叶酸代谢网络酶基因遗传多态性与原发性肝癌的遗传易感性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝癌(HCC)在世界上为排名第五位而死亡第三位的恶性肿瘤。由于肝癌发病原因复杂,缺乏早期诊疗手段使得肝癌的生存期短,死亡率高。我国人口占世界人口五分之一,然而肝癌的发病率却是占了世界总发病率的42.5%,每年有超过300,000的肝癌死亡病例,肝癌的发生机理和治疗手段一直是我国科研和临床的主要课题。对于复杂疾病的关联分析研究,候选通路的策略既可揭示出遗传多态性与癌症的关系,还可以进行基因—基因间的互作分析,是复杂疾病的关联分析较合适的手段,对于探求HCC的早期易感遗传标志物有现实意义。
     叶酸代谢通路是一个复杂的生化代谢网络,是以叶酸作为一碳单位的重要载体,以辅酶的形式介导一碳单位转移,通过一系列的氧化还原反应,作为DNA等甲基化的供体,同时参与嘌呤与胸腺嘧啶的合成,进一步合成DNA与RNA。叶酸代谢是连接表观遗传以及DNA合成和修复作用的重要通路,有证据认为叶酸代谢紊乱与很多复杂疾病相关,是肿瘤发生的潜在风险因素。
     本研究采用病例—对照的研究设计,在708例肝癌病例和1249例对照中,基于候选基因和候选功能位点的策略,挑选了叶酸代谢网络中重要的酶基因20个,为MTHFR,TS,MTR,MTRR,MTHRD1,PEMT,CHDH,BHMT,SHMT1,CHKA,SLC19A1,TCN2,FOLR1,HCP1,GNMT,DPYD,ABCB4,DNMT1,CBS,以及DHFR。在这些酶的基因上候选了41个有潜在功能作用,有氨基酸改变的功能位点。另外鉴于MTHFR和TS基因在以前文献中报道的重要作用,本研究对这两个基因的全长区域通过连锁不平衡方法以MAF>0.05和R~2>0.8的原则筛选了相应的tagSNP,对于两个基因上的功能位点采取强制选入的原则。
     单位点卡方检验分析中我们发现TS 5′UTR 3R/2R位点与肝癌有关联(P=0.001),FDR校正仍然阳性。进一步的Logistic回归分析表明携带TS 5′UTR3R/2R的个体与野生型3R/3R比较对HCC有保护作用(P=0.02,校正OR=0.73,95%CI=0.57-0.95),携带TS 5′UTR 2R/2R的个体与野生型3R/3R相比也有保护作用(P=0.03,校正OR=0.54,95%CI=0.30-0.96)。整个代谢网络上的酶基因的遗传多态性的平均校正OR为0.97(Min 0.49,Max 1.50)。
     本研究进行了基因与环境因子的分层分析,发现TS 5'UTR 3R/2R在诸多环境因子分层中与HCC有关联。相比野生型3R3R,那些带有2R2R的个体在女性,大于50岁,ALT指标正常,大于20packyear,饮酒量大于15g/day,HBV指标阳性,非HCC家族史或非恶性肿瘤史的人群都表现为保护作用(OR范围为0.31到0.69)。其他在HBV感染分层中有关联的位点为MTHFR基因的rs9651118(tagSNP),GNMT rs2296804(tagSNP)和PEMT rs7946(M175V)。在乙肝E抗原阳性的携带者中,携带MTHFRrs9651118 C的个体增加HCC患病风险(OR=1.82,1.16-2.58)。GNMT rs2296804携带突变纯合体的个体GG相比杂合子和野生纯合子(CG+CC)在乙肝携带者的群体中有保护作用,降低患HCC的风险(OR=0.60,95%CI=0.39-0.91)。在感染过乙肝后痊愈或者刚刚感染的个体里面,携带PEMT rs7946的突变等位基因T增加了患HCC的风险(OR为2.20,95%.CI=1.07-4.54)。对于饮酒量大于15g/d的风险人群,MTHFD1rs1950902(R134K)的突变型和杂合型个体(AG+GG)有增加HCC患病的风险,OR为1.67(1.02-2.72),统计上显著。对于ALT正常水平的个体携带BHMT rs585800(AT+TT)与野生型从比较有保护作用(OR=0.54,0.31-0.92)。在女性中有保护作用的位点还有SHMT1rs1979277(F474L)和MTHFRrs1801131(A429E),携带突变型和杂合型的基因型个体比野生型有保护患HCC风险的作用,它们的OR分别为0.19(95%CI=0.05-0.74)和0.44(95%CI=0.21-0.93)。另一个位点MTRrs16834521(Ala1048Ala)突变纯合型和杂合型的男性个体中有增加患HCC风险的作用,OR为1.34(95%CI 1.02-1.76)。
     本研究采用了四种研究基因—基因互作的统计学方法对叶酸代谢网络中酶基因的遗传多态性位点之间的互作关系与肝癌的关联作了详细的分析和比较。这四种方法主要有多因子降维法(MDR),基于复合连锁不平衡的方法,基于交互信息论的方法(MIA)以及传统Logistic回归的方法。从MDR,LD和MIA预测的两两互作的位点主要发生在叶酸的吸收转运与DNA合成或DNA甲基化两大功能域上。将这些位点放入在Logistic回归模型中分析,发现基于LD的方法预测的3组互作位点的互作相为统计上显著,它们是MTRrs16834521(Ala1048Ala)和FOLRrs2071010,MTHFD1rs1950902(A429E)和HCP1rs2239907,以及TS3'UTR6bpdel/ins和DHFR 19bpD/I。交互作用效果为MTRrs16834521野生型从和FOLRrs2071010突变型T的个体中随着T等位基因的增加为保护效应(OR分别为0.69和0.18);然而当MTRrs16834521为突变型GG时,携带FOLRrs2071010突变型T的个体中随着T等位基因的增加患HCC风险增加(OR分别为1.37和2.33)。MTHFD1rs1950902和HCP1rs2239907互作的结果是携带MTHD1rs1950902突变型和HCP1 rs2239907突变型的个体降低了患HCC的风险。TS3'UTR6bp del/ins和DHFR19bpD/I互作的结果是携带TS3'UTR6bp del/ins突变型和DHFR 19bpD/I突变型的个体增加了患HCC的风险。本研究比较了这几种方法的效果,认为在研究多个位点的基因互作时最好能多尝试不同的方法,然后用Logistic回归进行分析获得相对风险度,这样可以提高检出率。
     单倍型分析发现TS(global P=0.01)和MTHFR(global P=0.05)的单倍型与HCC有显著的关联。与野生单倍型相比,TS的“2TTD”显著降低HCC的发病风险(OR=0.61,95%CI 0.41-0.91),而只有rs699517突变型C的单倍型“3ATCD”,则为增加HCC发病风险(OR=1.77,95%CI 1.21-2.60),统计显著。MTHFR的单倍型为“CGATTCTT”与野生型单倍型“CGACTCTT”相比有增加HCC发病风险作用(OR=1.36:95%CI 1.36-1.85),这其中MTHFRrs1801133(C677T)为突变型T。
     总之,在本研究中,TS作为叶酸代谢网络中有主效应的基因与HCC的有关联作用。通过基因—环境和基因—基因交互作用,我们认为叶酸代谢网络中酶的遗传多态性与HCC有关联。在基因互作当中,我们明显看到与叶酸代谢的两大功能DNA合成和DNA甲基化相关的酶的基因多态位点互相作用,从而控制整个网络正常行使两大功能,一旦发生一方面的紊乱都会导致疾病的发生。
Hepatocellular Carcinoma(HCC) is the fifth most common cancer worldwide and is the third leading cause of death from cancer.It was the diverse etiology,high morbidity/mortality and lack of diagnostic markers for early diagnosis.With one -fifth the world population,the cancer incidence and mortality pattern in China play a key role in determining the cancer burden at a global level.HCC in China accounts for over 300,000 deaths annually and approximately 42.5%of the total incidence worldwide.Candidate pathway association study proved to be a powerful tool to reveal genetic variants that may have only small construction on complex disease.Then the discovered association polymorphisms can lead further functional research,which will uncover the molecular mechanism of HCC which will benefit the predisposition to disease,drug response,diagnosis,prognostic outcome.
     One-carbon metabolism is a network of interrelated biochemical reactions in which a one-carbon unit from a donor compound is transferred to tetraphydrofolate(THF) for subsequent reduction or oxidation and transfer to other compound.Folate coenzymes in mammalian tissues thereby act as acceptors or donors of one-carbon units in a variety of reactions involved in amino acid and nucleotide methabolism.One-carbon pathway as an important role on DNA synthesis and methylation links the genetic and epigenetic progression closely associated with the development and prevention of several malignancies.
     We hypothesized that polymorphisms of the 20 critical candidate genes MTHFR,TS,MTR,MTRR,MTHRD1,PEMT,CHDH,BHMT,SHMT1,CHKA, SLC19A1,TCN2,FOLR1,HCP1,GNMT,DPYD,ABCB4,DNMT1,CBS,and DHFR which involved in the one-carbon metabolism network may contribute to susceptibility to HCC.We selected 41 potential functional polymorphisms among them and conducted case-control association study with early onset of HCC.For critical roles on folate-metabolizing about MTHFR and TS,we tried to select 8 SNPs(5 tagSNPs and 3 ncSNPs) for MTHFR and 5 SNPs(3 tagSNPs and 2 at 3'UTR and 5'UTR respectively) covered the whole gene by LD with the MAF>0.05 and R~2>0.8.
     We found there was a statistically significant distribution difference for TS 5'UTR 3R/2R in 708 liver cancer patients and 1249 controls(P=0.001) by Chi-square test after FDR correction.Further Logistic regression analyses revealed that the individuals with TS 5'UTR 3R/2R or 2R/2R have protective effects comparing with individuals with 3R/3R(P=0.02,adjusted OR = 0.73,95%C1= 0.57-0.95 for 3R2R and P=0.03,adjusted OR=0.54,95%Cl= 0.30-0.96 for 2R2R).For other 39 SNPs on one carbon pathway,we did not observe any significant interaction with HCC risk by single locus association analysis.The average ORs of all polymorphisms on one carbon pathway was 0.97(Min 0.49,Max 1.50).
     We conducted interaction between genes and environmental factors and found that TS 5'UTR 3R/2R tandem repeat is related many environmental factors.The individuals with TS 5'UTR 2R2R had protective effects among individuals who are female,above 50 years-old,normal ALT(≤40U/I),above 20 packyears,above 15g/day,HBV positive,and non-HCC history and non cancer history(OR range from 0.31 to 0.69 and significant).The other SNPs interacted with HBV factors are two SNPs within MTHFR which is rs9651118(tagSNP),GNMT rs2296804 and PEMT rs7946.The HBV infection individuals carried MTHFR rs9651118 varied C allele increased HCC risk(OR=1.82,1.16-2.58).For chronic HBV carries with GNMT rs2296804 mutated GG decreased 2-fold risk to HCC comparing with CG and GG(OR= 0.60,95%Cl=0.39-0.91).With alcohol consumption above 15g/d,the individuals who with MTHFD1rs1950902 variant genotype increased the HCC risk(OR 1.67,95%Cl1.02-2.72).For male stratified analysis,MTRrs16834521(AA+AG) increased HCC risk(OR 1.34,95%Cl=1.02-1.76)。The individuals with normal ALT level(≤40U/L)who carried BHMT rs585800(AT+TT) have protective effect to HCC(OR0.54,0.31-0.92).
