D. O.; Rapp, M.; Granseth, E.; Melen, K.; Drew, D.; von Heijne, G, Global topology analysis of the escherichia coli Inner membrane proteome. Science 2005,308,1321-1323.
    99.Kim, H.; Melen, K.; Osterberg, M.; von Heijne, G, A global topology map of the Saccharomyces cerevisiae membrane proteome. Proc Natl Acad Sci U S A 2006,103, 11142-11147.
    100.Lehnert, U.; Xia, Y.; Royce, T. E.; Goh, C.-S.; Liu, Y; Senes, A.; Yu, H.; Zhang, Z. L.; Engelman, D. M.; Gerstein, M., Computational analysis of membrane proteins:genomic occurrence, structure prediction and helix interactions. Q Rev Biophys 2004,37,121-146.
    101.Donaldson, J. G.; Jackson, C. L., ARF family G proteins and their regulators:roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 2011,12,362-375.
    102.Diederichs, K.; Freigang, J.; Umhau, S.; Zeth, K.; Breed, J., Prediction by a neural network of outer membrane β-strand protein topology. Protein Sci 1998,7,2413-2420.
    103.Oberai, A.; Joh, N. H.; Pettit, F. K.; Bowie, J. U., Structural imperatives impose diverse evolutionary constraints on helical membrane proteins. Proc Natl Acad Sci U S A 2009,106, 17747-17750.
    104.Beuming, T.; Weinstein, H., A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins. Bioinformatics 2004,20,1822-1835.
    105.Adamian, L.; Liang, J., Prediction of transmembrane helix orientation in polytopic membrane proteins. BMC Struct Biol 2006,6,13.
    106.Park, Y; Hayat, S.; Helms, V., Prediction of the burial status of transmembrane residues of helical membrane proteins. BMC Bioinform 2007,8,302.
    107.Wang, C.; Li, S.; Xi, L.; Liu, H.; Yao, X., Accurate prediction of the burial status of transmembrane residues of a-helix membrane protein by incorporating the structural and physicochemical features. Amino Acids 2011,40,991-1002.
    108.Yuan, Z.; Zhang, F.; Davis, M. J.; Boden, M.; Teasdale, R. D., Predicting the Solvent Accessibility of Transmembrane Residues from Protein Sequence. J Proteome Res 2006,5, 1063-1070.
    109.Illergard, K.; Callegari, S.; Elofsson, A., MPRAP:An accessibility predictor for a-helical transmem-brane proteins that performs well inside and outside the membrane. BMC Bioinform 2010,11,333.
    110.Wang, C.; Xi, L.; Li, S.; Liu, H.; Yao, X., A sequence-based computational model for the prediction of the solvent accessible surface area for a-helix and β-barrel transmembrane residues. J Comput Chem 2012,33,11-17.
    111.Baldwin, J., The probable arrangement of the helices in G protein-coupled receptors. EMBO J 1993,12,1963-1703.
    112.Unger, V. M.; Hargrave, P. A.; Baldwin, J. M.; Schertler, G. F. X., Arrangement of rhodopsin transmembrane [alpha]-helices. Nature 1997,389,203-206.
    113.Zhang, Y.; DeVries, M. E.; Skolnick, J., Structure Modeling of All Identified G Protein-Coupled Receptors in the Human Genome. PLoS Comput Biol 2006,2, el3.
    114.Yarov-Yarovoy, V.; Schonbrun, J.; Baker, D., Multipass membrane protein structure prediction using Rosetta. Proteins 2006,62,1010-1025.
    115.Barth, P.; Wallner, B.; Baker, D., Prediction of membrane protein structures with complex topologies using limited constraints. Proc Natl Acad Sci U S A 2009,106,1409-1414.
    116.Yarov-Yarovoy, V.; Baker, D.; Catterall, W. A., Voltage sensor conformations in the open and closed states in rosetta structural models of K+ channels. Proc Natl Acad Sci U S A 2006,103, 7292-7297.
    117.Casadio, R.; Martelli, P. L.; Pierleoni, A., The prediction of protein subcellular localization from sequence:a shortcut to functional genome annotation. Brief Funct Genomic Proteomic.2008, 7,63-73.
    118.Ghosh, D.; Beavis, R. C.; Wilkins, J. A., The Identification and Characterization of Membranome Components. J Proteome Res 2008,7,1572-1583.
    119.Jekely, G., Origin of Eukaryotic Endomembranes:A Critical Evaluation of Different Model Scenarios Eukaryotic Membranes and Cytoskeleton. In Springer New York:2007; Vol.607, pp 38-51.
    120.de Duve, C., The origin of eukaryotes:a reappraisal. Nat Rev Genet 2007,8,395-403.
    121.Hegde, R. S.; Bernstein, H. D., The surprising complexity of signal sequences. Trends Biochem Sci 2006,31,563-571.
    122.Chacinska, A.; Koehler, C. M.; Milenkovic, D.; Lithgow, T; Pfanner, N., Importing mitochondrial proteins:machineries and mechanisms. Cell 2009,138,628-644.
    123.Balsera, M.; Soil, J.; Bolter, B., Protein import machineries in endosymbiotic organelles. Cell Mol Life Sci 2009,66,1903-1923.
    124.Pierleoni, A.; Martelli, P.; Casadio, R., PredGPI:a GPI-anchor predictor. BMC Bioinform 2008,9,392.
    125.Sato, K.; Nakano, A., Mechanisms of COPII vesicle formation and protein sorting. FEBS Lett 2007,581,2076-2082.
