运动对骨骼肌泛素蛋白酶体途径活性的影响及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:一次长时间大强度运动结合PDTC、Trolox药物注射,观察骨骼肌蛋白降解、泛素蛋白酶体途径(UPP)活性在运动后的变化特点,探讨氧化应激、NF-κB信号对UPP活性的调节,揭示UPP在运动骨骼肌蛋白降解中的重要作用及机制。
     方法:雄性SD大鼠进行一次大强度运动(25m/min,5%坡度,1h)。研究一:36只SD大鼠分成6组(每组6只),安静组、运动半小时组、运动1小时组、运动后1、2、6小时组。检测腓肠肌3-MH含量、泛素化蛋白含量、26S蛋白酶体活性,泛素、MuRF1、MAFbx、26S蛋白酶体C2亚基mRNA表达的变化。研究二:60只雄性SD大鼠分为三组,对照组24只,PDTC注射组和Trolox注射组各18只。安静时取材对照组6只为安静水平,然后三组分别在运动后即刻、运动后1、6小时各取材6只。除检测研究一的指标外,还检测胞质ⅠκBα含量、核NF-κB结合DNA能力,以及肌肉、血清MDA、血清CK活性的变化。
     结果:(1)运动半小时、运动后6小时腓肠肌3-MH含量、26S蛋白酶体活性增加(P<0.05)。(2)运动后6小时泛素化蛋白含量明显增加(P<0.01)。(3)运动后MAFbx、MuRF1 mRNA表达升高(P<0.05)。(4)运动时、运动后泛素、C2mRNA低于安静水平,运动后6小时C2 mRNA表达显著高于安静时(P<0.01)。(5)Trolox减缓运动引起的腓肠肌、血清MDA的增加(P<0.05)。(6)PDTC和Trolox都能减缓运动对胞质ⅠκBα的降解和核NF-κB信号的激活(P<0.05)。(7)PDTC和Trolox都能减缓运动对腓肠肌3-MH含量、26S蛋白酶体活性和MAFbx、MuRF1、泛素、C2mRNA表达的影响(P<0.05)。
     结论:(1)一次长时间大强度运动使骨骼肌UPP活性升高,促进收缩蛋白降解。(2)运动中骨骼肌UPP活性升高的主要原因是蛋白泛素化相关的酶和26S蛋白酶体酶活性的增强;运动后UPP活性升高的主要原因是MAFbx、MuRF1、C2mRNA表达以及26S蛋白酶体活性的增加。(3)抑制运动诱导的骨骼肌氧化应激,可以减少骨骼肌NF-κB的激活,并通过对UPP成分基因转录的不同调节,降低UPP的活性,减少收缩蛋白降解。
Purpose:In this study,we investigated the effect of ubiquitin-proteasome pathway(UPP)activity with or without injection of PDTC or Trolox on proteolysis after an acute bout of physical exercise in rat skeletal muscle,and revealed roles of oxidative stress and NF-kB signal in UPP activity after exercise.
     Method:The male Sprague-Dawley rats run on the treadmill at 25 m/min, 5%grade,for 1 h after familiarization with the treadmill by 10-15 min on 3 days.In Study 1,six of thirty six rats were killed respectively at rest,immediately after half an hour and an hour exercise,and 1 h, 2h,6h post-an exercise.Changes of 3-MH content,ubiquitinated protein content,26S proteasome activity,and ubiquitin,MuRF1,MAFbx,26S proteasome C2 subunit mRNA expression were detected in gastrocnemius muscle.In study 2,sixty rats were divided into three groups,control group(n=24),PDTC and Trolox injection group(n=18,respectively).Six rats of control group were killed at rest,then six rats of the three groups separately were killed immediately,1 and 6 hours after exercise in the three groups.Besides of the indexs in study 1,IκBαprotein content in myofibrillar cytoplasm,activity of NF-κB binding DNA in nucleus,as well as MDA content in muscle and serum,serum CK dynamic changes were dfetected.
     Results:(1)3-MH content and 26S proteasome activity increased immediately after half an hour exercise and at 6h post-exercise in rat gastrocnemius muscle(P<0.05).(2)Ubiquitined protein content increased significantly at 6h post-exercise(P<0.01).(3)There was a increasing trend of expression of ubiquitin ligase MAFbx,MuRF1 mRNA after exercise (P<0.05).(4)Expression of ubiquitin and 26S proteasome C2 subunit mRNA were low than the resting during and after exercise,but expression of C2 mRNA increased Sharply at 6h post-exercise(P<0.01).(5)Trolox slowed down MDA content in gastrocnemius muscle and serum after exercise (P<0.05).(6)PDTC and Trolox slowed down the degradation of IκBαin cytoplasm,and inhibited exercise-induced activation of NF-κB signal in nucleolus(P<0.05).(7)PDTC and Trolox slowed down effects of exercise on 3-MH content,26S proteasome activity and gene expression of MAFbx, MuRF1,ubiquitin,C2 subunit(P<0.05).
     Conclusions:(1)The increase of UPP activity enhanced contractile protein degradation in skeletal muscle during and after a strenuous exercise.(2)The increase of protein ubiquitination-related enzymes activity and 26S proteasome activity resulted in the increase of UPP activity during a strenuous exercise,and the increase of components gene expression in UPP resulted in the increase of its activity after a strenuous exercise.(3)Inhibition of exercise-induced oxidative stress in skeletal muscle could reduce the activation of NF-κB signal,and reduce the activity of UPP by regulation gene transcription of the components of UPP,which could reduce the contractile protein degradation.
引文
[1]Rommel C,Bodine SC,Clarke BA,Rossman R,Nunez L,Stitt TN,Yancopoulos GD,Glass DJ.Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways.Nat Cell Biol,2001,3(11):1009-1013.
    [2]Furuno K,Goldberg A L.The activation of protein degradation in muscle by Ca~(2+) or muscle injury does not involve a lysosomal mechanism.Biochem J,1986,237(3):859-864.
    [3]Fujita J,Tsujinaka T,Yano M,Ebisui C,Saito H,Katsume A.Anti-interleukin-6 receptor antibody prevents muscle atrophy in colon-26 adenocarcinoma-bearing mice with modulation of lysosomal and ATP-ubiquitin-dependent proteolytic pathways.Int J Can,1996,68:637-643.
    [4]The ubiquitin-proteasome system and skeletal muscle wasting.Attaix D,Ventadour S,Codran A,Bechet D,Taillandier D,Combaret L.Essays Biochem,2005,41:173-186.
    [5]Ventadour S,Attaix D.Mechanisms of skeletal muscle atrophy.Curr Opin Rheumatol,2006,18(6):631-635.
    [6]Ciechanover A,Orian A,Schwartz AL.The ubiquitin-mediated proteolytic pathway:mode of action and clinical implications.J Cell Biochem Suppl,2000,34(1):40-51.
    [7]Ikemoto M,Nikawa T,Takeda S,Watanabe C,Kitano T,Baldwin KM,Izumi R,Nonaka I,Towatari T,Teshima S,Rokutan K,Kishi K.Space shuttle flight(STS-90) enhances degradation of rat myosin heavy chain in association with activation of ubiquitin-proteasome pathway.FASEB J,2001,15(7):1279-1281.
    [8]Medina R,Wing SS,Goldberg AL.Increase in levels of polyubiquitin and proteasome mRNA in skeletal muscle during starvation and denervation atrophy.Biochem J,1995,307(Pt3):631-637.
    [9]Tiao GM,Fagan JM,Sameuls N,James JH,Hudson K,Lieberman M,Fischer JE,Hasselgen PO.Sepsis stimulates nonlysosomal,energy-dependent proteolysis and increases ubiquitin mRNA levels in skeletal muscle.J Clin Invest,1994,94(6):2255-2264.
    [10]Wing SS,Banville D.14-KDa ubiquitin-conjugating enzyme:structure of the rat gene and regulation upon fasting and by insulin.Am J Physiol,1994,267(1 Pt 1):39-48.
    [11]Sandri M,Carraro U,Podhorska-Okolov M,Rizzi C,Arslan P,Monti D,Franceschi C.Apoptosis,DNA damage and ubiquitin expression in normal and mdx muscle fibers after exercise.FEBS Lett,1995,373(3):291-295.
    [12]Louis E,Raue U,Yang Y,Jemiolo B,Scott Trappe S.Time course of proteolytic,cytokine,and myostatin gene expression after acute exercise in human skeletal muscle.J Appl Physiol,2007,103:1744-1751.
    [13]Jones SW,Hill RJ,Krasney PA,O'Conner B,Peirce N,Greenhaff PL.Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass.FASEB J,2004,18(9):1025-1051.