     We also explored four different statistical methods(MDR,LD-based method,MIA based method and traditional logistic regression) to identify the gene-gene interaction on one carbon pathway.Pair-wised gene-gene interactions revealed that the interactions showed between MTR rs16834521(A1048A)and FOLR rs20710109(Pinter2.39×10~(-6)),MTHFD1 rs1950902(A429E)and HCP1 rs2239907(P_(inter)1.29×10~(-6)),and TS 3'UTR6bp del/ins and DHFR19bpD/l(P_(inter)2.11×10~(-5)),which have been analyzed by Logistic regression and validated as positive interactions.The former two interactions predicted protective actions for HCC with both variant alleles of two genes.But the last interactions predicted increasing risk for HCC with both variant alleles of two genes.Overall,we can assume the tendency to DNA methylation in folate metabolisms would have protective effect on HCC.Our experience was that we should use all of them to find more chances to confirm due to inconsistency among them,Logistic Regression can be as validation but not as a tool to find the interactions from large candidate markers.
     Haplotype analysis revealed that TS(global P=0.01) and MTHFR(global P = 0.05) haplotypes had significant association with HCC risk.Further analysis revealed that the haplotype "2TTD "of TS decreased the risk of HCC (OR=0.61,95%Cl 0.41-0.91 ) and Haplotype "3ATCD"which included the mutant allele of TS rs699517 increased HCC risk(OR=1.77,95%Cl 1.21—2.60).The haplotype "CGACTCTT"of MTHFR increased the risk of HCC comparing with the wilde haplotype"CGACTCTT"(OR=1.36;95%Cl 1.36-1.85).
     In conclusion,TS as main factors involved in the one carbon pathway may play a role in the etiology of HCC.Results from gene-gene and gene-environment interactions analysis revealed the genes in one carbon pathway may interact with other genes or environment to increase or decrease HCC risk.As a result,one carbon pathway facilitated the crosstalk between DNA synthesis and DNA methylation which are all important for the cancer onset.
引文
[1]Parkin DMea.Global Cancer Statistics,2002 CA Cancer J Clin 2005;55:74-108.
    [2]Ahmedin Jemal RS,Elizabeth Ward,Taylor Murray,Jiaquan Xu,Carol,Smigal and Michael J.Thun.Cancer Statistics,2006.CA Cancer J Clin 2006;56;106-130.
    [3]Katherine A.McGlynn WTL.Epidemiology and natural history of hepatocellular carcinoma.Best Practice & Research Clinical Gastroenterology 2005;Vol.19,No.1,pp.3 23,.
    [4]Charles Cha RPD.Molecular mechanisms in hepatocellular carcinoma development.Best Practice & Research Clinical Gastroenterology 2005;Vo1.19,No.1,:pp.25-37,.
    [5]Farin Kamangar GMD,William F.Anderson.Patterns of Cancer Incidence,Mortality,and Prevalence Across Five Continents:Defining Priorities to Reduce Cancer Disparities in Different Geographic Regions of the World Journal of Clinical Oncology,2006;Vol 24,No 14(May 10),:pp.2137-50.
    [6]Katherine A.McGlynn RET,and Hashem B.EI-Serag.A Comparison of Trends in the Incidence of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma in the United States.Cancer Epidemiol Biomarkers Prev 2006;15(6):1198-206.
    [7]RUDOLPH HBESaKL.Hepatocellular Carcinoma:Epidemiology and Molecular Carcinogenesis.GASTROENTEROLOGY 2007;132:2557 76.
    [8]John D.Groopman TWK.Role of metabolism and viruses in aflatoxin-induced liver cancer.Toxicology and Applied Pharmacology 2005;206:131-7.
    [9]Ling Yang DMP,Jacques Ferlay,Liandi Li,and Yude Chen.Estimates of Cancer Incidence in China for 2000 and Projections for 2005.Cancer Epidemiol Biomarkers Prev 2005;14(1):243-50.
    [10]曾运红等.原发性肝癌发病主要危险因素的Meta分析.现代预防医学2004 31(2):172-4.
    [11]孙昌盛,薛常镐,郑君玉.福建省同安县居民饮用水藻类污染与原发性肝癌关系的调查.中国慢性病预防与控制1995;3(3)113.
    [12]Carmichael WW YM.Occurrence of the toxic cyanobacterium(blue -green alga)Microcystis aeruginosa in central China.Arch Fur Hydrobiol 1998;114 21.
    [13]Boutron-Ruault MC,Senesse,P.,Faivre,J.,Couillault,C.& Belghiti,C.Folate and alcohol intakes:related or independent roles in the adenoma-carcinoma sequence?Nutr.Cancer 1996 26:337-46.
    [14]SEITZ GPaHK.Alcohol and Cancer.Alcohol & Alcoholism 2004;39(3):155-65.
    [15]F.Donato,A.Tagger,U.Gelatti,G.Parrinello,P.Boffetta,A.Albertini,A.Decarli,P.Trevisi,M.L.Ribero,C.Martelli,S.Porru aGN.Alcohol and Hepatocellular Carcinoma:The Effect of Lifetime Intake and Hepatitis Virus Infections in Men and Women.American Journal Epidemiology 2002 Vol.155,(No.44):323-31.
    [16]Giovanna Fattovich TS,Irene Zagni,and Francesco Donato.Hepatocellular Carcinoma in Cirrhosis:Incidence and Risk Factors.GASTROENTEROLOGY 2004;127:S35-S50.
    [17]陈建国.肝癌的病因及预防研究新进展.肿瘤防治杂志 2003 10(11):1121-5.
    [18]Zhang J CY,Kuang G,et al.Association of the thymidylate synthase polymorphisms with esophageal squamous cell carcinoma and gastric cardiac adenocarcinoma Carcinogenesis 2004;25(12):2479- 85.
    [19]Voorrips L E GRA,Brants H A M,et al.A prospective cohort study on antioxidant and folate intake and male lung cancer risk Cancer Epidemiol Biomarkers Prev 2000;9(4):357- 65.
    [20]Stolzenberg-Solomon R PP,Barrett M,et al.Dietary and other methyl-group availability factors and pancreatic cancer risk in a cohort of male smokers Am J Epidemiol 2001;153(7):680- 7.
    [21]Lucock M.Folic Acid:Nutritional Biochemistry,Molecular Biology,and Role in Disease Processes.Molecular Genetics and Metabolism 2000:71:121-38
    [22]李竹,刘向东,陈亚华.神经管畸形不同发病地区婚检妇女叶酸缺乏率的研究.中国优生优育1996;1:1-4.
    [23]郝玲,田熠华谭,唐仪,李竹.我国部分地区35-64岁人群血浆叶酸水平与年龄性别差异比较.营养学报2002 24(4):352-4.
    [24]Cravo ML M J,Dayal Y.Folate deficiency enhances the development of colonic neoplasia in dimethylhydrazine-treatd rats.Cancer Res.1992;52:5002-6.
    [25]Potter JD.Methyl supply,Methyl Metabolizing Enzymes and Colorectal Neoplasia.J.Nutr.2002;132:2410S-2412.
    [26]Gideon Friedman NG,Yechiel Friedlander,Arie Ben-Yehuda,Jacob Selhub,Sharona Babaey,Malka Mendel,Miriam Kidron and Hanoch Bar-On.A Common Mutation A1298C in Human Methylenetetrahydrofolate Reductase Gene:Association with Plasma Total Homocysteine and Folate Concentrations.J.Nutr 1999;129:1656-61.
    [27]Takao HASHIMOTO YSaHH.Homocysteine Metabolism.YAKUGAKU ZASSHI 2007;127(10):1579-92.
    [28]熊燕,石胜,黄华兴.原发性肝癌患者血浆同型半胱氨酸水平变化的研究.中国医师杂志2005增刊:325-6.
    [29]Peter K.Chiang RkG,Jacov Tal,G.C.Zeng,B.P.Doctor,K.Pardhasardhi,Peter P.McCann.S-Adenosylmethionine and methylation.FASEB J 1996;10:471-80.
    [30]Eloranta TO,Kajander,E.O.Catabolism and lability of S-adenosyI-L-methionine in rat liver extracts..Biochem.J.1994;224:137-44.
    [31]WA.L.S-adenosylmethionine:jack of all trades and master of everything? Biochem Soc Trans 2006 34(Pt 2):330-3.
    [32]Sibani S MS,Pogribny IP,et al..Studies of methionine cycle intermediates(SAM,SAH) DNA methylation and the impact of folate deficiency on tumor numbers in Min mice..Carcinogenesis 2002;23:61 - 5.
    [33]Varela-Moreiras G A-AE,Rubio M,Gasso M,Deulofeu R,Alvarez L,Caballeria J,Rodes J,Mato JM.Carbon tetrachloride-induced hepatic injury is associated with global DNA hypomethylation and homocysteinemia:effect of S-adenosylmethionine treatment.Hepatology 1995;22(4):1310-5.
    [34]Garcea R DL,Pascale R,Simile MM,Puddu M,Ruggiu ME,Seddaiu MA,Satta G,Sequenza M J,Feo F.Protooncogene methylation and expression in regenerating liver and preneoplastic liver nodules induced in the rat by diethylnitrosamine:effect of variations of S-adenosylmethionine:S-adenosylhomocysteine ratio.Carcinogenesis 1989 10(7):1183-92..
    [35]Lynn B.Bailey2 RLD,David R.Maneval,Gail P.A.Kauwell,Eoin P.Quinlivan,Steven R.Davis,Aisha Cuadras,Alan D.Hutson~* and Jesse F.Gregory,Ⅲ.Folate, Methyl-Related Nutrients,Alcohol,and the MTHFR 677C<T Polymorphism Affect Cancer Risk:Intake Recommendations.J.Nutr.133:3748S-3753S,2003.