    126.Charles, B., Signals for COPII-dependent export from the ER:what's the ticket out? Trends Cell Biol 2003,13,295-300.
    127.Rodriguez-Boulan, E.; Kreitzer, G.; Musch, A., Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 2005,6,233-247.
    128.Lemmon, M. A., Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 2008,9,99-111.
    129.Cho, W.; Stahelin, R. V., Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 2005,34,119-151.
    130.Sadowski, P. G.; Groen, A. J.; Dupree, P.; Lilley, K. S., Sub-cellular localization of membrane proteins. Proteomics 2008,8,3991-4011.
    131.Komatsu, S., Plasma membrane proteome in Arabidopsis and rice. Proteomics 2008,8, 4137-4145.
    132.Punta, M.; Forrest, L. R.; Bigelow, H.; Kernytsky, A.; Liu, J.; Rost, B., Membrane protein prediction methods. Methods 2007,41,460-474.
    133.Chou, K. C.; Cai, Y. D., Using Functional Domain Composition and Support Vector Machines for Prediction of Protein Subcellular Location. J Biol Chem 2002,277,45765-45769.
    134.Chou, K. C.; Shen, H. B., Euk-mPLoc:A Fusion Classifier for Large-Scale Eukaryotic Protein Subcellular Location Prediction by Incorporating Multiple Sites. J Proteome Res 2007,6, 1728-1734.
    135.Chou, K. C.; Shen, H. B., Recent progress in protein subcellular location prediction. Anal Biochem 2007,370,1-16.
    136.Chou, K. C.; Shen, H. B., Plant-mPLoc:A Top-Down Strategy to Augment the Power for Predicting Plant Protein Subcellular Localization. PLoS One 2010,5, e11335.
    137.Chou, K. C.; Shen, H. B., A New Method for Predicting the Subcellular Localization of Eukaryotic Proteins with Both Single and Multiple Sites:Euk-mPLoc 2.0. PLoS One 2010,5, e9931.
    138.Chou, K. C.; Wu, Z. C.; Xiao, X., iLoc-Euk:A Multi-Label Classifier for Predicting the Subcellular Localization of Singleplex and Multiplex Eukaryotic Proteins. PLoS One 2011,6, e18258.
    139.Shi, J. Y.; Zhang, S. W.; Pan, Q.; Zhou, G. P., Using pseudo amino acid composition to predict protein subcellular location:approached with amino acid composition distribution. Amino Acids 2008,35,321-327.
    140.Imai, K.; Nakai, K., Prediction of subcellular locations of proteins:Where to proceed? Proteomics 2010,10,3970-3983.
    141.Lin, H.-N.; Chen, C.-T.; Sung, T.-Y.; Ho, S.-Y.; Hsu, W.-L., Protein subcellular localization prediction of eukaryotes using a knowledge-based approach. BMC Bioinform 2009,10, S8.
    142.Gromiha, M. M.; Yabuki, Y.; Suresh, M. X.; Thangakani, A. M.; Suwa, M.; Fukui, K., TMFunction:database for functional residues in membrane proteins. Nucleic Acids Res 2009,37, D201-D204.
    143.Gromiha, M. M.; Yabuki, Y., Functional discrimination of membrane proteins using machine learning techniques. BMC Bioinform 2008,9,135.
    144.Shepherd, A. J.; Gorse, D.; Thornton, J. M., A novel approach to the recognition of protein architecture from sequence using fourier analysis and neural networks. Proteins 2003,50, 290-302.
    145.Bhasin, M.; Raghava, G. P. S., Classification of nuclear receptors based on amino acid composition and dipeptide composition. J. Biol. Chem.2004,279,23262-23266.
    146.Cid, H.; Bunster, M; Canales, M; Gazitua, F., Hydrophobicity and structural classes in proteins. Protein Eng 1992,5,373-375.
    147.Bhaskaran, R.; Ponnuswamy, P. K., Positional flexibilities of amino acid residues in globular proteins. Int J Pept Protein Res 1988,32,241-255.
    148.Charton, M.; Charton, B. I., The structural dependence of amino acid hydrophobicity parameters. J Theor Biol 1982,99,629-644.
    149.Cyrus, C., The nature of the accessible and buried surfaces in proteins. J Mol Biol 1976,105, 1-12.
    150.Charles C, B., On the average hydrophobicity of proteins and the relation between it and protein structure. J Theor Biol 1967,16,187-211.
    151.M, C., Protein folding and the genetic code:An alternative quantitative model. J Theor Biol 1981,91,115-123.
    152.Dayhoff, H.; Calderone, H., Composition of Proteins. Protein Sequence and Structure 1978,5, 363-373.
    153.Dubchak, I.; Muchnik, I.; Mayor, C.; Dralyuk, I.; Kim, S.-H., Recognition of a protein fold in the context of the SCOP classification. Proteins 1999,35,401-407.
    154.Dubchak, I.; Muchnik, I.; Holbrook, S. R.; Kim, S. H., Prediction of protein folding class using global description of amino acid sequence. Proc Natl Acad Sci U S A 1995,92,8700-8704.
    155.Tomii, K.; Kanehisa, M., Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins. Protein Eng 1996,9,27-36.
    156.Chou, K.-C.; Cai, Y.-D., Prediction of protein subcellular locations by GO-FunD-PseAA predictor. Biochem Biophys Res Commun.2004,320,1236-1239.
    157.Altschul, S. F.; Madden, T. L.; Schaffer, A. A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D. J., Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res 1997,25,3389-3402.