    [14]Li YP,Schwartz RJ,Waddell JD,Holloway BR,Reid MB.Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-B activation in response to tumor necrosis factor.FASEB J,1998,12:871-880.
    [15]Ji LL,Gomez-Cabrera MC,Vina J.Exercise and hormesis:activation of cellular antioxidant signaling pathway.Ann NY Acad Sci,2006,1067:425-435.
    [16]Durham WJ,Li YP,Gerken E,Farid M,Arbogast S,Wolfe RR,Reid MB.Fatiguing exercise reduces DNA-binding activity of NF-B in skeletal muscle nuclei.J Appl Physiol,2004,97(5):1740-1745.
    [17]Maruhashi Y,Kitaoka K,Yoshiki Y,Nakamura R,Okano A,Nakamura K,Tsuyama T,Shima Y,Tomita K.ROS scavenging activity and muscle damage prevention in eccentric exercise in rats.J Physiol Sci,2007,57(4):211-216.
    [18]Schoenheimer,R.The dynamic state of body constituents.Harvard University.Press,Cambridge.1942:25-46.
    [19]Venter JC,Adams MD,Myers EW,et al.The sequence of the human genome.Science,2001,291(5507):1304-1351.
    [20]Goldberg AL,St John AC.Intracellular protein degradation in mammalian and bacterial cells:part II.Annu Rev Biochem,1976,45:747-803.
    [21]Hasselgren PO.Protein Metabolism in Sepsis.Austin,TX:RG.Landes Co,1993.
    [22]Goldstein G,Scheid M,Hammerling U,Schlesinger DH,Niall HD,Boyse EA.Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells.Proc Natl Acad Sci U S A,1975,72(1):11-15.
    [23]Ciechanover A,Elias S,Heller H,Ferber S,Hershko A.Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes.J Biol Chem,1980,255(16):7525-7528.
    [24]Beal R,Deveraux Q,Xia G,Rechsteiner M,Pickart C.Surface hydrophobic residues of multiubiquitin chains essential for proteolytic targeting.Proc Natl Acad Sci,1996,93(2):861-866.
    [25]Vijay-Kumar S,Bugg CE,Wilkinson KD,Cook WJ.Three-dimensional structure of ubiquitin at 2.8 A resolution.Proc Natl Acad Sci USA,1985,82(11):3582-3585.
    [26]Weissman AM.Themes and variations on ubiquitylation.Nat Rev Mol Cell Biol,2001,2(3):169-178.
    [27]Thrower JS,Hoffman L,Rechsteiner M,Pickart CM.Recognition of the polyubiquitin proteolytic signal.EMBO J,2000,19(1):94-102.
    [28]Aguilar RC,Wendland B.Ubiquitin:not just for proteasomes anymore.Curr Opin Cell Biol,2003,15(2):184-190.
    [29]Chastagner P,Israel A,Brou C.Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains.EMBO Rep,2006,7(11):1147-1153.
    [30]Pickart CM.Mechanisms underlying ubiquitination.Annu Rev Biochem,2001,70:503-533.
    [31]Lori AP,David B.Getting into position:the catalytic mechanisms of protein ubiquitylation.Biochem J,2004,379:513-525.
    [32]Hicke L.Protein regulation by monoubquitin.Nat Rev Mol Cell Biol,2001,2(3):195-201.
    [33]Muller S,Hoege C,Pyrowolakis G,Jentsch S.Sumo,ubiquitin's mysterious cousin.Nat Rev Mol Cell Biol,2001,2(3):202-210.
    [34]Handley PM,Mueckler M,Siegel NR,Schwartz AL.Molecular cloning,sequence,and tissue distribution of the human ubiquitin-activating enzyme El.Proc Natl Acad Sci U S A,1991,88(1):258-262.
    [35]Stephen AG,Trausch-Azar JS,Aaron Ciechanover A,Schwartz A L.The Ubiquitin-activating Enzyme E1 Is Phosphorylated and Localized to the Nucleus in a Cell Cycle-dependent Manner.J Biol Chem,1996,271(26):15608-15614.
    [36]Handley-Gearhart PM,Stephen AG,Trausch-Azar JS,Ciechanover A,Schwartz AL.Human ubiquitin-activating enzyme,E1.Indication of potential nuclear and cytoplasmic subpopulations using epitope-tagged cDNA constructs.J Biol Chem,1994,269(52):33171-33178.
    [37]Pelzer G,Kassner I,Matentzoglu K,Singh RK,Wollscheid HP,Scheffner M,Schmidtke G,Groettrup M.UBE1L2,a Novel E1 Enzyme Specific for Ubiquitin.J Biol Chem,2007,282(32):23010-23014.
    [38]Huzil JT,Pannu R,Ptak C,Garen G,Ellison MJ.Direct Catalysis of Lysine 48-linked Polyubiquitin Chains by the Ubiquitin-activating Enzyme.J Biol Chem,2007,282(52):37454-37460.
    [39]McGrath JP,Jentsch S,Varshavsky A.UBA 1:an essential yeast gene encoding ubiquitin-activating enzyme.EMBO J,1991,10(1):227-236.
    [40]Sullivan ML,Vierstra RD.Cloning of a 16-kDa ubiquitin carrier protein from wheat and Arabidopsis thaliana.Identification of functional domains by in vitro mutagenesis.J Biol Chem,1991,266(35):23878-23885.
    [41]Ptak C,Gwozd C,Huzil JT,Gwozd TJ,Garen G,Ellison MJ.Creation of a Pluripotent Ubiquitin-Conjugating Enzyme.Mol Cell Biol,2001,21(19):6537-6548.
    [42]Deffenbaugh AE,Scaglione KM,Zhang L,Moore JM,Buranda T,Sklar LA,Skowyra D.Release of ubiquitin-charged Cdc34-S-Ub from the RING domain is essential for ubiquitination of the SCF(Cdc4)-bound substrate Sicl.Cell,2003,114(5):611-622.
    [43]Ptak C,Gwozd C,Huzil JT,Gwozd TJ,Garen G,Ellison MJ.Creation of a Pluripotent Ubiquitin-Conjugating Enzyme.Mol Cell Biol,2001,21(19):6537-6548.
    [44]Yi JJ,Ehlers MD.Emerging Roles for Ubiquitin and Protein Degradation in Neuronal Function.Pharmacol Rev,2007,59:14-39.
    [45]Ciechanover A,Iwai K.The ubiquitin system:from basic mechanisms to the patient bed.IUBMB Life,2004,56:193-201.
    [46]Glickman MH,Ciechanover A.The ubiquitin proteasome proteolytic pathway destruction for the sake of construction.Physiol Rev,2002,82:373-428.
    [47]Kipreos ET,Pagano M.The F-box protein family.Genome Biology,2000,1(5):1-7.
    [48]Cardozo T,Pagano M.The SCF ubiquitin ligase:insights into a molecular machine.Nat Rev Mol Cell Biol,2004,5(9):739-751.
    [49]Patterson C.A new gun in town:the U box is a ubiquitin ligase domain.Science STKE,2002,2002(116):1-4.
    [50]Borden KL,Freemont PS.The RING finger domaima recent example of a sequence-structure family.Curr Opin Struct Biol,1996,6(3):395-401.
    [51]Spencer J A,Eliazer S,Ilaria RL,Richardson J A,Olson EN.Regulation of microtubule dynamics and myogenic differentiation by MURF,a striated muscle RING-finger protein.J Cell Biol,2000,150(4):771-784.
    [52]Gundersen G G,Khawaja S Bulinski J C.Generation of a stable,posttranslationally modified microtubule array is an early event in myogenic differentiation.J Cell Biol,1989,109:2275-2288.
    [53]McElhinny AS,Perry CN,Witt CC,Labeit S,Gregorio CC.Muscle-specific RING finger-2(MURF-2) is important for microtubule,intermediate filament and sarcomeric M-line maintenance in striated muscle development.J Cell Sci,2004,117:3175-3188.
    [54]Centner T,Yano J,Kimura E,McElhinny AS,Pelin K,Witt CC,Bang ML,Trombitas K,Granzier H,Gregorio CC,Sorimachi H,Labeit S.Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain.J Mol Biol,2001,306(4):717-726.
    [55]Gotthardt M,Hammer RE,Hubner N,Monti J,Witt CC,McNabb M,Richardson JA,Granzier H,Labeit S,Herz J.Conditional expression of mutant M-line titins results in cardiomyopathy with altered sarcomere structure.J Biol Chem,2003,278(8):6059-6065.
    [56]McElhinny AS,Kakinuma K,Sorimachi H,Labeit S,Gregorio CC.Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1.J Cell Biol,2002,157(1):125-136.