    [36]Fenech M.The role of folic acid and Vitamin B12 in genomic stability of human cells.Mutation Research 2001;475:57-67.
    [37]Kristina M von CasteI-Dunwoody GPK,Karla P Shelnutt,Jaimie D Vaughn,Elizabeth R Griffin,David R Maneval,Douglas W Theriaque,and Lynn B Bailey.Transcobalamin 776C-G polymorphism negatively affects vitamin B-12 metabolism.Am J Clin Nutr 2005;81:1436-9.
    [38]Zhang S.M.W,W.C.,Selhub,J.,Hunter,D.J.,Giovannucci,E.L.,Holmes,M.D.,Colditz,G.A.& Hankinson,S.E.Plasma folate,vitamin B6,vitamin B12,homocysteine,and risk of breast cancer.J.Natl.Cancer Inst.2003 95:373-80.
    [39]Brunaud L A J,Ayav A,Gerard P,Namour F,Antunes L,Braun M,Bronowicki JP,Bresler L,Gueant JL.Effects of vitamin B12 and folate deficiencies on DNA methylation and carcinogenesis in rat liver.Clin Chem Lab Med.2003;41(8):1012-9.
    [40]Taysi S.Oxidant/antioxidant status in liver tissue of vitamin B6 deficient rats.Clinical Nutrition 2005;24:385 9.
    [41]Susanna C.Larsson EG,Alicja Wolk.Vitamin B6 Intake,Alcohol Consumption,and Colorectal Cancer:A Longitudinal Population-Based Cohort of Women.Gastroenterology 2005;128(7):1830-7.
    [42]Jia Chen MDG,Wendy Chan,Caroline Palomeque,James G.Wetmur,Geoffrey.C.Kabat,Susan L.Teitelbaum,Julie A.Britton,Mary Beth Terry,Alfred I.Neugut,and Regina M.Santella.One-Carbon Metabolism,MTHFR Polyrnorphisrns,and Risk of Breast Cancer.Cancer Res 2005;65(4):1606-14).
    [43]Moat SJ A-WP,Powers HJ,Newcombe RG,McDowell IFW..Effect of riboflavin status on the homocysteine-lowering effect of folate in relation to the MTHFR(C677T)genotype.Clin Chem 2003;49:295 - 302.
    [44]Kimura M UK,Higuchi M,Thomas P,Fenech M,.Methylene tetrahydrofolate reductase C677T polymorphism,folic acid and riboflavin are important determinants of genomic stability in cultured human lymphocytes.J Nutr 2004;134:48- 56.
    [45]Hustad S UP,Vollset SE,Zhang Y,Bjorke-Monsen AL,Schneede J.Riboflavin as a determinant of plasma total homocysteine:effect modification by the methylenetetrahydrofolate C677T polymorphism Clin Chem 2000;46:1065 - 71.
    [46]Jacob RA JD,AIIman-Farinelli MA,Swendseid ME.Folate nutriture alters choline status of women and men fed low choline diets.J Nutr;1999;129:712-7.
    [47]Stephanie E Chiuve ELG,Susan E Hankinson,Steven H Zeisel,Lauren W Dougherty,Walter C Willett,and Eric B Rimm.The association between betaine and choline intakes and the plasma concentrations of homocysteine in women.Am J Clin Nutr 2007;86:1073 81.
    [48]Kristin A.Waite NRCaDEV.Choline Deficiency-Induced Liver Damage Is Reversible in Pemf~(/-) Mice.J.Nutr 2002;132:68 71.
    [49]Zeisel SH ZT,daCosta K,Pomfret EA.Effect of choline deficiency on S-adenosylmethionine and methionine concentrations in rat liver.Biochem J 1989;259:725-9.
    [50]Zeisel SH BJ.Choline and human nutrition..Ann Rev Nutr 1994;14:269-96.
    [51] Christian M. Abrattea WW, Rui Lia, Juan Axumea.David J. Moriartyc, Marie A. Caudilld,. Choline status is not a reliable indicator of moderate changes in dietary choline consumption in premenopausal women. Journal of Nutritional Biochemistry 2008;In press.
    [52] Vance JEV, D. E. Specific pools of phospholipids are used for lipoprotein secretion by cultured rat hepatocytes. J. Biol. Chem. 1986;261:4486-91.
    [53] SA. C. Betaine in human nutrition. Am J Clin Nutr 2004;80:539-49.
    [54] Monika Eichholzer OT, Roland Zimmermann. Folic acid: a public-health challenge.Lancet 2006; 367:1352 61.
    [55] BA L. Red cell folate is associated with the development of dysplasia and cancer in ulcerative colitis. J Cancer Res Clin Oncol 1993;119:549-54.
    [56] Fuchs CS, Willett, W. C, Colditz, G. A., Hunter, D. J., Stampfer, M. J., Speizer, F. E. & Giovannucci, E. L. . The influence of folate and multivitamin use on the familial risk of colon cancer in women.. Cancer Epidemiol. Biomarkers Prev 2002; 11: 227-34.
    [57] Tania M. Welzel HAK, Lori C. Sakoda,Alison A. Evans, W. Thomas London,Gang Chen, Sean O'Broin, Fu-Min Shen, Wen-Yao Lin, and Katherine A. McGlynn. Blood Folate Levels and Risk of Liver Damage and Hepatocellular Carcinoma in a Prospective High-Risk Cohort. Cancer Epidemiol Biomarkers Prev 2007; 16 (6):1279 82.
    [58] SJ D. Folic acid deficiency and cancer: mechanisms of DNA instability. Br Med Bull 1999;55(3):578-92.
    [59] Jaskiewicz K. Oesophageal carcinoma: cytopathology and nutritional aspects in aetiology. Anticancer Res 1989;9:1847-52.
    [60] Van Eenwyk J DF, Colman N. Folate, vitamin C and cervical intraepithelial neoplasia. Cancer Epidemiol Biomark Prev 1990;1 651-2.
    [61] Susanna C. Larsson EG, and Alicja Wolk. Folate Intake and Stomach Cancer Incidence in a Prospective Cohort of Swedish Women. Cancer Epidemiol Biomarkers Prev2006;15 (7):1409-12.
    [62] Sanjoaquin MA AN, Couto E, et al. . Folate intake and colorectal cancer risk: a meta-analytical approach Int J Cancer 2005;113:825-8.
    [63] Konings EJ GR, Brants HA, et al. Intake of dietary folate vitamers and risk of colorectal carcinoma: results from the Netherlands Cohort Study. Cancer 2002;95:1421-33.
    [64] Giovannucci E, Stampfer, M. J., Colditz, G. A., Hunter, D. J., Fuchs, C.,Rosner, B. A., Speizer, F. E. & Willett, W. C. Multivitamin use, folate, and colon cancer in women in the Nurses'health study. Ann. Intern. Med 1998;129:517-24.
    [65] Robert A. Jacob MES. Moderate Folate Depletion Increases Plasma Homocysteine and Decreases Lymphocyte DNA Methylation in Postmenopausal Women. J. Nutr. 1998;128 1204-12.
    [66] Sarah J. Lewis RMH, Ross Harris , George Davey Smith. Meta-analyses of Observational and Genetic Association Studies of Folate Intakes or Levels and Breast Cancer Risk. J Natl Cancer Inst 2006;98:1607 - 22.
    [67] Eva S.Schermbhammer SO, Charles S.Fuchs. Folate and Vitamin B6 intake and Risk of colon Cancer in Relation to P53 Expression. Gastroenterology 2008;In Press.
    [68] 林东昕 缪.叶酸与肿瘤.癌症 2003;22(6):668-71.
    [69] James SJ PI, Pogribna M, Miller BJ, Jernigan S, Melnyk S. Mechanisms of DNA damage, DNA hypomethylation, and tumor progression in the folate/methyl-deficient rat model of hepatocarcinogenesis. J Nutr. 2003 133 (11 Suppl 1):3740S-7S.
    [70] Kim Y-I. Role of Folate in Colon Cancer Development and Progression. J. Nutr. 2003;133 3731-9.
    [71] Lynn B. Bailey RLD, David R. Maneval, Gail P.A. Kauwell, Eoin P. Quinlivan, Steven R. Davis, Aisha Cuadras, Alan D. Hutson and Jesse F. Gregory, . Folate, Methyl-Related Nutrients, Alcohol, and the MTHFR 677C    [72] Sonia M. Boyapati RMB, Katherine A. McGlynn, Michael F. Fina, Walter M. Roufail, Kim R. Geisinger, James R. Hebert, Ann Coker& Michael Wargovich. Folate intake, MTHFR C677T polymorphism, alcohol consumption, and risk for sporadic colorectal adenoma (United States). Cancer Causes and Control 2004; 15:493-501.
    [73] Halsted CH, Villanueva, J. A., Devlin, A. M. & Chandler, C. J. Metabolic interactions of alcohol and folate. J. Nutr. 2002;132:2367S-72S.
    [74] Halsted CH, Robles, E. A., & Mezey, E. Intestinal malabsorption in folate-deficient alcoholics.. Gastroenterology 1973 64: 526-32.
    [75] Villanueva. JA, Devlin, A. M., & Halsted, C. H. Reduced folate carrier: tissue distribution and effects of chronic ethanol intake in the micropig.. Alcohol Clin Exp Res 2001;25:415-20.