    158.Schaffer, A. A.; Aravind, L.; Madden, T. L.; Shavirin, S.; Spouge, J. L.; Wolf, Y. I.; Koonin, E. V.; Altschul, S. F., Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 2001,29,2994-3005.
    159.David T, J., Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999,292,195-202.
    160.Thompson, J. D.; Higgins, D. G.; Gibson, T. J., CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994,22,4673-4680.
    161.Altschul, S. F.; Madden, T. L.; Schaffer, A. A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D. J., Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Research 1997,25,3389-3402.
    162.Sunyaev, S. R.; Eisenhaber, F.; Rodchenkov, I. V.; Eisenhaber, B.; Tumanyan, V. G.; Kuznetsov, E. N., PSIC:profile extraction from sequence alignments with position-specific counts of independent observations. Protein Eng 1999,12,387-394.
    163.Saeys, Y.; Inza, I.; Larranaga, P., A review of feature selection techniques in bioinformatics. Bioinformatics 2007,23,2507-2517.
    164.Van Landeghem, S.; Abeel, T.; Saeys, Y.; Van de Peer, Y., Discriminative and informative features for biomolecular text mining with ensemble feature selection. Bioinformatics 2010,26, i554-i560.
    165.Liu, J.; Ranka, S.; Kahveci, T., Classification and feature selection algorithms for multi-class CGH data. Bioinformatics 2008,24, i86-i95.
    166.Gertheiss, J.; Tutz, G., Supervised feature selection in mass spectrometry-based proteomic profiling by blockwise boosting. Bioinformatics 2009,25,1076-1077.
    167.任月英,QSPR/QSAR在药物、分析化学和环境科学中的应用.兰州大学,兰州,2007.
    168.Katritzky, A.; Lobanov, V.; Karelson, M., CODESSA:reference manual; Version 2. University of Florida:1994.
    169.Holland, J., Adaptation in natural and artificial systems. Arbor, A., Eds:University of Michigan Press,1975.
    170.Furnival, G.; JRW Wilson, Regression by leaps and bounds. Technometrics 1974,16,499-504.
    171.Agrafiotis, D. K.; Bandyopadhyay, D.; Wegner, J. K.; van Vlijmen, H., Recent Advances in Chemoinformatics. J Chem Inf Model 2007,47,1279-1293.
    172.Mitchell, T., Machine Learning. McGraw Hill,1997.
    173.Vapnik, V. N.; Chervonenkis, A. Y., On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities. Theory of Probab and its application 1971,16,264-280.
    174.Vapnik, V., Estimation of dependence based on empirical data. In Springer-Verlag:New York, 1982.
    175.Vanpnik, V.; Golowich, S.; Smola, A., Support vector method for function approximation,regression estimation, and signal processing. In:Advances in Neural Information processing System 9,. MIT Press:Cambridge, MA,1997.
    176.Suykens, J. A. K.; Vandewalle, J., Least squares support vector machine classifiers. Neural Processing Letters 1999,9,293-300.
    177.Breiman, L., Random Forests. Mach Learn 2001,45,5-32.
    178.Liaw, A.; Wiener, M., Classification and regression by randomForest. RNews 2002,2,18-22.
    179.Southey, B. R.; Sweedler, J. V.; Rodriguez-Zas, S. L., Prediction of neuropeptide cleavage sites in insects. Bioinformatics 2008,24,815-825.
    180.Becavin, C.; Tchitchek, N.; Mintsa-Eya, C.; Lesne, A.; Benecke, A., Improving the efficiency of multidimensional scaling in the analysis of high-dimensional data using singular value decomposition. Bioinformatics 2011,27,1413-1421.
    181.Tedder, P. M. R.; Bradford, J. R.; Needham, C. J.; McConkey, G. A.; Bulpitt, A. J.; Westhead, D. R., Gene function prediction using semantic similarity clustering and enrichment analysis in the malaria parasite Plasmodium falciparum. Bioinformatics 2010,26,2431-2437.
    182.Cover, T.; Hart, P., Nearest neighbor pattern classification. Information Theory, IEEE Transactions on 1967,13,21-27.
    183.Denoeux, T., A k-nearest neighbor classification rule based on Dempster-Shafer theory. Systems, Man and Cybernetics, IEEE Transactions on 1995,25,804-813.
    184.Mardia, K.; Kent, J.; Bibby, J., Multivariate Analysis. Academic Press:London,1979.
    185.Mahalanobis, P., On the generalized distance in statistics. Proc. Natl. Inst. Sci 1936,2,49-55.
    186.Pillai, K.; Mahalanobis, P.; Kotz, S.; Johnson, N., Encyclopedia of Satistical Sciences. Wiley: New York,1985.
    187.Matthews, B., Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 1975,405,442-451.
    188.Johnson, S. R., The Trouble with QSAR (or How I Learned To Stop Worrying and Embrace Fallacy). J Chem Inf Model 2007,48,25-26.
    1.Hedin, L. E.; Illergard, K.; Elofsson, A., An Introduction to Membrane Proteins. Journal of Proteome Research 2011,10,3324-3331.
    2.Hedin, L. E.; Illergard, K.; Elofsson, A., An introduction to membrane proteins(?). J Proteome Res 2011,10,3324-3331.
    3.Bill, R. M.; Henderson, P. J. F.; Iwata, S.; Kunji, E. R. S.; Michel, H.; Neutze, R.; Newstead, S.; Poolman, B.; Tate, C. G.; Vogel, H., Overcoming barriers to membrane protein structure determination. Nat Biotech 2011,29,335-340.