    [57]Bodine SC,Latres E,Baumhueter S,Lai V KM,Nunez L,Clarke BC,Poueymirou WT,Panaro FJ,Na E,Dharmarajan K,Pan ZQ,Valenzuela DM,DeChiara TM,Stitt TN,Yancopoulos GD,David J.Glass D J.Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy.Science,2001,294(5547):1704-1708.
    [58]Cenciarelli C,Chiaur DS,Guardavaccaro D,Parks W,Vidal M,Pagano M.Identification of a family of human F-box proteins.Curr Biol,1999,9(20):1177-1179.
    [59]Li HH,Kedar V,Zhang C,McDonough H,Arya R,Wang DZ,Patterson C.Atrogin-1/musele atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SC Fubiquitin ligase complex.J Clin Invest,2004,114(8):1058-1071.
    [60]Tintignac LA,Lagirand J,Batonnet S,Sirri V,Leibovitch MP,Serge A.Leibovitch SA.Degradation of MyoD Mediated by the SCF(MAFbx) Ubiquitin Ligase.J Biol Chem,2005,280(4):2847-2856.
    [61]Koegl M,Hoppe T,Schlenker S,Ulrich HD,Mayer TU,Jentsch S.A novel ubiquitination factor,E4,is involved in multiubiquitin chain assembly.Cell,1999,96(5):635-644.
    [62]Fang S,Lorick KL,Jensen JP,Weissman AM.RING finger ubiquitin protein ligases:implications for tumorigenesis,metastasis and for molecular targets in cancer.Semin Cancer Biol,2003,13(1):5-14.
    [63]Hoppe T.Multiubiquitylation by E4 enzymes:'one size' doesn't fit all.Trends Biochem Sci,2005,30(4):183-187.
    [64]Hatakeyama S,Yada M,Matsumoto M,Ishida N,.Nakayama KI.U box proteins as a new family of ubiquitin-protein ligases.J Biol Chem,2001,276(35):33111-33120.
    [65]Matsumoto M,Yada M,Hatakeyama S,Ishimoto H,Tanimura T,Tsuji S,Kakizuka A,Kitagawa M,Nakayama KI.Molecular clearance of ataxin-3 is regulated by a mammalian E4.EMBO J,2004,23(3):659-669.
    [66]Woo SK,Lee JI,Park KI,Yoo YJ,Cho CM,Kang MS,Ha DB,Tanaka K,Chung CH. Multiple Ubiquitin C-terminal Hydrolases from Chick Skeletal Muscle.J Biol Chem,1995,270(32):18766-18773.
    [67]Wilkinson KD.Regulation of ubiquitin-dependent processes by deubiquitinating enzymes.FASEB J,1997,11:1245-1256.
    [68]Nam MJ,Madoz-Gurpide J,Wang H,Lescure P,Schmalbach CE,Zhao R,Misek DE,Kuick R,Brenner DE,Hanash SM.Molecular profiling of the immune response in colon cancer using protein microarrays:occurrence of autoantibodies to ubiquitin C-terminal hydrolase L3.Proteomics,2003,3(11):2108-2115.
    [69]Baker RT,Tobias JW,Varshavsky A.Ubiquitin-specific proteases of Saccharomyces cerevisiae.Cloning of UBP2 and UBP3,and functional analysis of the UBP gene family.J Biol Chem,1992,267(32):23364-23375.
    [70]Swaminathan S,Amerik AY,Hochstrasser M.The doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast molecular.Biology of the Cell,1999,10(8):2583-2594.
    [71]Ferrell K,Wilkinson CR,Dubiel W,Gordon C.Regulatory subunit interactions of the 26S proteasome,a complex problem.Trends Biochem Sci,2000,25(2):83-88.
    [72]Voges D,Zwickl P,Baumeister W.The 26S proteasome:a molecular machine designed for controlled proteolysis,Annu Rev Biochem,1999,68:1015-1068.
    [73]Berndt C,Bech-Otschir D,Dubiel W,Seeger M.Ubiquitin System:JAMMing in the Name of the Lid.Curr Biol,2002,12(23):R815-817.
    [74]Lowe J,Stock D,Jap B,Zwickl P,Baumeister W,Huber R.Crystal structure of the 20S proteasome from the archaeon T.acidophilum at 3.4 A resolution.Science,1995,268(5210):533-539.
    [75]Pickart CM,Cohen RE.Proteasomes and their kin:proteases in the machine age,Nat Rev Mol Cell Biol,2004,5(3):177-187.
    [76]Herrmann J,Ciechanoverb A,Lermanc AO,Lermana A.The ubiquitin-proteasome system in cardiovascular diseases—a hypothesis extended.Cardiovascular Research,2004,61(1):11-21.
    [77]Coux O,Tanaka K,Goldberg AL.Structure and functions of the 20S and 26S proteasomes.Annu Rev Biochem,1996,65:801-847.
    [78]Seemuller E,Lupas A,Stock D,Lowe J,Huber R,Baumeister W.Proteasome from Thermoplasma acidophilum:a threonine protease.Science,1995,268(5210):579-582.
    [79]Kisseiev AF,Songyang Z,Goldberg AL.Why does threonine,and not serine,function as the active site nucleophile in proteasomes?J Biol Chem,2000,275(20):14831-14837.
    [80]Unno M,Mizushima T,Morimoto Y,Tomisugi Y,Tanaka K,Yasuoka N,Tsukihara T.The structure of the mammalian 20S proteasome at 2.75 A resolution.Structure(Camb),2002,10(5):609-618.
    [81]Zwickl P.The 20S proteasome.Curr Top Microbiol Immunol,2002,268:23-41.
    [82]Hill CP,Masters EI,Whitby FG.The 11S regulators of 20S proteasome activity.Curr Top Microbiol Immunol,2002,268:73-89.
    [83]Goll MG,Bestor TH.Histone modification and replacement in chromatin activation.Genes & Dev,2002,16:1739-1742.
    [84]Bachmair A,Finley D,Varshavsky A.In vivo half-life of a protein is a function of its amino-terminal residue.Science,1986,234(4773):179-186.
    [85]Solomon V,Baracos V,Sarraf P,Goldberg AL.Rates of ubiquitin conjugation increase when muscles atrophy,largely through activation of the N-end rule pathway.Proc Natl Acad Sci USA,1998,95(21):12602-12607.
    [86]Attaix D,Combaret L,Pouch M N,Taillandier D.Cellular control of ubiquitin-proteasome-dependent proteolysis.J Anim Sci,2002,80:E56-E63.
    [87]Hershko A,Ciechanover A.The ubiquitin system.Annu Rev Biochem,1998,67:425-479.
    [88]Musti AM,Treier M,Bohmann D.Reduced Ubiquitin-Dependent Degradation of c-Jun after Phosphorylation by MAP Kinases.Science,1997,275(5298):400-402.
    [89]Hicke L.Ubiquitin-dependent internalization and down-regulation of plasma membrane proteins.FASEB J,1997,11:1215-1226.
    [90]Palombella VJ,Rando OJ,Goldberg AL,Maniatis T.The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B.Cell,1994,78(5):773-785.
    [91]Murray AW.Recycling the cell cycle:cyclins revisited.Cell,2004,116(2):221-234.
    [92]Stancovski I,Gonen H,Orian A,Schwartz AL,Ciechanover A.Degradation of the proto-oncogene product c-Fos by the ubiquitin proteolytic system in vivo and in vitro:identification and characterization of the conjugating enzymes.Mol Cell Biol,1995,15(12):7106-7116.
    [93]Hang Y,Chang C,Gehling DJ,Hemmati-Brivanlou A,Derynck R.Regulation of Smad degradation and activity by Smurf2,an E3 ubiquitin ligase.PNAS,2001,98(3):974-979.
    [94]Pajonk F,Riess K,Sommer A,McBride WH.N-acetyl-L-cysteine inhibits 26S proteasome function:implications for effects on NF-kappaB activation.Free Radic Biol Med,2002,32(6):536-43.
    [95]Sijts A,Zaiss D,Kloetzel PM.The role of the ubiquitin-proteasome pathway in MHC class I antigen processing:implications for vaccine design.Curr Mol Med,2001,1(6):665-676.
    [96]Jesenberger V,Jentsch S.Deadly encounter:ubiquitin meets apoptosis.Nat Rev Mol Cell Biol,2002,3(2):112-121.
    [97]McDonough H,Patterson C.CHIP:a link between the chaperone and proteasome systems.Cell Stress Chaperones,2003,8(4):303-308.
    [98]Kostova Z,Wolf DH.For whom the bell tolls:protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection.EMBO J,2003,22(10):2309-2317.
    [99]Price SR,England BK,Bailey JL,Van Vreede K,Mitch WE.Acidosis and glucocorticoids concomitantly increase ubiquitin and proteasome subunit mRNAs in rat muscle.Am J Physiol,1994,267(4):C955-C960.