    [76] Shaw S, Jayatilleke, E., Herbert, V., & Colman, N. Cleavage of folates during ethanol metabolism. Role of acetaldehyde/xanthine oxidase-generated superoxide.. Biochem J 1989:257:277 80.
    [77] Stickel F, Choi, S. W., Kim, Y. I., Bagley, P. J., Seitz, H. K.,Russell, R. M., Selhub, J. and Mason, J. B. Effect of chronic alcohol consumption on total plasma homocysteine level in rats. Alcoholism Clinical and Experimental Research 2000;24 259-64.
    [78] Ferre N, Gomez.F., Camps.J., Simo.J.M., Murphy,M.M., Fernandez-Ballart.J. and Joven,J. . Plasma homocysteine concentrations in patients with liver cirrhosis. . Clin. Chem. 2002;48:183-5.
    [79] Halsted CH, Villanueva, J. A., Devlin, A. M., Niemela, O., Parkkila, S., Garrow, T. A., Wallock, L. M., Shigenaga, M. K., Melnyk, S., James, S. J. Folate deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig. Proc Natl Acad Sci U SA2002;99:10072-7.
    [80] Fell D, & Selhub, J. Disruption of thymidylate synthesis and glycine-serine interconversion by L-methionine and L-homocystine in Raji cells. Biochim Biophys Acta 1990;1033:80-4.
    [81] Joel B. Mason S-WC. Effects of alcohol on folate metabolism: implications for carcinogenesis. Alcohol 2005;35 235-41.
    [82] Villanueva JA, & Halsted, C. H. Hepatic transmethylation reactions in micropigs with alcoholic liver disease. Hepatology 2004; 39:1303-10.
    [83] Park EI, Renduchintala, M. S., & Garrow, T. A. Diet-induced changes in hepatic betaine-homocysteine methyltransferase activity are mediated by changes in the steady-state level of its RNA. J Nutr Biochem 1997;8:541-5.
    [84] Rapha el Saffroy PP, Franck Chiappini, Marine Gross-Goupil, Laurent Castera, Daniel Azoulay,Alain Barrier,Didier Samuel,Brigitte Debuire and Antoinette Lemoine.The MTHFR 677C>T polymorphism is associated with an increased risk of hepatocellular carcinoma in patients with alcoholic cirrhosis.Carcinogenesis 2004;25(8):1443-8,.
    [85]Frasca V RB,Matthews RG.In Vitro inactivation of methionine synthase by nitrous oxide 261.1986:15823-6.
    [86]章斐然,郝玲,王建英,陆渊源,朱敏敏,蒋新液,俞楠.吸烟对血浆叶酸水平的影响.实用预防医学2003:10(6):1017.
    [87]GP Basten SD,L Pirie,N Vaughan,MH Hill1 and HJ Powers.Sensitivity of markers of DNA stability and DNA repair activity to folate supplementation in healthy volunteers.British Journal of Cancer 2006;94(1942 - 1947).
    [88]Pogribny IP MB,James SJ..Alterations in hepatic p53 gene methylation patterns during tumor progression with folatelmethyl deficiency in the rat.Cancer Lett 1997;115(1):31-8.
    [89]Zapisek WF CG,Lyn-Cook BD,Poirier LA.The onset of oncogene hypomethylation in the livers of rats fed methyl-deficient,amino acid-defined diets.Carcinogenesis 1992;13:1869 - 72.
    [90]Wainfan E PL.Methyl groups in carcinogenesis:effects on DNA methylation and gene expression..Cancer Res 1992;52:2071- 7.
    [91]Dizik M C J,Wainfan E..Alterations in expression and methylation of specific genes in livers of rats fed a cancer promoting methyl-deficient diet.Carcinogenesis 1991;12:1307 - 12.
    [92]Christman JK SG,Dizik M,Abileah S,Wainfan E..Reversibility of changes in nucleic acid methylation and gene expression induced in rat liver by severe dietary methyl deficiency.Carcinogenesis 1993;14:551 -7.
    [93]Wainfan E DM,Stender M,Christman JK..Rapid appearance of hypomethylated DNA in livers of rats fed cancer-promoting,methyl-deficient diets.Cancer Res.1989;49(15):4094-7.
    [94]Mikol YB,Hoover,K.L.,Creasia,D.& Poirier,L.A..Hepatocarcinogenesis in rats fed methyl-deficient,amino acid-defined diets.Carcinogenesis 1983;4:1619-29.
    [95]Ghoshal AKF,E..The induction of liver cancer by a dietary deficiency of choline and methionine without added carcinogens..Cancer Res.5:1367-1370.(1984)
    [96]Igor P.Pogribny SJJ,Stefanie Jernigan,Marta Pogribna Genomic hypomethylation is specific for preneoplastic liver in folate/methyl deficient rats and does not occur in non-target tissues.Mutation Research 2004;548:53-9.
    [97]Kim Y-I.Folate and DNA Methylation:A Mechanistic Link between Folate Deficiency and Colorectal Cancer? Cancer Epidemiol Biomarkers Prev 2004;13(4):511-9.
    [98]Ghoshal K LX,Datta J,Bai S,Pogribny I,Pogribny M,Huang Y,Young D,Jacob ST.A folate- and methyl-deficient diet alters the expression of DNA methyltransferases and methyl CpG binding proteins involved in epigenetic gene silencing in livers of F344rats.J Nutr.2006;136(6):1522-7.
    [99]Pisit Tangkijvanich NH,Prakasit Rattanatanyong,Naruemon Wisedopas,Varocha Mahachai,Apiwat Mutirangura.Serum LINE-1 hypomethylation as a potential prognostic marker for hepatocellular carcinoma.Clinica Chimica Acta 2007:379:127 33.
    [100]Benjmin C.B.MMM,Carol M.W,James T.M,Robert A H,Gene Wang,Sunitha N.W,Richard B.E,and Bruce N.A.Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage:Implications for cancer and neuronal damage.Proc.Natl.Acad.Sci.USA 1997;Vol.94:3290-5,.
    [101]SJ.D.Folic acid deficiency and cancer:mechanisms of DNA instability..Br Med Bull.1999;55(3):578-92.
    [102]Y.Kim IPP,A.G.Basnakian,J.W.Miller,J.Selhub,S.J.James,J.B.Mason,.Folate deficiency in rats induces DNA strand breaks and hypomethylation within the p53tumour suppresser gene.Am.J.Clin.Nutr 1997;65:46-52.
    [103]I.P.Pogribny AGB,B.J.Miller,N.G.Lopatina,L.A.Poirier,S.J.James,.Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl deficient rats.Cancer 1995;55:1894-901.
    [104]夏家辉.人类遗传病的家系收集疾病基因定位克隆与疾病基因功能的研究.中国工程科学2000;2(11):1-11.
    [105]严卫丽 顾.复杂疾病关联研究中的若干问题.遗传学报2004;31(5):533-7.
    [106]智联腾.周钢桥,贺福初.人类复杂疾病关联研究中群体分层的检出和校正.遗传2007;29(1):3-7.
    [107]A.Pearson T,A.Manolio T.How to Interpret a Genome-wide Association Study.JAMA 2008;299(11):1335-44.
    [108]Palmer L J,Cardon LR.Shaking the tree:mapping complex diseases genes with linkage disequilibrium.Lancet 2005:366:1223-34.
    [109]李彪,陈润生.复杂疾病关联分析进展.中国医学科学院学报2006:28(2):271-7.
    [110]LanceW.Hahn,D.Ritchie M,H.Moore J.Multifactor dimensionality reduction software for detecting gene-gene and gene-enviroment interactions.Bioinformatics 2003;19(3):376-82.
    [111]Heidema AG,Boer JM,Nagelkerke N,Mariman EC,A DLvd,Feskens aEJ.The challenge for genetic epidemiologists:how to analyze large numbers of SNPs in relation to complex diseases.BMC Genetics 2006;7(23).
    [112]Moore JH G J,Tsai CT,Chiang FT,Holden T,Barney N,White BC.A flexible computational framework for detecting,characterizing,and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility.J Theor Biol 2006;241(2):in press.
    [113]Lance W.Hahn MDRaJHM.Multifactor dimensionality reduction software for detecting gene-gene and genc cnvironment interactions.Bioinformatics 2003;19(3):376-82.
    [114]Velez DR,White BC,Motsinger AA,Bush WS,Ritchie MD,Williams SM,Moore aJH.A Balanced Accuracy Function for Epistasis Modeling in Imbalanced Datasets using Multifactor Dimensionality Reduction.Genetic Epidemiology 2007;31:306-15.
    [115]Lee SY,Chung Y,Elston RC,Kim Y,Park aT.Log-linear model-based multifactor dimensionality reduction method to detect gene-gene interactions.Bioinformatics 2007;23(19):2589-95.
    [116]Hattersley AT,McCarthy MI.What makes a good genetic association study? Lancet 2005;366(1315-23).
    [117]严卫丽.复杂疾病全基因组关联研究进展-遗传统计分析.遗传2008 30(5):543-9.
    [1] Ntaios G. "Well done folate, the little boy was born healthy without spina bifida:But will he suffer a stroke when elderly?" European Journal of Internal Medicine 2008;doi:10.1016/j.ejim.2008.03.015.
    