    4.Hennerdal, A.; Elofsson, A., Rapid membrane protein topology prediction. Bioinformatics 2011, 27,1322-1323.
    5.Nugent, T.; Jones, D., Transmembrane protein topology prediction using support vector machines. BMC Bioinform 2009,10,159.
    6.Bernsel, A.; Viklund, H.; Hennerdal, A.; Elofsson, A., TOPCONS:consensus prediction of membrane protein topology. Nucleic Acids Res 2009,37, W465-W468.
    7.Barth, P.; Wallner, B.; Baker, D., Prediction of membrane protein structures with complex topologies using limited constraints. Proc Natl Acad Sci U S A 2009,106,1409-1414.
    8.Viklund, H.; Elofsson, A., OCTOPUS:improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 2008,24,1662-1668.
    9.Viklund, H.; Bernsel, A.; Skwark, M.; Elofsson, A., SPOCTOPUS:a combined predictor of signal peptides and membrane protein topology. Bioinformatics 2008,24,2928-2929.
    10.Bernsel, A.; Viklund, H.; Falk, J.; Lindahl, E.; von Heijne, G.; Elofsson, A., Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci U S A 2008,105,7177-7181.
    11.Jones, D. T., Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 2007,23,538-544.
    12.von Heijne, G., Membrane-protein topology. Nat Rev Mol Cell Biol 2006,7,909-918.
    13.Kim, H.; Melen, K.; Osterberg, M.; von Heijne, G., A global topology map of the Saccharomyces cerevisiae membrane proteome. Proc Natl Acad Sci U S A 2006,103, 11142-11147.
    14.Granseth, E.; Viklund, H.; Elofsson, A., ZPRED:Predicting the distance to the membrane center for residues in a-helical membrane proteins. Bioinformatics 2006,22, e191-e196.
    15.Kall, L.; Krogh, A.; Sonnhammer, E. L. L., An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 2005,21, i251-i257.
    16.Daley, D. O.; Rapp, M.; Granseth, E.; Melen, K.; Drew, D.; von Heijne, G., Global topology analysis of the escherichia coli Inner membrane proteome. Science 2005,308,1321-1323.
    17.Bernsel, A.; Von Heijne, G., Improved membrane protein topology prediction by domain assignments. Protein Sci 2005,14,1723-1728.
    18.Viklund, H.; Elofsson, A., Best a-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. Protein Sci 2004,13, 1908-1917.
    19.Wang, C.; Li, S.; Xi, L.; Liu, H.; Yao, X., Accurate prediction of the burial status of transmembrane residues of a-helix membrane protein by incorporating the structural and physicochemical features. Amino Acids 2011,40,991-1002.
    20.Park, Y.; Hayat, S.; Helms, V., Prediction of the burial status of transmembrane residues of helical membrane proteins. BMC Bioinformatics 2007,8,302.
    21.Park, Y.; Helms, V., How strongly do sequence conservation patterns and empirical scales correlate with exposure patterns of transmembrane helices of membrane proteins? Biopolymers 2006,83,389-399.
    22.Abramson, J.; Smirnova, I.; Kasho, V.; Verner, G.; Kaback, H. R.; Iwata, S., Structure and mechanism of the lactose permease of escherichia coli. Science 2003,301,610-615.
    23.Hessa, T.; Kim, H.; Bihlmaier, K.; Lundin, C.; Boekel, J.; Andersson, H.; Nilsson, I.; White, S. H.; von Heijne, G., Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 2005,433,377-381.
    24.Hessa, T.; Meindl-Beinker, N. M.; Bernsel, A.; Kim, H.; Sato, Y.; Lerch-Bader, M.; Nilsson, I.; White, S. H.; von Heijne, G., Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 2007,450,1026-1030.
    25.White, S. H.; Heijne, G v., The machinery of membrane protein assembly. Curr Opin Struct Biol 2004,14,397-404.
    26.White, S. H.; von Heijne, G., How translocons select transmembrane helices. Annu Rev Biophys 2008,37,23-42.
    27.Beuming, T.; Weinstein, H., A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins. Bioinformatics 2004,20,1822-1835.
    28.Liang, J.; Adamian, L.; Jackups Jr, R., The membrane-water interface region of membrane proteins:structural bias and the anti-snorkeling effect. Trends Biochem Sci 2005,30,355-357.
    29.Kawashima, S.; Pokarowski, P.; Pokarowska, M.; Kolinski, A.; Katayama, T.; Kanehisa, M., AAindex:amino acid index database, progress report 2008. Nucleic Acids Res 2008,36, D202-D205.
    30.Rao, H. B.; Zhu, F.; Yang, G B.; Li, Z. R.; Chen, Y. Z., Update of PROFEAT:a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res 2011,39, W385-W390.
    31.Li, Z. R.; Lin, H. H.; Han, L. Y.; Jiang, L.; Chen, X.; Chen, Y. Z., PROFEAT:a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res 2006,34, W32-W37.
    32.Jayasinghe, S.; Hristova, K.; White, S. H., MPtopo:A database of membrane protein topology. Protein Sci 2001,10,455-458.
    33.Thompson, J. D.; Higgins, D. G.; Gibson, T. J., CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994,22,4673-4680.
    34.Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V., Gene selection for cancer classification using support vector machines. Mach Learn 2002,46,389-422.
    35.Yuan, Z.; Zhang, F.; Davis, M. J.; Boden, M.; Teasdale, R. D., Predicting the Solvent Accessibility of Transmembrane Residues from Protein Sequence. J Proteome Res 2006,5, 1063-1070.