    [100]Lecker SH,Solomon V,Mitch WE,Goldberg AL.Muscle Protein Breakdown and the Critical Role of the Ubiquitin-Proteasome Pathway in Normal and Disease States.J Nutr,1999,129(1):227S-237S.
    [101]May RC,Kelly RA,Mitch WE.Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid-dependent mechanism.J Clin Invest 1986,77(2):614-621.
    [102]Goldberg AL,Kettelhut IC,Furuno K,Fagan JM,Baracos V.Activation of protein breakdown and prostaglandin E2 production in rat skeletal muscle in fever is signaled by a macrophage product distinct from interleukin 1 or other known monokines.J Clin Invest 1988,81(5):1378-1383.
    [103]Chen SE,Gerken E,Zhang Y,Zhan M,Mohan RK,Li AS,Reid MB,Li YP.Role of TNF-a signaling in regeneration of cardiotoxin-injured muscle.Am J Physiol Cell Physiol,2005,289:C1179-C1187.
    [104]Reid MB.Response of the ubiquitin-proteasome pathway to changes in muscle activity.Am J Physiol Regulatory Integrative Comp Physiol,2005,288:R1423-R1431.
    [105]Glickman MH,Ciechanover A.The ubiquitin-proteasome proteolytic pathway:destruction for the sake of construction.Physiol Rev,2002,82(2):373-428.
    [106]Lecker SH,Solomon V,Price SR,Kwon YT,Mitch WE,Goldberg AL.Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats.J Clin Invest,1999,104(10):1411-1420.
    [107]Solomon V,Lecker SH,Goldberg AL.The N-end rule pathway catalyzes a major fraction of the protein degradation in skeletal muscle.J Biol Chem,1998,273(39):25216-25222.
    [108]Li YP,Lecker SH,Chen Y,Waddell ID,Goldberg AL,Reid MB.TNF-a increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E2-20k.FASEB J,2003,17:1048-1057.
    [109]Kaiser P,Seufert W,Hofferer L,Kofler B,Sachsenmaier C,Herzog H,Jentsch S,Schweiger M,Schneider R.A human ubiquitin-conjugating enzyme homologous to yeast UBC8.J Biol Chem,1994,269(12):8797-8802.
    [110]Wefes I,Mastrandrea LD,Haldman M,Koury ST,Tamburlin J,Pickart CM,Finley D.Induction of ubiquitin-conjugating enzymes during terminal erythroid differentiation.Proc Natl Acad Sci USA,1995,92(11):4982-4986.
    [111]Razeghi P,Sharma S,Ying J,Li YP,Stepkowski S,Reid MB,Taegtmeyer H.Atrophic remodeling of the heart in vivo simultaneously activates pathways of protein synthesis and degradation.Circulation,2003,108:2536-2541.
    [112]Gomes MD,Lecker SH,Jagoe RT,Navon A,and Goldberg AL.Atrogin-1,a muscle-specific F-box protein highly expressed during muscle atrophy.Proc Natl Acad Sci USA,2001,98(25):14440-14445.
    [113]Wray CJ,Mammen JM,Hershko DD,and Hasselgren PO.Sepsis upregulates the gene expression of multiple ubiquitin ligases in skeletal muscle.Int J Biochem Cell Biol,2003,35(5):698-705.
    [114]Sandri M,Sandri C,Cilbert A,Skurk C,Calabria E,Picard A,Walsh K,Schiaffino S,Lecker SH,Goldberg AL.FOXO transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy.Cell,2004,117(3):399-412.
    [115]Stitt TN,Drujan D,Clarke BA,Panaro F,Timofeyva Y,Kline WO,Gonzalez M,Yancopoulos GD,Glass DJ.The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors.Mol Cell,2004,14:395-403.
    [116]Dupont-Versteegden EE,James DF,Micheal K,Dana G,Charlotte AP.Effect of flywheel-based resistance exercise on processes contributing tomuscle atrophy during unloading in adult rats.Appl Physiol,2006,101(1):202-212.
    [117]Thompson HS,Scordalis SP.Ubiquitin changes in human biceps muscle following exercise-induced damage.Biochem Biophys Res Commun,1994,204(3):1193-1198.
    [118]Stupka N,Tarnopolsky MA,Yardley NJ,Phillips SM.Cellular adaptation ot repeated eccentric exercise-induced muscle damage.J Appl Physiol,2001,91(4):1669-1678.
    [119]Willoughby DS,Taylor M,Taylor L.Glucocorticoid receptor and ubiquitin expression after repeated eccentric exercise.Med Sci Sports Exerc,2003,35(12):2023-2031.
    [120]Yang Y,Jemiolo B,Trappe S.Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers.Appl Physiol,2006,101(5):1442-1450.
    [121]Raue U,Slivka D,Jemiolo B,Hollon C,Trappe S.Proteolytic gene expression differs at rest and after resistance exercise between young and old women.J Gerontol A Biol Sci Med Sci,2007,62(12):1407-1412.
    [122]Sandri M,Podhorska-Okolov M,Geromel V,Rizzi C,Arslan P,Franceschi C,Carraro U.Exercise induces myonuclear ubiquitination and apoptosis in dystrophin-deficient muscle of mice.J Neuropathol Exp Neurol,1997,56(1):45-57.
    [123]Podhorska-Okolow M,Sandri M,Zampieri S,Brun B,Rossini K,Carraro U.Apoptosis of myofibres and satellite cells:exercise-induced damage in skeletal muscle of the mouse.Neuropathol Appl Neurobiol,1998,24(6):518-531.
    [124]Wakshlag JJ,Kallfelz FA,Barr SC,Ordway G,Haley NJ,Flaherty CE,Kelley RL,Altom EK,Lepine AJ,Davenport GM.Effects of exercise on canine skeletal muscle proteolysis:an investigation of the ubiquitin-proteasome pathway and other metabolic markers.Vet Ther,2002,3(3):215-225.
    [125]Riley DA,llyina-Kakueva EI,Ellis S,Bain JL,Slocum GR,Sedlak FR.Skeletal muscle fiber,nerve,and blood vessel breakdown inspace-flown rats.FASEB J,1990,4(1):84-91.
    [126]Sonna LA,Wenger CB,Flinn S,Sheldon HK,Sawka MN,Lilly CM.Exertional heat injury and gene expression changes:a DNA microarray analysis study.J Appl Physiol,2004,96:1943-1953.
    [127]Kostek MC,Chen YW,Cuthbertson DJ,Shi R,Fedele MJ,Esser KA,Rennie MJ.Gene expression responses over 24 h to lengthening and shortening contractions in human muscle:major changes in CSRP3,MUSTN1,SIX1,and FBX032.Physiol Genomics,2007,31:42-52.
    [128]Lecker SH.Ubiquitin-protein ligases in muscle wasting:multiple parallel pathways?Curr Opin Clin Nutr Metab Care,2003,6(3):271-275.
    [129]Kee AJ,Taylor AJ,Carlsson AR,Sevette A,Smith RC,Thompson MW.IGF-1 has no effect on postexercise suppression of the ubiquitin-proteasome system in rat skeletal muscle.J Appl Physiol,2002,92(6):2277-2284.
    [130]Mascher H,Tannerstedt J,Brink-Elfegoun T,Ekblom B,Gustafsson T,Blomstrand E.Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF-1 in human skeletal muscle.Am J Physiol Endocrinol Metab,2008,294(1):E43-E51.
    [131]Adams V,Linke A,Gielen S,Erbs S,Hambrecht R,Schuler G.Modulation of Murf-1 and MAFbx expression in the myocardium by physical exercise training.Eur J Cardiovasc Prev Rehabil,2008,15(3):293-299.
    [132]Zinna E M,Yarasheski KE.Exercise treatment to counteract protein wasting of chronic diseases.Curr Opin Clin Nutr Met Care,2003,6(1):87-93.
    [133]Bajotto G,Shimomura Y.Determinants of disuse-induced skeletal muscle atrophy: exercise and nutrition countermeasures to prevent protein loss.J Nutr Sci Vitaminol(Tokyo),2006,52(4):233-247.
    [134]Suman OE,Spies RJ,Celis MM,Mlcak RP,Herndon DN.Effects of a 12-wk resistance exercise program on skeletal muscle strength in children with burn injuries.J Appl Physiol,2001,91(3):1168-1175.
    [135]Hespel P,Op't Eijnde B,Van Leemputte M,Urso B,Greenhaff PL,Labarque V,Dymarkowski S,Van Hecke,P,Richter EA.Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans.J Physiol,2001,536(2):625-633.