    [2] Little LSaJ. Polymorphisms in Genes Involved in Folate Metabolism and Colorectal Neoplasia. Am J Epidemiol 2004; 159:423-43.
    [3] Charles H Halsted DHW, Janet M Peerson, Craig H Warden, Helga Refsum, A David Smith,Ottar K Nygard, Per M Ueland, Stein E Vollset, and Grethe S Tell. Relations of glutamate carboxypeptidase II (GCPII) polymorphisms to folate and homocysteine concentrations and to scores of cognition, anxiety, and depression in a homogeneous Norwegian population: the Hordaland Homocysteine Study. Am J Clin Nutr 2007;86:514-21.
    [4] Devlin AM LE, Peerson JM, Fernando S, Clarke R, Smith AD, Halsted CH. Glutamate carboxypeptidase II: a polymorphism associated with lower levels of serum folate and hyperhomocysteinemia. Hum Mol Genet 2000;9:2837-44
    [5] Manuela FO Dinger JD, Sonja Skoupy,Cladia RO Hrer,Wolfgang Hagen, Heidi Puttinger,Anna-Christine hauser,Andreas Vychytil, and Gere Sunder-Plassmann.Effect of Glutamate Carboxypeptidase II and Reduced Folate Carrier Polymorphisms on Folate and Total Homocysteine Concentrations in Dialysis Patients. J Am Soc Nephrol 2003;14:1314 9.
    [6] Vargas-Martinez C OJ, Wilson PW, Selhub J. The Glutamate Carboxypeptidase Gene II (C>T) Polymorphism Does Not Affect Folate Status in The Framingham Offspring Cohort. J. Nutr. 2002; 132:1176-9.
    [7] Lydia A. Afman FJMTaHJB. The H475Y Polymorphism in the Glutamate Carboxypeptidase II Gene Increases Plasma Folate without Affecting the Risk for Neural Tube Defects in Humans. J. Nutr. 2003:133:75-7.
    [8] Susan Moyers MPH, M.B.A., Lynn B.Bailey,. Fetal Malformations and Folate Metabolism: Review of Recent Evidence. Nutrition Reviews 2001 ;Vol.59, No.7:215-35.
    [9] Jennifer Sudimack B.A. RJLP. Targeted drug delivery via the folate receptor. Advanced Drug Delivery Reviews 41:147 162 2000.
    [10] Zhao R HM, Goldman OD. The relationship between folate transport activity at low pH and reduced folate carrier function in human Huh7 hepatoma cells. Biochim Biophys Acta 2005 30:715 (1):57-64.
    