    36.Illergard, K.; Callegari, S.; Elofsson, A., MPRAP:An accessibility predictor for a-helical transmem-brane proteins that performs well inside and outside the membrane. BMC Bioinform 2010,11,333.
    37.Han, L. Y.; Zheng, C. J.; Xie, B.; Jia, J.; Ma, X. H.; Zhu, F.; Lin, H. H.; Chen, X.; Chen, Y. Z., Support vector machines approach for predicting druggable proteins:recent progress in its exploration and investigation of its usefulness. Drug Discov Today 2007,12,304-313.
    38.Senes, A.; Gerstein, M.; Engelman, D. M., Statistical analysis of amino acid patterns in transmembrane helices:the GxxxG motif occurs frequently and in association with [3-branched residues at neighboring positions. J Mol Biol 2000,296,921-936.
    39.Russ, W. P.; Engelman, D. M., The GxxxG motif:A framework for transmembrane helix-helix association. J Mol Biol 2000,296,911-919.
    40.Walters, R. F. S.; DeGrado, W. F., Helix-packing motifs in membrane proteins. Proc Natl Acad Sci U S A 2006,103,13658-13663.
    41.MacKinnon, R., Membrane protein insertion and stability. Science 2005,307,1425-1426.
    42.Bhaskaran, R.; Ponnuswamy, P. K., Positional flexibilities of amino acid residues in globular proteins. Int J Pept Protein Res 1988,32,241-255.
    1.Im, W.; Lee, J.; Kim, T.; Rui, H., Novel free energy calculations to explore mechanisms and energetics of membrane protein structure and function. J Comput Chem 2009,30,1622-1633.
    2.Wolf, M. G.; Hoefling, M.; Aponte-Santamaria, C.; Grubmuller, H.; Groenhof, G., g_membed: Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem 2010,31,2169-2174.
    3.Hessa, T.; White, S. H.; von Heijne, G., Membrane insertion of a potassium-channel voltage sensor. Science 2005,307,1427.
    4.Hessa, T.; Meindl-Beinker, N. M.; Bernsel, A.; Kim, H.; Sato, Y.; Lerch-Bader, M.; Nilsson, I.; White, S. H.; von Heijne, G., Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 2007,450,1026-1030.
    5.MacKinnon, R., Membrane protein insertion and stability. Science 2005,307,1425-1426.
    6.White, S. H.; von Heijne, G., How translocons select transmembrane helices. Annu Rev Biophys 2008,37,23-42.
    7.Illergard, K.; Callegari, S.; Elofsson, A., MPRAP:An accessibility predictor for a-helical transmem-brane proteins that performs well inside and outside the membrane. BMC Bioinformatics 2010,11,333.
    8.Park, Y.; Hayat, S.; Helms, V., Prediction of the burial status of transmembrane residues of helical membrane proteins. BMC Bioinformatics 2007,8,302.
    9.Beuming, T.; Weinstein, H., A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins. Bioinformatics 2004,20,1822-1835.
    lO.Park, Y; Helms, V., How strongly do sequence conservation patterns and empirical scales correlate with exposure patterns of transmembrane helices of membrane proteins? Biopolymers 2006,83,389-399.
    11.Yuan, Z.; Zhang, F.; Davis, M. J.; Boden, M.; Teasdale, R. D., Predicting the Solvent Accessibility of Transmembrane Residues from Protein Sequence. J Proteome Res 2006,5, 1063-1070.
    12.Tuncbag, N.; Gursoy, A.; Keskin, O., Identification of computational hot spots in protein interfaces:combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 2009,25,1513-1520.
    13.Hedin, L. E.; Illergard, K.; Elofsson, A., An introduction to membrane proteins(?). J Proteome Res 2011,10,3324-3331.
    14.Tan, S.; Tan, H. T.; Chung, M. C. M., Membrane proteins and membrane proteomics. Proteomics 2008,8,3924-3932.
    15.Bill, R. M.; Henderson, P. J. F.; Iwata, S.; Kunji, E. R. S.; Michel, H.; Neutze, R.; Newstead, S.; Poolman, B.; Tate, C. G.; Vogel, H., Overcoming barriers to membrane protein structure determination. Nat Biotech 2011,29,335-340.
    16.Elofsson, A.; Heijne, G. v., Membrane protein structure:prediction versus reality. Annu Rev Biochem 2007,76,125-140.
    17.Oberai, A.; Joh, N. H.; Pettit, F. K.; Bowie, J. U., Structural imperatives impose diverse evolutionary constraints on helical membrane proteins. Proc Natl Acad Sci U S A 2009,106, 17747-17750.
    18.Wang, C.; Xi, L.; Li, S.; Liu, H.; Yao, X., A sequence-based computational model for the prediction of the solvent accessible surface area for a-helix and β-barrel transmembrane residues. J Comput Chem 2012,33,11-17.
    19.Thompson, J. D.; Higgins, D. G.; Gibson, T. J., CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994,22,4673-4680.
    20.Xia, J.-F.; Zhao, X.-M; Song, J.; Huang, D.-S., APIS:accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. BMC Bioinform 2010, 11,174.
    21.Mihel, J.; Sikic, M.; Tomic, S.; Jeren, B.; Vlahovicek, K., PSAIA-Protein Structure and Interaction Analyzer. BMC Struct Biol 2008,8,21.
    22.Shrake, A.; Rupley, J. A., Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J Mol Biol 1973,79,351-371.