    [136]Willoughby DS,Priest JW,Jennings RA.Myosin heavy chain isoform and ubiquitin protease mRNA expression after passive leg cycling in persons with spinal cord injury.Arch Phys Med Rehabil,2000,81(2):157-163.
    [137]Willoughby DS,Priest JW,Nelson M.Expression of the stress proteins,ubiquitin,heat shock protein 72,and myofibrillar protein content after 12 weeks of leg cycling in persons with spinal cord injury.Arch Phys Med Rehabil,2002,83(5):649-654.
    [138]Radak Z,Sasvari M,Nyakas C,Taylor AW,Ohno H,Hakamoto H,Goto S.Regular training modulates the accumulation of reactive carbonyl derivatives in mitochondrial and cytosolic fractions of rat skeletal muscle.Arch Biochem Biophys,2000,383(1):114-118.
    [139]Ordway GA,Neufer PD,Chin ER,DeMartino GN.Chronic contractile activity upregulates the proteasome system in rabbit skeletal muscle.J Appl Physiol,2000,88(3):1134-1141.
    [140]Marinovic AC,Zheng B,Mitch WE,Price SR.Ubiquitin(UbC) expression in muscle cells is increased by glucocorticoids through a mechanism involving Sp1 and MEK1.J Biol Chem,2002,277(19):16673-16681.
    [141]Du J,Mitch WE,Wang X.Glucocorticoids induce proteasome C3 subunit expression in L6 muscle cells by opposing the suppression of its transcription by NF-kappa B.J Biol Chem,2000,275(26):19661-19666.
    [142]Zamir O,'Brien W O,Thompson R,Bloedow DC,Fischer JE,Hasselgren PO.Reduced muscle protein breakdown in septic rats following treatment with interleukin-1 receptor antagonist.Int J Biochem,1994,26(7):943-950.
    [143]Li YP,Chen Y,John J,Moylan J,Jin B,Mann D L,Reid M B.TNF-{alpha} acts via p38 MAPK.to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle.FASEB J,2005,19(3):362-370.
    [144]Crossland H,Constantin-Teodosiu D,Gardiner SM,Constantin D,Greenhaff PL.A potential role for Akt/FOXO signalling in both protein loss and the impairment of muscle carbohydrate oxidation during sepsis in rodent skeletal muscle.J Physiol,2008,586(22):5589-5600.
    [145]Senf SM,Dodd SL,McClung JM,Judge AR.Hsp70 overexpression inhibits NF-kB and FOXO3a transcriptional activities and prevents skeletal muscle atrophy.FASEB J,2008,22(11):3836-3845.
    [146]Sandri M,Lin J,Handschin C,Yang W,Arany Z P,Lecker SH,Goldberg AL,Spiegelman BM.PGC-1α protects skeletal muscle from atrophy by suppressing FOXO3 action and atrophy-specific gene transcription.Proc Natl Acad Sci USA,2006,103(44): 16260-16265.
    [147]Adams V,Linke A,Wisloff U,Doring C,Erbs S,Krankel N,Witt CC,Labeit S,Muller-Werdan U,Schuler G,Hambrecht R.Myocardial expression of Murf-1 and MAFbx after induction of chronic heart failure:Effect on myocardial contractility.Cardiovasc Res,2007,73(1):120-129.
    [148]Akimoto T,Pohnert SC,Li P,Zhang M,Gumbs C,Rosenberg PB,Williams RS,Yan Z.Exercise stimulates Pgc-1 alpha transcription in skeletal muscle through activation of the p38 MAPK pathway.J Biol Chem,2005,280(20):19587-19593.
    [149]Choi S,Liu X,Li P,Akimoto T,Lee SY,Zhang M,Yan Z.Transcriptional profiling in mouse skeletal muscle following a single bout of voluntary running:evidence of increased cell proliferation.J Appl Physiol,2005,99:2406-2415.
    [150]Goodyear LJ,Chang PY,Sherwood DJ,Dufresne SD,Moller DE.Effects of exercise and insulin on mitogen-activated protein kinase signaling pathways in rat skeletal muscle.Am J Physiol Endocrinol Metab,1996,271:E403-E408.
    [151]Yu M,Blomstrand E,Chibalin AV,Krook A,Zierath JR.Marathon running increases ERK1/2 and p38 MAP kinase signalling to downstream targets in human skeletal muscle.J Physiol,2001,536(1):273-282.
    [152]Tintignac LA,Leibovitch MP,Kitzmann M,Fernandez A,Ducommun B,Meijer L,Leibovitch SA.Cyclin E-cdk2 phosphorylation promotes late G1-phase degradation of MyoD in muscle cells.Exp Cell Res,2000,259(1):300-307.
    [153]Eftimie R,Brenner HR,Buonanno A.Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity.Proc Natl Acad Sci USA,1991,88(4):1349-1353.
    [154]Alway SE,Degens H,Krishnamurthy G,Smith CA.Potential role for Id myogenic repressors in apoptosis and attenuation of hypertrophy in muscles of aged rats.Am J Physiol Cell Physiol,2002,283(1):C66-C76.
    [155]Armand AS,Launay T,Gaspera BD,Carbonnier F,Gallien CL,Chanoine C.Effects of eccentric treadmill running on mouse soleus:degeneration/regeneration studied with Myf-5 and MyoD probes.Acta Physiol Scand,2003,179(1):75-84.
    [156]Delhalle S,Blasius R,Dicato M,Diederich M.A beginner's guide to NF-kappaB signaling pathways.Ann NY Acad Sci,2004,1030:1-13.
    [157]Jackman RW,Kandarian SC.The molecular basis of skeletal muscle atrophy.Am J Physiol Cell Physiol,2004,287:C834-C843.
    [158]Hatada EN,Nieters A,Wulczyn FG,Naumann M,Meyer R,Nucifora G,McKeithan TW,Scheidereit C.The Ankyrin Repeat Domains of the NF-kB Precursor p105 and the Protooncogene bcl-3 Act as Specific Inhibitors of NF-kB DNA Binding,Proc Natl Acad Sci,1992,89(6):2489-2493.
    [159]Huang TT,Kudo N,Yoshida M,Miyamoto S.A nuclear export signal in the N-terminal regulatory domain of IκBα controls cytoplasmic localization of inactive NF-κB/IκBα complexes.Proc Natl Acad Sci,2000,97(3):1014-1019.
    [160]Pahl HL.Activators and target genes of Rel/NF-kappaB transcription factors.Oncogene,1999,18(49):6853-6866.
    [161]Li YP,Reid MB.NF-B mediates the protein loss induced by TNF-α in differentiated skeletal muscle myotubes.Am J Physiol Regulatory Integrative Comp Physiol,2000, 279(4):R1165-R1170.
    [162]Morey-Holton ER,Globus RK.Hindlimb unloading rodent model:technical aspects.J Appl Physiol,2002,92(4):1367-1377.
    [163]Hunter RB,Stevenson E,Koncarevic A,Mitchell-Felton H,Essig DA,Kandarian SC.Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy.FASEB J,2002,16:529-538.
    [164]Cai D,Frantz JD,Tawa NE Jr,Melendez PA,Oh BC,Lidov HG,Hasselgren PO,Frontera WR,Lee J,Glass D J,Shoelson SE.IκKbeta/NF-kappaB activation causes severe muscle wasting in mice.Cell,2004 119(2):285-298.
    [165]Chen YW,Gregory CM,Scarborough MT,Shi R,Walter GA,Vandenborne K.Transcriptional pathways associated with skeletal muscle disuse atrophy in humans.Physiol Genomics,2007,31(3):510-520.
    [166]Judge AR,Koncarevic A,Hunter RB,Liou HC,Jackman RW,Kandarian SC.Role for IκBα,but not c-Rel,in skeletal muscle atrophy.Am J Physiol Cell Physiol,2007,292:C372-C382.
    [167]Magnani M,Crinelli R,Bianchi M,Antonelli.The ubiquitin-dependent proteolytic system and other potential targets for the modulation of nuclear factor-kB(NF-κB).Curr Drug Targets,2000,1(4):387-399.
    [168]Wyke SM,Russell ST,and Tisdale MJ.Induction of proteasome expression in skeletal muscle is attenuated by inhibitors of NF-B activation.Br J Cancer,2004,91(9):1742-1750.
    [169]Ji LL,Gomez-Cabrera MC,Steinhafel N,Vina J.Acute exercise activates nuclear factor (NF)-κB signaling pathway in skeletal muscle.FASEB J,2004,18:1499-1506.
    [170]Ho RC,Hirshman MF,Li Y,Cai D,Farmer JR,Aschenbach WG,Witczak CA,Shoelson SE,Goodyear LJ.Regulation of IκB kinase and NF-B in contracting adult rat skeletal muscle.Am J Physiol Cell Physiol,2005,289(4):C794-C801.