    [11] L P, H Z, J Z, A R, RH F, Z L. Genetic variation of infant reduced folate carrier(A80G) and risk o forofcial defects and congenital heart defects in China. Ann Epidemiol 2006;16 (5):352-6.
    
    [12] Gary M.Shaw EJL, Huiping Zhu,Mei Wang Baker,Eric Neri, and Rechard H.Finnell. Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida. . Am. J. Hum. Genet. 2002.;108:1-6.
    
    [13] Majid Shayeghi GOL-D, Jonathan S. Oakhill, Abas H. Laftah,Ken Takeuchi, Neil Halliday, Yasmin Khan.Alice Warley, Fiona E. McCann,Robert C. Hider,David M. Frazer, Gregory J. Anderson,Christopher D. Vulpe, Robert J. Simpson,and Andrew T.McKie. Identification of an Intestinal Heme Transporter. Cell 2005; 122:789-801.
    [14] Andong Qiu MJ, Antoinette Sakaris, Sang Hee Min,Shrikanta Chattopadhyay,Eugenia Tsai, Claudio Sandoval,Rongbao Zhao, Myles H. Akabas,and I. David Goldman. Identification of an Intestinal Folate Transporter and the Molecular Basis for Hereditary Folate Malabsorption. Cell 2006; 127:917-28.
    [15] Nakai Y IK, Abe N, Hatakeyama M, Ohta KY, Otagiri M, Hayashi Y, Yuasa H. Functional characterization of human proton-coupled folate transporter/heme carrier protein 1 heterologously expressed in mammalian cells as a folate transporter. J Pharmacol Exp Ther. 2007 322 (2):469-76.
    [16] Deng LHMZHY. Human reduced folate carrier: translation of basic biology to cancer etiology and therapy. Cancer Metastasis Rev 2007;26:111 28.
    [17] Kristina M von Castel-Dunwoody GPK, Karla P Shelnutt, Jaimie D Vaughn, Elizabeth R Griffin,David R Maneval, Douglas W Theriaque, and Lynn B Bailey. Transcobalamin 776C-G polymorphism negatively affects vitamin B-12 metabolism. Am J Clin Nutr 2005;81:1436-9.
    [18] Miller JW RM, Garrod MG, Flynn MA, Green R. Transcobalamin II 775G/C polymorphism and indices of vitamin B12 status in healthy older adults. Blood 2002;100:718-20.
    [19] Wans S SK, Jakubiczka S, Muller A,Luley C, Dierkes J. Analysis of the transcobalamin II 776C>G (259P>R) single nucleotide polymorphism by denaturing HPLC in healthy elderly: associations with cobalamin, homocysteine and holo-transcobalamin II. Clin Chem Lab Med 2003;41 (11):1532-6.
    [20] Winkelmayer WC SS, Eberle C, Fodinger M. Effects of TCN2 776C>G on vitamin B, folate, and total homocysteine levels in kidney transplant patients. Kidney Int 2004;65 (5):1877-81.
    [21] Chen Z KA, Ackerman SL, et al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity. With neuropathology and aortic lipid deposition.. Hum Mol Genet 2001;10:433 - 43.
    [22] Brian D. Guenmela Tran RR, Rowena G. Matthews and Martha L.Ludwig. The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nature structural biology 1999 6 (4 ):359-65.
    [23] Kazuhiro Yamada ZC, Rima Rozen+, and Rowena G. Matthews. Effects of common polymorphisms on the properties of recombinant human methylenetetrahydrofolate reductase. PNAS December 18, 2001;vol. 98 no. 26 14853-8
    [24] Frosst P, Blom, H. J., Milos, R.; Goyette, P., Sheppard, C. A., Matthews, R. G., Boers, G. J. H., den Heijer, M., Kluijtmans, L. A. J., van den Heuvel, L. P., Rozen, R. . A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nature Genet. 1995;10:111-3.
    [25] van der Put NMJG, F. Stevens, E. M. B. Smeitink, J. A. M. Trijbels, F. J. M. Eskes T. K. A. B.; van den Heuvel, L. P. Blom, H. J A second mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? .Am. J. Hum. Genet 1998;62:1044-51.
    [26] Lynn B. Bailey RLD, David R. Maneval, Gail P.A. Kauwell,Eoin P. Quinlivan, Steven R. Davis, Aisha Cuadras, Alan D. Hutson and Jesse F. Gregory. Vitamin B-12 Status Is Inversely Associated with Plasma Homocysteine in Young Women with C677T and/or A1298C Methylenetetrahydrofolate Reductase Polymorphisms. J. Nutr 2002;132:1872-8.
    