    23.Pei, J.; Grishin, N. V., AL2CO:calculation of positional conservation in a protein sequence alignment. Bioinformatics 2001,17,700-712.
    24.Altschul, S. F.; Madden, T. L.; Schaffer, A. A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D. J., Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Research 1997,25,3389-3402.
    25.Henikoff, S.; Henikoff, J. G., Position-based sequence weights. J Mol Biol 1994,243,574-578.
    26.Sunyaev, S. R.; Eisenhaber, F.; Rodchenkov, I. V.; Eisenhaber, B.; Tumanyan, V. G.; Kuznetsov, E. N., PSIC:profile extraction from sequence alignments with position-specific counts of independent observations. Protein Eng 1999,12,387-394.
    27.Breiman, L., Random Forests. Mach Learn 2001,45,5-32.
    28.Vapnik, V., Estimation of dependence based on empirical data. In Springer-Verlag:New York, 1982.
    29.Vapnik, V. N.; Chervonenkis, A. Y., On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities. Theory of Probab and its application 1971,16,264-280.
    3O.Han, L. Y.; Zheng, C. J.; Xie, B.; Jia, J.; Ma, X. H.; Zhu, F.; Lin, H. H.; Chen, X.; Chen, Y. Z., Support vector machines approach for predicting druggable proteins:recent progress in its exploration and investigation of its usefulness. Drug Discov Today 2007,12,304-313.
    31.Russ, W. P.; Engelman, D. M., The GxxxG motif:A framework for transmembrane helix-helix association. J Mol Biol 2000,296,911-919.
    32.Senes, A.; Gerstein, M.; Engelman, D. M., Statistical analysis of amino acid patterns in transmembrane helices:the GxxxG motif occurs frequently and in association with (3-branched residues at neighboring positions. J Mol Biol 2000,296,921-936.
    1.Jones, D. T., Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 2007,23,538-544.
    2.Viklund, H.; Elofsson, A., OCTOPUS:improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 2008,24,1662-1668.
    3.Barth, P.; Wallner, B.; Baker, D., Prediction of membrane protein structures with complex topologies using limited constraints. Proc Natl Acad Sci U S A 2009,106,1409-1414.
    4.Bernsel, A.; Viklund, H.; Falk, J.; Lindahl, E.; von Heijne, G.; Elofsson, A., Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci U S A 2008,105,7177-7181.
    5.Hessa, T.; Kim, H.; Bihlmaier, K.; Lundin, C.; Boekel, J.; Andersson, H.; Nilsson, I.; White, S. H.; von Heijne, G., Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 2005,433,377-381.
    6.Viklund, H.; Bernsel, A.; Skwark, M.; Elofsson, A., SPOCTOPUS:a combined predictor of signal peptides and membrane protein topology. Bioinformatics 2008,24,2928-2929.
    7.Bernsel, A.; Viklund, H.; Hennerdal, A.; Elofsson, A., TOPCONS:consensus prediction of membrane protein topology. Nucleic Acids Res 2009,37, W465-W468.
    8.Ehrlich, J. S.; Hansen, M. D. H.; Nelson, W. J., Spatio-Temporal Regulation of Racl Localization and Lamellipodia Dynamics during Epithelial Cell-Cell Adhesion. Developmental Cell 2002,3,259-270.
    9.Glory, E.; Murphy, R. F., Automated Subcellular Location Determination and High-Throughput Microscopy. Developmental Cell 2007,12,7-16.
    10.Hedin, L. E.; Illergard, K.; Elofsson, A., An introduction to membrane proteins(?). J Proteome Res 2011,10,3324-3331.
    11.Sadowski, P. G.; Groen, A. J.; Dupree, P.; Lilley, K. S., Sub-cellular localization of membrane proteins. Proteomics 2008,8,3991-4011.
    12.Pierleoni, A.; Martelli, P. L.; Casadio, R., MemLoci:predicting subcellular localization of membrane proteins in eukaryotes. Bioinformatics 2011,27,1224-1230.
    13.Chou, K. C.; Cai, Y. D., Using Functional Domain Composition and Support Vector Machines for Prediction of Protein Subcellular Location. J Biol Chem 2002,277,45765-45769.
    14.Chou, K. C; Shen, H. B., Euk-mPLoc:A Fusion Classifier for Large-Scale Eukaryotic Protein Subcellular Location Prediction by Incorporating Multiple Sites. J Proteome Res 2007,6, 1728-1734.
    15.Chou, K. C.; Shen, H. B., Recent progress in protein subcellular location prediction. Anal Biochem 2007,370,1-16.
    16.Chou, K. C.; Shen, H. B., Plant-mPLoc:A Top-Down Strategy to Augment the Power for Predicting Plant Protein Subcellular Localization. PLoS One 2010,5, e11335.
    17.Chou, K. C.; Shen, H. B., A New Method for Predicting the Subcellular Localization of Eukaryotic Proteins with Both Single and Multiple Sites:Euk-mPLoc 2.0. PLoS One 2010,5, e9931.
    18.Chou, K. C.; Wu, Z. C.; Xiao, X., iLoc-Euk:A Multi-Label Classifier for Predicting the Subcellular Localization of Singleplex and Multiplex Eukaryotic Proteins. PLoS One 2011,6, el8258.
    19.Chou, K.-C.; Cai, Y.-D., Prediction of protein subcellular locations by GO-FunD-PseAA predictor. Biochem Biophys Res Commun.2004,320,1236-1239.