    [171]Brooks GA,White TP.Determination of metabolic and heart rate responses of rats to treadmill exercise.J Appl Physiol,1978,45:1009-1015.
    [172]孙敬方.动物实验方法学.北京,人民卫生出版社,2001.
    [173]申传安,柴家科,廖杰,盛志勇.高效液相色谱-荧光检测法测定大鼠骨骼肌组内微量三申基组氨酸.军医进修学院学报,2003,24(2):120-122.
    [174]Bradford MM.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem,1976,72:248-254.
    [175]Vermaelen M,Marini JF,Chopard A,Benyamin Y,Mercier J,Astier C.Ubiquitin targeting of rat muscle proteins during short periods of unloading.Acta Physiol Scand,2005,85:33-40.
    [176]汪家政,范明.蛋白质技术手册.北京:科学出版社,2000:166-188.
    [177]温进坤,韩梅.医学分子生物学理论与研究技术(第二版).北京:科学出版社,2002:220-236.
    [178]E.哈洛,D.来恩著(沈关心,龚非力,等译).抗体技术实验指南.北京:科学出版社,2002:159-186.
    [179]Hames BD.Gel electrophoresis of proteins:a practical approach.Third edition,Oxford University Press,Oxford,New York,Tokyo,1998.
    [180]Ventrucci G,Mello MAR and Gomes-Marcondes M C C.Proteasome activity is altered in skeletal muscle tissue of tumour-bearing rats fed a leucine-rich diet.Endocrine-Related Cancer,2004,11:887-895.
    [181]Combaret L,Dardevet D,Rieu I,Pouch MN,B(?)chet D,Taillandier D,Grizard J,Attaix D.A leucine-supplemented diet restores the defective postprandial inhibition of proteasome-dependent proteolysis in aged rat skeletal muscle.J Physiol,2005,569(2):489-499.
    [182]Hollander J,Fiebig R,Gore M,Ookawara T,Ohno H,Ji LL.Superoxide dismutase gene expression is activated by a single bout of exercise in rat skeletal muscle.Pfliigers Arch,2001,442(3):426-434.
    [183]Trayer IP,Harris CI,Perry SV.3-Methyl histidine and adult and foetal forms of skeletal muscle myosin.Nature,1968,217(5127):452-453.
    [184]Asatoor AM,Armstrong MD.3-methylhistidine,a component of actin.Biochem Biophys Res Commun,1967,26(2):168-174.
    [185]Johnson P,Perry SV.Biological activity and the 3-methylhistidine content of actin and myosin.Biochem J,1970,119(2):293-298.
    [186]Young VR,Alexis SD,Suren Baliga BS,Munro HN,Muecke W.Metabolism of Administered 3-Methylhistidine.Lack of muscle transfer ribonucleic acid charging and quantitative excretion as 3-methylhistidine and its N-acety derivative.J Biol Chem,1972,247(11):3592-3600.
    [187]Snyder AC,Lamb DR,Salm CP,Judge MD,Aberle ED,Mills EW.Myofibrillar protein degradation after eccentric exercise.Experientia.1984,140(1):69-70.
    [188]Kasperek GJ,Snider RD.Increased protein degradation after eccentric exercise.Eur J Appl Physiol Occuo Physiol,1985,54(1):30-34.
    [189]Behm DG,Baker KM,Kelland R,Lomond J.The effect of muscle damage on strength and fatigue deficits.J Strength Cond Res,2001,15(2):255-263.
    [190]Rennie MJ,Edwards RH,Krywawych S,Davies CT,Halliday D,Waterlow JC,Millward DJ.Effect of exercise on protein turnover in man.Clin Sci,1981,61(5):627-39.
    [191]Mussini E,Colombo L,Ponte G De,Calzi M,Marcucci F.Effect of swimming on protein degradation:3-methylhistidine and creatinine excretion.Biochem Med,December,1985,34(3):373-375.
    [192]Paul GL,DeLany JP,Snook JT,Seifert JG,Kirby TE.Serum and urinary markers of skeletal muscle tissue damage after weight lifting exercise.Eur J Appl Physiol Occup Physiol,1989,58(7):786-90.
    [193]Yarasheski KE,Zachwieja J J,Bier D M.Acute effects of resistance exercise on muscle protein synthesis rate in young and elderly men and women.Am J Physiol Endocrinol Metab,1993,265(2):E210-E214.
    [194]Dohm GL,Israel RG,Breedlove RL,Williams RT,Askew EW.Biphasic changes in 3-methylhistidine excretion in humans after exercise.Am J Physiol Endocrinol Metab,1985,248(5):E588-E592.
    [195]Horswill CA,Layman DK,Boileau RA,Williams BT,Massey BH.Excretion of 3-methylhistidine and hydroxyproline following acute weight-training exercise.Int J Sports Med,1988,9(4):245-248.
    [196]Pivarnik JM,Hickson JF Jr,Wolinsky I.Urinary 3-methylhistidine excretion increases with repeated weight training exercise.Med Sci Sports Exerc,1989,21(3):283-287.
    [197]Rennie MJ,Millward DJ.3-Methylhistidine excretion and the urinary 3-methylhistidine/creatinine ratio are poor indicators of skeletal muscle protein breakdown.Clin Sci(Lond),1983,65(3):217-25.
    [198]Kadowaki M,Harada N,Takahashi S,Noguchi T,Naito H.Differential Regulation of the Degradation of Myofibrillar and Total Proteins in Skeletal Muscle of Rats:Effects of Streptozotocin-Induced Diabetes,Dietary Protein and Starvation.J Nutr,1988,119:471-477.
    [199]Kasperek GJ,Snider RD.Total and myofibrillar protein degradation in isolated soleus muscles after exercise.Am J Physiol Endocrinol Metab,1989,257(1):E1-E5.
    [200]Kasperek GJ,Conway GR,Krayeski DS,Lohne,JJ.A reexamination of the effect of exercise on rate of muscle protein degradation.Am J Physiol,1992,263(6 Pt 1):E1144-1150.
    [201]Varrik E,Viru A,Oopik V,Viru M.Exercise-induced catabolic responses in various muscle fibres.Can J Sport Sci,1992,17(2):125-128.
    [202]Hasselgren PO,Hall-Anger(?)s M,Anger(?)s U,Benson D,James JH,Fischer JE.Regulation of total and myofibrillar protein breakdown in rat extensor digitorum longus and soleus muscle incubated flaccid or at resting length.Biochem J.1990,267(1):37-44.
    [203]Biolo G,Maggi SP,Williams BD,Tipton KD,Wolfe RR.Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans.Am J Physiol,1995b,268(Pt 1):E514-E520.
    [204]Phillips SM,Tipton KD,Aarsland A,Wolf SE & Wolfe RR.Mixed muscle protein synthesis and breakdown after resistance exercise in humans.Am J Physiol,1997,273(1 Pt 1):E99-E107.
    [205]Dohm G,Beecher GR,Warren RQ,Williams RT.Influence of exercise on free amino acid concentrations in rat tissues.J Appl Physiol,1981,50(1):41-44.
    [206]TrappeT,Williams R,Carrithers J,Raue U,Esmarck B,Kjaer M,Hickner R.Influence of age and resistance exercise on human skeletal muscle proteolysis:a microdialysis approach.J Physiol,2004,554(3):803-81.
    [207]Haus JM,Miller BF,Carroll CC,Weinheimer EM,Trappe TA.The effect of strenuous aerobic exercise on skeletal muscle myofibrillar proteolysis in humans.Scand J Med Sci Sports,2007,17(3):260-6.
    [208]Tesch PA,Walden F,Gustafsson T,Linnehan RM,Trappe TA.Skeletal muscle proteolysis in response to short-term unloading in humans.J Appl Physiol,2008,105(3):902-906.
    [209]Hansen M,Trappe T,Crameri RM,Qvortrup K,Kjaer M,Langberg H.Myofibrillar proteolysis in response to voluntary or electrically stimulated muscle contractions in humans.Scand J Med Sci Sports,2009,19(1):75-82.
    [210]张松江.急性力竭运动大鼠腓肠肌的蛋白质与蛋白组差异性表达的研究.湖南师范大学硕士学位论文.2006.
    [211]Viru A.Mobilisation of structural proteins during exercise.Sports Med,1987,4(2):95-128.
    [212]DeMartino G N,Slaughter C A.The proteasome,a novel protease regulated by multiple mechanisms.J Biol Chem,1999,274(32):22123-22126.
    [213]Radak Z,Naito H,Kaneko T,Tahara S,Nakamoto H,Takahashi R,Cardozo-Pelaez F,Goto S.Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle.Pflugers Arch,2002,445(2):273-278.