    [27] Chango A BF, Barbe F, et al. the effect of 677OT and 1298A>C mutations on plasma homocysteine and 5,10-methylenetetrahydrofolate reductase activity in healthy subjects.. Br J Nutr2000;No.83:593-6.
    
    [28] Yvette N. Martina OES, Bruce W. Eckloffb, Eric D. Wiebenb, Daniel J. Schaidc and Richard M. Weinshilbouma. Human methylenetetrahydrofolate reductase pharmacogenomics: gene resequencing and functional genomics. Pharmacogenetics and Genomics 2006;16:265-77.
    
    [29] Wilcken BB, F; Li, Z.; Zhu, H.; Ritvanen, A.; Redlund, M.; Stoll, C; Alembik, Y; Dott, B.; Czeizel, A. E.; Gelman-Kohan, Z.; Scarano, G Geographical and ethnic variation of the 677C-T allele of 5,10 methylenetetrahydrofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas world wide. J. Med. Genet. 2003;40:619-25.
    
    [30] G. W. Montgomery ZZZ, K. I. Morley, A. J. Marsh, D. I. Boomsma, N. G. Martin, and D. L. Duffy. Dizygotic twinning is not associated with methylenetetrahydrofolate reductase haplotypes. Hum. Reprod 2003;18 (11):2460 - 4.
    
    [31] Ogino SW, R. B. . Genotype and haplotype distributions of MTHFR 677C-T and 1298A-C single nucleotide polymorphisms: a meta-analysis. J. Hum. Genet 2003;48:1-7, .
    
    [32] Jacques PFB, A. G.; Williams, R. R.; Ellison, R. C; Eckfeldt, J. H.; Rosenberg, I. H.; Selhub, J.; Rozen, R. . Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 1996;93 7-9, .
    
    [33] Bagley PJS, J. A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc. Nat. Acad. Sci. 1998;95:13217-20, .
    
    [34] Karla P. Shelnutt GPAK, Carrie M. Chapman, Jesse F. Gregory, David R. Maneval, Angeleah A. Browdy, Douglas W. Theriaque and Lynn B. Bailey. Folate Status Response to Controlled Folate Intake Is Affected by the Methylenetetrahydrofolate Reductase 677C3T Polymorphism in Young Women. J. Nutr 2003;133 4107-11.
    
    [35] Gideon Friedman NG, Yechiel Friedlander, Arie Ben-Yehuda, Jacob Selhub,Sharona Babaey,Malka Mendel, Miriam Kidron and Hanoch Bar-On. A Common Mutation A1298C in Human Methylenetetrahydrofolate Reductase Gene: Association with Plasma Total Homocysteine and Folate Concentrations. J. Nutr 1999; 129:1656-61.
    
    [36] R. CASTRO IR, P. RAVASCO, C. JAKOBS, H.J. BLOM, M.E. CAMILO and I.T. DE ALMEIDA. 5,10-Methylenetetrahydrofolate reductase 677C£ΕT and 1298AΕ£C mutations are genetic determinants of elevated homocysteine. Q J Med 2003;96:297-303.
    
    [37] Jaimie D. Vaughn LBB, Karla P. Shelnutt, Kristina M. von-Castel Dunwoody, David R. Maneval, Steven R. Davis, Eoin P. Quinlivan, Jesse F. Gregory, Douglas W. Theriaque, and Gail P. A. Kauwell. Methionine Synthase Reductase 66A3G Polymorphism Is Associated with Increased Plasma Homocysteine Concentration When Combined with the Homozygous Methylenetetrahydrofolate Reductase 677C>T Variant. J. Nutr 2004;134 2985-90.
    
    [38] Chango A BF, Barbe F,Quilliot D.Droesch S.Pfister M.Fillon-Emery N.Lambert D,Fremont S,Rosenblat DS,Rosenblatt DS,Nicolas JP. The effect of 677C>T and 1298A>C mutaions on plasma homosysteine and 5,10-methylenetetrahydrofolate reductase activity in healthy subjects. Br J Nutr 2000;83:593-6.
    
    [39] Friso S, Choi, S-W., Girelli, D., Mason, J. B., Dolnikowski, G. G., Bagley, P. J., Olivieri, O., Jacques, P. F., Rosenberg, I. H., Corrocher, R., and Selhub, J. A common mutation in the 5,10-methylenetertrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. . Proc.Natl. Acad. Sci., USA, 2002;99:5606-11.
    
    [40] Per Magne Ueland SH, J(?)rn Schneede, Helga Refsum and Stein Emil Vollset. Biological and clinical implications of the MTHFR C677T polymorphism. Trends in Pharmacological Sciences 2001;22 (4 ): 195-201.
    
    [41] Rapha el Saffroy PP, Franck Chiappini, Marine Gross-Goupil, Laurent Castera, Daniel Azoulay, Alain Barrier, Didier Samuel, Brigitte Debuire and Antoinette Lemoine. The MTHFR 677C>T polymorphism is associated with an increased risk of hepatocellular carcinoma in patients with alcoholic cirrhosis. Carcinogenesis 2004;25 (8 ):1443-8, .
    
    [42] Murtaugh MA, Curtin K, Sweeney C, Wolff RK, Holubkov R, Caan BJ, Slattery ML. Dietary intake of folate and co-factors in folate metabolism, MTHFR polymorphisms, and reduced rectal cancer. Cancer Causes Control 2007;18:153-63.
    
    [43] Martha L. Slattery JDP, Wade Samowitz, Donna Schaffer, and Mark Leppert. Methylenetetrahydrofolate Reductase, Diet, and Risk of Colon Cancer. Cancer Epidemiology Biomarkers & Prevention 1999;8:513-8.
    
    [44] Karen Curtin JB, Martha L. Slattery, Bette Caan, John D. Potter,and Cornelia M. Ulrich,. MTHFR C677T and A1298C Polymorphisms: Diet, Estrogen, and Risk of Colon Cancer. Cancer Epidemiology Biomarkers & Prevention 2004;13:285-92.
    