    20.Emanuelsson, O.; Nielsen, H.; Brunak, S.; von Heijne, G., Predicting Subcellular Localization of Proteins Based on their N-terminal Amino Acid Sequence. J Mol Biol 2000,300,1005-1016.
    21.Hoglund, A.; Donnes, P.; Blum, T.; Adolph, H.-W.; Kohlbacher, O., MultiLoc:prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics 2006,22,1158-1165.
    22.Imai, K.; Nakai, K., Prediction of subcellular locations of proteins:Where to proceed? Proteomics 2010,10,3970-3983.
    23.Park, K. J.; Kanehisa, M., Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics 2003,19, 1656-1663.
    24.Shen, H. B.; Chou, K. C., A top-down approach to enhance the power of predicting human protein subcellular localization:Hum-mPLoc 2.0. Anal Biochem 2009,394,269-274.
    25.Shen, H. B.; Yang, J.; Chou, K. C., Euk-PLoc:an ensemble classifier for large-scale eukaryotic protein subcellular location prediction. Amino Acids 2007,33,57-67.
    26.Shi, J. Y.; Zhang, S. W.; Pan, Q.; Zhou, G. P., Using pseudo amino acid composition to predict protein subcellular location:approached with amino acid composition distribution. Amino Acids 2008,35,321-327.
    27.Zhang, S.-W.; Zhang, Y.-L.; Yang, H.-F.; Zhao, C.-H.; Pan, Q., Using the concept of Chou's pseudo amino acid composition to predict protein subcellular localization:an approach by incorporating evolutionary information and von Neumann entropies. Amino Acids 2008,34, 565-572.
    28.Sharpe, H. J.; Stevens, T. J.; Munro, S., A Comprehensive Comparison of Transmembrane Domains Reveals Organelle-Specific Properties. Cell 2010,142,158-169.
    29.Li, Z. R.; Lin, H. H.; Han, L. Y.; Jiang, L.; Chen, X.; Chen, Y. Z., PROFEAT:a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Research 2006,34, W32-W37.
    30.Rao, H. B.; Zhu, F.; Yang, G. B.; Li, Z. R.; Chen, Y. Z., Update of PROFEAT:a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res 2011,39, W385-W390.
    31.Aldrich, J., Correlations Genuine and Spurious in Pearson and Yule. Statist Sci.1995,10, 364-376.
    32.Becavin, C.; Tchitchek, N.; Mintsa-Eya, C.; Lesne, A.; Benecke, A., Improving the efficiency of multidimensional scaling in the analysis of high-dimensional data using singular value decomposition. Bioinformatics 2011,27,1413-1421.
    33.Southey, B. R.; Sweedler, J. V.; Rodriguez-Zas, S. L., Prediction of neuropeptide cleavage sites in insects. Bioinformatics 2008,24,815-825.
    34.Tedder, P. M. R.; Bradford, J. R.; Needham, C. J.; McConkey, G. A.; Bulpitt, A. J.; Westhead, D. R., Gene function prediction using semantic similarity clustering and enrichment analysis in the malaria parasite Plasmodium falciparum. Bioinformatics 2010,26,2431-2437.
    35.Cover, T.; Hart, P., Nearest neighbor pattern classification. Information Theory, IEEE Transactions on 1967,13,21-27.
    36.Denoeux, T., A k-nearest neighbor classification rule based on Dempster-Shafer theory. Systems, Man and Cybernetics, IEEE Transactions on 1995,25,804-813.
    37.Thompson, J. D.; Higgins, D. G.; Gibson, T. J., CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994,22,4673-4680.
    1.Hedin, L. E.; Illergard, K.; Elofsson, A., An introduction to membrane proteins(?).J Proteome Res 2011,10,3324-3331.
    2.Wallin, E.; Heijne, G. V., Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 1998,7,1029-1038.
    3.Silhavy, T. J.; Ruiz, N.; Kahne, D., Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 2006,4,57-66.
    4.Bill, R. M.; Henderson, P. J. F.; Iwata, S.; Kunji, E. R. S.; Michel, H.; Neutze, R.; Newstead, S.; Poolman, B.; Tate, C. G.; Vogel, H., Overcoming barriers to membrane protein structure determination. Nat Biotech 2011,29,335-340.
    5.Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E., The Protein Data Bank. Nucleic Acids Res 2000,28,235-242.
    6.Andersen, O. S.; Koeppe, R. E., Bilayer thickness and membrane protein function:an energetic perspective. Annu Rev Biophys Biomol Struct 2007,36,107-130.
    7.Huang, H. W., Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys J 1986,50,1061-1070.
    8.Dowhan, W., Bilayer thickness and membrane protein function:an energetic perspective. Annu Rev Biochem 1997,66,199-232.
    9.Anthony G. L., How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 2004,1666,62-87.
    10.von Heijne, G., Introduction to theme "membrane protein folding and insertion". Annu Rev Biochem 2011,80,157-160.
    11.Sheetz, M. P.; Singer, S. J., Biological Membranes as Bilayer Couples. A Molecular Mechanism of Drug-Erythrocyte Interactions. Proc Natl Acad Sci U S A 1974,71,4457-4461.
    12.Phillips, R.; Ursell, T.; Wiggins, P.; Sens, P., Emerging roles for lipids in shaping membrane-protein function. Nature 2009,459,379-385.
    13.Mardis, E. R., A decade/'s perspective on DNA sequencing technology. Nature 2011,470, 198-203.
    14.Hansen, K. D.; Wu, Z.; Irizarry, R. A.; Leek, J. T., Sequencing technology does not eliminate biological variability. Nat Biotech 2011,29,572-573.