    [214]Petersen AMW,Pedersen BK.The anti-inflammatory effect of exercise.J Appl Physiol,2005,98:1154-1162.
    [215]Garcia-Martinez C,Agell N,Llovera M,Lopez-Soriano F J,Argiles J M.Tumour necrosis factor-alpha increases the ubiquitinization of rat skeletal muscle proteins.FEBS Lett,1993,323(3):211-214.
    [216]Glass DJ.Molecular mechanisms modulating muscle mass.Trends Mol Med,2003,9(8):344-350.
    [217]Willis MS,Ike C,Li L,Wang DZ,Glass DJ,Patterson C.Muscle Ring Finger 1,but not Muscle Ring Finger 2,Regulates Cardiac Hypertrophy In Vivo.Circulation Research,2007,100(4):456-459.
    [218]Churchley EG,Coffey VG,Pedersen DJ,Shield A,Carey KA,Cameron-Smith D,Hawley JA.Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans.J Appl Physiol,2007,102(4):1604-1611.
    [219]Haddad F,Adams GR,Bodell PW,Baldwin KM.Isometric resistance exercise fails to counteract skeletal muscle atrophy processes during the initial stages of unloading.J Appl Physiol,2006,100(2):433-441.
    [220]Grimm LM,Osborne BA.Apoptosis and the proteasome.Results Probl Cell Differ,1999 23:209-228.
    [221]Hobler SC,Williams A,Fischer D,Wang JJ,Sun X,Fischer JE,Monaco JJ,Hasselgren PO.Activity and expression of the 20S proteasome are increased in skeletal muscle during sepsis.Am J Physiol Regul Integr Comp Physiol,1999,277:R434-R440.
    [222]Tomiya A,Aizawa T,Nagatomi R,Sensui H,Kokubun S.Myofibers Express IL-6 After Eccentric Exercise.Am J Sports Med,2004,32(2):503-508.
    [223]Auclair D,Garrel DR,Zerouala AC,and Ferland LH.Activation of the ubiquitin pathway in rat skeletal muscle by catabolic doses of glucocorticoids Am J Physiol Cell Physiol,1997,272(3):C1007-C1016.
    [224]Rennie,MJ,Tipton KD.Protein and amino acid metabolism during and after exercise and the effects of nutrition.Annu Rev Nutr,2000,20:457-483.[225]Anthony,JC,Anthony TG,and Layman DK.Leucine supplementation enhances skeletal muscle recovery in rats following exercise.J Nutr,1999,129:1102-1106.
    [226]Carraro,F,Stuart CA,Hartl WH,Rosenblatt J,Wolfe RR.Effect of exercise and recovery on muscle protein synthesis in human subjects.Am J Physiol Endocrinol Metab,1990,259:E470-E476.
    [227]Liu SF,Ye XB,Malik AB.Inhibition of NF-κB Activation by Pyrrolidine Dithiocarbamate Prevents In Vivo Expression of Proinflammatory Genes.CircuIation,1999,100:1330-1337.
    [228]Gupta S,Sharma SS.Neuroprotective Effects of Trolox in Global Cerebral Ischemia in Gerbils.Biol Pharm Bull,2006,29(5):957-961.
    [229]Fujioka SS,Sclabas GM,Schmidt C,Frederick WA,Dong QG,Abbruzzese JL,Evans DB,Baker C,Chiao PJ.Function of Nuclear Factor κB in Pancreatic Cancer Metastasis.Clinical Cancer Research,2003,9:346-354.
    [230]Baeuerle P A,Baltimore D.I B:a specific inhibitor of the NF-B transcription factor.Science,1998,242(4878):540-546.
    [231]Lille ST,Lefler SR,Mowlavi A,Suchy H,Boyle EM Jr,Farr AL,Su CY,Frank N,Mulligan DC.Inhibition of the initial wave ofNF-B activity in rat muscle reduces ischemia/reperfusion injury.Muscle Nerve,2001,24(4):534-541.
    [232]Winston JT,Strack P,Beer-Romero P,Chu CY,Elledge S J,Harper JW.The SCF -TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBαubiquitination in vitro.Genes & Dev,1999,13:270-283.
    [233]Anrather J,Csizmadia V,Soares MP,Winkler H.Regulation of NF-κB RelA Phosphorylation and Transcriptional Activity by p21 ras and Protein Kinase C in Primary Endothelial Cells.J Biol Chem,1999,274(19):13594-13603.
    [234]Turpin P,Hay RT,Dargemont C.Characterization of Ikappa Balpha Nuclear Import Pathway.J Biol Chem,1999,274(10):6804-6812.
    [235]Plaksin D,Baeuerle PA,Eisenbach L.KBF1(p50 NF-kappa B homodimer) acts as a repressor of H-2Kb gene expression in metastatic tumor cells.J Exp Med,1993,177:1651-1662.
    [236]Corbeil J,Sheeter D,Genini D,Rought S,Leoni L,Du P,Ferguson M,Masys DR,Welsh JB,Fink JL,Sasik R,Huang D,Drenkow J,Richman DD,Gingeras T.Temporal Gene Regulation During HIV-1 Infection of Human CD4+T Cells.Genome Res,2001,11:1198-1204.
    [237]Spangenburg EE,Brown DA,Johnson MS,Moore RL.Exercise increases SOCS-3expression in rat skeletal muscle:potential relationship to IL-6 expression.J Physiol,2006,572(3):839-848.
    [238]廖鹏.急性长时间离心运动诱导大鼠骨骼肌 TNF-α表达的机制研究.北京体育大学博士学位论文,2007.
    [239]Sen CK,Packer L.Antioxidant and redox regulation of gene transcription.FASEB J,1996,10,709-720.
    [240]Kawai M,Nishikomori R,Jung E Y,Tai G,Yamanaka C,May M,Heike T.Pyrrolidine dithiocarbamate inhibits intercellular adhesion moleducle-1 biosynthesis induced by cytokines in human fibroblasts.J.Immunol,1995,154(5):2333-2341.
    [241]Hasselgren PO,Menconi MJ,Fareed MU,Yang H,Wei W,Evenson A.Novel aspects on the regulation of muscle wasting in sepsis.Int J Biochem Cell Biol,2005,37(10):2156-2168.
    [242]Guttridge DC,Mayo MW,Madrid LV,Wang CY,Baldwin AS Jr.NF-kappaB-induced loss of MyoD messenger RNA:possible role in muscle decay and cachexia.Science,2000,289(5488):2363-2366.
    [243]Smith MA,Moylan JS,Smith JD,Li W,Reid MB.IFN-γ does not mimic the catabolic effects of TNF-α.Am J Physiol Cell Physiol,2007,293(6):C1947-C1952.
    [244]Mitch WE,Goldberg AL.Mechanisms of Muscle Wasting—The Role of the Ubiquitin-Proteasome Pathway.N Engl J Med,1996,335(25):1897-1905.
    [245]Lawler JM,Powers SK.Oxidative stress,antioxidant status,and the contracting diaphragm.Can J Appl Physiol,1998,23(1):23-55.
    [246]Davies KJ,Quintanilha AT,Brooks GA,Packer L Free radicals and tissue damage produced by exercise.Biochem Biophys Res Commun,1982,107(4):1198-1205.
    [247]Reid MB,Haack K E,Franchek K M,Valberg P A,Kobzik L,West M S.Reactive oxygen in skeletal muscle:I.Intracellular oxidant kinetics and fatigue in vitro.J Appl Physiol,1992,73(5),1797-1804.
    [248]O'Neill CA,Stebbins CL,Bonigut S,Halliwell B,Longhurst J C.Production of hydroxyl radicals in contracting skeletal muscle of cats.J Appl Physiol,1996,81(3):1197-1206.
    [249]Jackson M J,Edwards RH,Symons MC.Electron spin resonance studies of intact mammalian skeletal muscle.Biochim.Biophys.Acta,1985,847(2):185-190.
    [250]Andrade FH,Reid MB,Allen DG,Westerblad H.Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse.J Physiol,1998,509(2):565-575.
    [251]Bejma J,Ji LL.Aging and acute exercise enhance free radical generation in rat skeletal muscle.J Appl Physiol,1999,87(1):465-470.
    [252]Lekhi C,Guptal PH,Singh B.Influence of exercise on oxidant stress products in elite Indian cyclists.Br J Sports Med,2007,41(10):691-693.
    [253]Close GL,Ashton T,Cable T,Doran D,MacLaren DP.Eccentric exercise,isokinetic muscle torque and delayed onset muscle soreness:the role of reactive oxygen species.Eur J Appl Physiol,2004,91(5-6):615-621.
    [254]Urso ML,Clarkson PM.Oxidative stress,exercise,and antioxidant supplementation.Toxicology,2003,189(1-2):41-54.
    [255]Packer L.Protective role of vitamin E in biological systems.Am J Clin Nutr,1991,53:1050S-1055S.
    [256]Gohil K,Rothfuss L,Lang J,Packer L.Effect of exercise training on tissue vitamin E and ubiquinone content.J Appl Physiol,1987,63(4):1638-1641.
    [257]Tiidus PM,Houston ME.Vitamin E status does not affect the responses to exercise training and acute exercise in female rats.J Nutr,1993,123:834-840.
    [258]Aikawa KM,Quintanilha AT,de Lumen BO,Brooks GA,Packer L.Exercise endurance-training alters vitamin E tissue levels and redblood-cell hemolysis in rodents.Biosci Rep,1984,4(3):253-257.
    [259]Kanter MM,Nolte LA,Holloszy JO.Effect of an antioxidant vitamin mixture on lipid peroxidation at rest and postexercise.J Appl Physiol,1993,74(2):965-969.
    [260]Goldfarb AH,Mcintosh MK,Boyer BT,Fatouros J.Vitamin E effects on indexes of lipid peroxidation in muscle from DHEA-treated and exercised rats.J Appl Physiol,1994,76(4):1630-1635.
    [261]Packer L.Vitamin E,physical exercise and tissue damage in animals.Med Biol,1984,62(2):105-109.
    [262]Ji Li Li.Antioxidants and Oxidative Stress in Exercise.Proc Soc Exp Biol Med,1999,222:283-292.
    [263]Eum HA,Lee SM.Effect of Trolox on altered vasoregulatory gene expression in hepatic ischemia/reperfusion.Arch Pharm Res,2004,27(2):225-231.
    [264]Sagach VF,Scrosati M,Fielding J,Rossoni G,Galli C,Visioli F.The water-soluble vitamin E analogue Trolox protects against ischaemia/reperfusion damage in vitro and ex vivo.A comparison with vitamin E.Pharmacol Res,2002,45(6):435-439.
    [265]Sharma SS,Kaundal RK.Neuroprotective effects of 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid(Trolox),an antioxidant in middle cerebral artery occlusion induced focal cerebral ischemia in rats.Neurol Res,2007,29(3):304-309.
    [266]Clarkson,PM,Nosaka K,and Braun B.Muscle function after exercise-induced muscle damage and rapid adaptation.Med Sci Sports Exerc,1992,24(5):512-520.
    [267]Palmer H J,Paulson K E.Reactive oxygen species and antioxidants in signal transduction and gene expression.Nutr.Rev 1997,55(10):353-361.
    [268]Meyer M,Pahl HL,Baeuerle PA.Regulation of the transcription factors NF-kB and AP-1 by redox changes.Chemico-Biol Interact,1994,91(2-3):91-100.
    [269]Li X,Moody MR,Engel D,Walker S,Clubb FJ Jr,Sivasubramanian N,Mann DL,Reid MB.Cardiac-specific overexpression of tumor necrosis factor-alpha causes oxidative stress and contractile dysfunction in mouse diaphragm.Circulation,2000,102:1690-1696.
    [270]Fan C,Li Q,Ross D,Engelhardt JF.Tyrosine Phosphorylation of IκBα.Activates NFκB through a Redox-regulated and c-Src-dependent Mechanism Following Hypoxia/Reoxygenation.J Biol Chem,2003,278(3):2072-2080.
    [271]Wojcik C,Napoli MD.Ubiquitin-Proteasome System and Proteasome Inhibition:New Strategies in Stroke Therapy.Stroke,2004,35(6):1506-151.
    [272]Grune,T,Reinheckel T,Davies KJA.Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome.J Biol Chem,1996,271(26):15504-15509.
    [273]Gomes-Marcondes MC,Tisdale MJ.Induction of protein catabolism and the ubiquitin-proteasome pathway by mild oxidative stress.Cancer Lett,2002;180(1):69-74.
    [274]Li YP,Chen Y,Li AS,Reid MB.Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes.Am J Physiol Cell Physiol,2003,285(4):C806-C812.
    [275]Servais S,Letexier D,Favier R,Duchamp C,Desplanches D.Prevention of unloading-induced atrophy by vitamin E supplementation:links between oxidative stress and soleus muscle proteolysis?Free Radic Biol Med,2007,42(5):627-35.
    [276]Shanely RA,Zergeroglu MA,Lennon SL,Sugiura T,Yimlamai T,Enns D,Belcastro A,Powers SK.Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity.Am J Respir Crit Care Med,2002,166:1369-1374.
    [277]Betters JL,Criswell DS,Shanely RA,Gammeren DV,Falk D,DeRuisseau KC,Deering M,Yimlamai T,Powers SK.Trolox Attenuates Mechanical Ventilation-induced Diaphragmatic Dysfunction and Proteolysis.Am J Respir Crit Care Med,2004,170(11):1179-1184.
    [278]McClung J M,Whidden M A,Kavazis A N,Falk D J,DeRuisseau K C,Powers S K.Redox regulation of diaphragm proteolysis during mechanical ventilation.Am J Physiol Regulatory Integrative Comp Physiol,2008,294(5):R1608-R1617.
    [279]Kondo H,Miura M,Itokawa Y.Antioxidant enzyme systems in skeletal muscle atrophied by immobilization.PflUgers Arch,1993,422(4):404-406.
    [280]Appell HJ,Duarte JA,and Soares JM.Supplementation of vitamin E may attenuate skeletal muscle mobilization atrophy.Int J Sports Med,1997,18(3):157-160.
    [281]Prochniewicz E,Lowe DA,Spakowicz D J,Higgins L,O'Conor K,Thompson LV,Ferrington DA,Thomas DD.Functional,structural,and chemical changes in myosin associated with hydrogen peroxide treatment of skeletal muscle fibers.Am J Physiol Cell Physiol,2008,294(2):C613-C626.
    [282]Grune T,Reinheckel T,Joshi M,and Davies KJV.Proteolysis in Cultured Liver Epithelial Cells during Oxidative Stress.J Biol Chem,1995,270(5):2344-2351.
    [283]Kramerova I,Kudryashova E,Venkatraman G,Spencer MJ.Calpain 3 participates in sarcomere remodeling by acting upstream of the ubiquitin-proteasome pathway.Human Molecular Genetics,2005,14(15):2125-2134.
    [284]Du J,Wang X,Meireles CL,Bailey JL,Debigare R,Zheng B,Price SR,Mitch WE.Activation of caspase 3 is an initial step triggering muscle proteolysis in catabolic conditions.J Clin Invest,2004,113(1):115-123.
    [285]Martins AS,Shkryl VM,Nowycky MC,Shirokova N.Reactive oxygen species contribute to Ca~(2+) signals produced by osmotic stress in mouse skeletal muscle fibres.J Physiol,2008,586(1):197-210.
    [286]Li M,Wang AJ,Xu JX.Redox state of cytochrome c regulates cellular ROS and caspase cascade in permeablized cell model.Protein Pept Lett,2008,15(2):200-205.
    [287]王瑞元.一次力竭性离心运动后大鼠骨骼肌α-actin 代谢、α-actin 和 MHC 基因表达及针刺对其影响.北京体育大学博士学位论文,2000.
    [288]袁建琴.低氧、离心运动对结蛋白的分布和表达的影响.北京体育大学博士学位论文,2004.
    [289]潘同斌.低氧、运动对大鼠骨骼肌蛋白代谢及肌球蛋白重链(MHC)亚型基因表达的影响.北京体育大学博士学位论文,2004.
    [290]周越.离心运动对骨骼肌细胞膜骨架蛋白含量的影响.北京体育大学博士学位论文,2005.
    [291]李俊平.低氧、低氧运动对骨骼肌 Titin 和 Nebulin 的影响机理.北京体育大学博士学位论文,2007.
    [292]徐玉明.低氧、低氧运动对骨骼肌 Dystrophin、Desmin 的影响.北京体育大学博士学位论文,2007.
    [293]Goll DE,Neti G,Mares SW,Thompson VF.Myofibrillar protein turnover:The proteasome and the calpains.J Anim Sci,2008,86(14):E19-E35.
    [294]Beckmann JS,Spencer M.Calpain 3,the“gatekeeper”of proper sarcomere assembly,turnover and maintenance.Neuromuscul Disord,2008,18(12):913-921.
    [295]Lynn R,Morgan DL.Decline running produces more sarcomeres in rat vastus intermedius muscle fibers than does incline running.J Appl Physiol,1994,77(3):1439-1444.
    [296]Proske U,Morgan DL.Muscle damage from eccentric exercise:mechanism,mechanical signs,adaptation and clinical applications.J Physiol,2001,537(2):333-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700