    15.Wang, C.; Xi, L.; Li, S.; Liu, H.; Yao, X., A sequence-based computational model for the prediction of the solvent accessible surface area for α-helix and β-barrel transmembrane residues. J Comput Chem 2012,33,11-17.
    16.Wang, C.; Li, S.; Xi, L.; Liu, H.; Yao, X., Accurate prediction of the burial status of transmembrane residues of a-helix membrane protein by incorporating the structural and physicochemical features. Amino Acids 2011,40,991-1002.
    17.Hennerdal, A.; Elofsson, A., Rapid membrane protein topology prediction. Bioinformatics 2011, 27,1322-1323.
    18.Illergard, K.; Callegari, S.; Elofsson, A., MPRAP:An accessibility predictor for a-helical transmem-brane proteins that performs well inside and outside the membrane. BMC Bioinform 2010,11,333.
    19.Nugent, T.; Jones, D., Transmembrane protein topology prediction using support vector machines. BMC Bioinform 2009,10,159.
    20.Chen, K.; Jiang, Y.; Du, L.; Kurgan, L., Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs. J Comput Chem 2009,30,163-172.
    21.Barth, P.; Wallner, B.; Baker, D., Prediction of membrane protein structures with complex topologies using limited constraints. Proc Natl Acad Sci U S A 2009,106,1409-1414.
    22.Viklund, H.; Elofsson, A., OCTOPUS:improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 2008,24,1662-1668.
    23.Bernsel, A.; Viklund, H.; Falk, J.; Lindahl, E.; von Heijne, G.; Elofsson, A., Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci U S A 2008,105,7177-7181.
    24.Punta, M.; Forrest, L. R.; Bigelow, H.; Kernytsky, A.; Liu, J.; Rost, B., Membrane protein prediction methods. Methods 2007,41,460-474.
    25.Park, Y.; Hayat, S.; Helms, V., Prediction of the burial status of transmembrane residues of helical membrane proteins. BMC Bioinform 2007,8,302.
    26.Elofsson, A.; Heijne, G. v., Membrane protein structure:prediction versus reality. Annu Rev Biochem 2007,76,125-140.
    27.Yuan, Z.; Zhang, F.; Davis, M. J.; Boden, M.; Teasdale, R. D., Predicting the Solvent Accessibility of Transmembrane Residues from Protein Sequence. J Proteome Res 2006,5, 1063-1070.
    28.von Heijne, G., Membrane-protein topology. Nat Rev Mol Cell Biol 2006,7,909-918.
    29.Viklund, H.; Granseth, E.; Elofsson, A., Structural classification and prediction of reentrant regions in a-helical transmembrane proteins:application to complete genomes. J Mol Biol 2006, 361,591-603.
    30.Granseth, E.; Viklund, H.; Elofsson, A., ZPRED:Predicting the distance to the membrane center for residues in a-helical membrane proteins. Bioinformatics 2006,22, e191-e196.
    31.Bernsel, A.; Von Heijne, G., Improved membrane protein topology prediction by domain assignments. Protein Sci 2005,14,1723-1728.
    32.Kall, L.; Krogh, A.; Sonnhammer, E. L. L., An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 2005,21, i251-i257.
    33.Saier, M. H.; Tran, C. V.; Barabote, R. D., TCDB:the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34, D181-D186.
    34.Vroling, B.; Sanders, M.; Baakman, C.; Borrmann, A.; Verhoeven, S.; Klomp, J.; Oliveira, L. de Vlieg, J.; Vriend, G., GPCRDB:information system for G protein-coupled receptors. Nucleic Acids Res 2011,39, D309-D319.
    35.Schwacke, R.; Schneider, A.; Graaff, E. v. d.; Fischer, K.; Catoni, E.; Desimone, M.; Frommer, W. B.; Flugge, U.-L; Kunze, R., ARAMEMNON, a novel database for arabidopsis Integral membrane proteins. Plant Physiol 2003,131,16-26.
    36.Edvardsen,(?).; Reiersen, A. L.; Beukers, M. W.; Kristiansen, K., tGRAP, the G-protein coupled receptors mutant database. Nucleic Acids Res 2002,30,361-363.
    37.Gromiha, M. M.; Yabuki, Y.; Suresh, M. X.; Thangakani, A. M.; Suwa, M.; Fukui, K., TMFunction:database for functional residues in membrane proteins. Nucleic Acids Res 2009,37, D201-D204.
    38.Gromiha, M. M.; Yabuki, Y., Functional discrimination of membrane proteins using machine learning techniques. BMC Bioinform 2008,9,135.
    39.Chou, K. C.; Shen, H. B., Plant-mPLoc:A Top-Down Strategy to Augment the Power for Predicting Plant Protein Subcellular Localization. PLoS One 2010,5, e11335.
    40.Chou, K. C.; Shen, H. B., A New Method for Predicting the Subcellular Localization of Eukaryotic Proteins with Both Single and Multiple Sites:Euk-mPLoc 2.0. PLoS One 2010,5, e9931.
    41.Chou, K. C.; Wu, Z. C.; Xiao, X., iLoc-Euk:A Multi-Label Classifier for Predicting the Subcellular Localization of Singleplex and Multiplex Eukaryotic Proteins. PLoS One 2011,6, e18258.
    42.Chou, K. C.; Shen, H. B., Euk-mPLoc:A Fusion Classifier for Large-Scale Eukaryotic Protein Subcellular Location Prediction by Incorporating Multiple Sites. J Proteome Res 2007,6, 1728-1734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700