    [45] Arve Ulvik SEV, Svein Hansen, Randi Gislefoss, Egil Jellum,and Per Magne Ueland. Colorectal Cancer and the Methylenetetrahydrofolate Reductase 677C ! T and Methionine Synthase 2756A ! G Polymorphisms: A Study of 2,168 Case-Control Pairs from the JANUS Cohort. Cancer Epidemiol Biomarkers Prev 2004; 13 (12):2175-80.
    
    [46] Jie Lin MRS, Yunfei Wang, Matthew B.Schabath, Ivan P.Gorlov, Ladia M.Hernandez, Patricia C.Pillow, H.Barton Grossman and, Wu X. Polymorphisms of folate metabolic genes and susceptibility to bladder cancer: a case-control study. Carcinogenesis 2004;25 (9):1639-47.
    
    [47] Xiaoping Miao DX, Wen Tan, Jun Qi, Wenfu Lu, and Dongxin Lin. Susceptibility to Gastric Cardia Adenocarcinoma and Genetic Polymorphisms in Methylenetetrahydrofolate Reductase in an At-Risk Chinese Population. Cancer Epidemiology Biomarkers & Prevention 2002;11:1454-8.
    
    [48] Boccia S, Hung R, Ricciardi G, Gianfagna F, A.Ebert MP, Fang J-Y, Gao C-M, tze TG, Graziano F, a-Navarro M, Lin D, pez-Carrillo LL, Qiao Y-L, Shen H, Stolzenberg-Solomon R, Takezaki T, Weng Y-R, Zhang FF, Duijn CMv, Boffetta P, Taioli aE. Meta- and Pooled Analyses of the Methylenetetrahydrofolate Reductase C677T and A1298C Polymorphisms and Gastric Cancer Risk: A Huge-GSEC Review. American Journal of Epidemiology 2007;DOI: 10.1093/aje/kwm344.
    [49] Wang Y GW, He Y, et al. . Association of MTHFR C677T and SHMT(1) C1420T with susceptibility to ESCC and GCA in a high incident region of Northern China. Cancer Causes Control 2007;18:143-52.
    
    [50] Stolzenberg-Solomon RZ, Qiao Y-L, Abnet CC, Ratnasinghe L, Dawsey SM, Dong ZW, Taylor PR, Mark aSD. Esophageal and Gastric Cardia Cancer Risk and Folate- and Vitamin B12-related Polymorphisms in Linxian, China. Cancer Epidemiology Biomarkers & Prevention 2003; 12:1222-6.
    
    [51] Chunying Song DX, Wen Tan, Qingyi Wei, and Dongxin Lin. Methylenetetrahydrofolate Reductase Polymorphisms Increase Risk of Esophageal Squamous Cell Carcinoma in a Chinese Population. Cancer Res. 2001;61:3272 5,.
    
    [52] Toru Hiyama MY, Shinji Tanaka and Kazuaki Chayama. Genetic polymorphisms and esophageal cancer risk. Int. J. Cancer: 2007; 121:1643-58
    
    [53] Stephanie J. Weinstein GG, Lea C. Harty, Scott R. Diehl, Linda M. Brown, Deborah M. Winn, Eleuterio Bravo-Otero and Richard B. Hayes. Foiate Intake, Serum Homocysteine and Methylenetetrahydrofolate Reductase (MTHFR) C677T Genotype Are Not Associated with Oral Cancer Risk in Puerto Rico. J. Nutr. 2002;132(762-767).
    
    [54] Mu L-N, Cao W, Zhang Z-F, Cai L, Jiang Q-W, You N-C, Goldstein BY, Wei G-R, Chen C-W, Lu Q-Y, Zhou X-F, Ding B-G, Chang J, Yu S-Z. Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms and the risk of primary Hepatocellular Carcinoma (HCC) in a Chinese population. Cancer Causes Control 2007; 18:665-75.
    
    [55] Jian-Min Yuan SCL, David Van Den Berg,Sugantha Govindarajan,Zhen-Quan Zhang,Jose M. Mato,4 and Mimi C. Yu. Genetic Polymorphisms in the Methylenetetrahydrofolate Reductase and Thymidylate Synthase Genes and Risk of Hepatocellular Carcinoma. HEPATOLOGY 2007;46:749-58.
    
    [56] Wang L MX, Tan W, Lu X, Zhao P, Zhao X, Shan Y, Li H, Lin D. Genetic polymorphisms in methylenetetrahydrofolate reductase and thymidylate synthase and risk of pancreatic cancer. Clin Gastroenterol Hepatol. 2005 3 (8):738-42.
    
    [57] Donghui Li MA, Yanan Li, Li Jiao, Ta-Hsu Chou, Robert A. Wolff,Renato Lenzi, Douglas B. Evans, Melissa L. Bondy, Peter W. Pisters,James L. Abbruzzese, and Manal M. Hassan. 5,10-Methylenetetrahydrofolate Reductase Polymorphisms and the Risk of Pancreatic Cancer. Cancer Epidemiol Biomarkers Prev 2005;14 (6):1470-6.
    
    [58] Shen M, Rothman N, I.Berndt S, He X, Yeager M, Welch R, chanock S, Caporaso N, Lan Q. Polymorphisms in folate metabolic genes and lung cancer risk in Xuan Wei, China. Lung Cancer 2005;49 (299-309).
    
    [59] Qiuling Shi ZZ, Guojun Li, Patricia C. Pillow, Ladia M. Hernandez, Margaret R. Spitz, and Qingyi Wei. Sex Differences in Risk of Lung Cancer Associated with Methylene-tetrahydrofolate Reductase Polymorphisms. Cancer Epidemiol Biomarkers Prev2005;14(6):1477-84.
    
    [60] Hongliang Liua GJ, Haifeng Wangc, Wenting Wua,Yanhong Liua, Ji Qiana, Weiwei Fana, Hongxia Mab, Ruifen Miaob,Zhibin Hub, Weiwei Sunc, Yi Wangc, Li Jina,c, Qingyi Wei d,Hongbing Shenb, Wei Huangc, Daru Lu. The association of polymorphisms in one-carbon metabolizing genes and lung cancer risk: A case-control study in a Chinese population.Lung Cancer 2007;doi:10.1016/j.lungcan.
    [61]Mine S.Cicek NLN,Li Li,David V.Conti,Graham Casey,and John S.Witte.Relationship between Methylenetetrahydrofolate Reductase C677T and A1298C Genotypes and Haplotypes and Prostate Cancer Risk and Aggressiveness.Cancer Epidemiol Biomarkers Prev 2004;13(8):1331-6.
    [62]Yu-Ching Chou M-HW,Jyh-Cherng Yu,Meei-Shyuan Lee,Tsan Yang,Hsiu-Lan Shih,Tsai-Yi Wu and Chien-An Sun.Genetic polymorphisms of the methylenetetrahydrofolate reductase gene,plasma folate levels and breast cancer susceptibility:a case-control study in Taiwan Carcinogenesis 2006 27(11):2295-300.
    [63]Sarah J.Lewis RMH,Ross Harris,George Davey Smith.Meta-analyses of Observational and Genetic Association Studies of Folate Intakes or Levels and Breast Cancer Risk.J Natl Cancer Inst 2006;98:1607 - 22.
    [64]Zoodsma M,Nolte IM,Schipper M,Oosterom E,Steege Gvd,Vries EGEd,Meerman GJt,Zee AGJvd.Methylenetetrahydrofolate reductase(MTHFR) and susceptibility for (pre)neoplastic cervical disease.Hum Genet 2005;116:247-54.
    [65]Tiago Veiga Pereira MR,Alexandre Costa Pereira,Maria S.Pombo-de-Oliveira,and Rendrik Franc a Franco.5,10-Methylenetetrahydrofolate Reductase Polymorphisms and Acute Lymphoblastic Leukemia Risk:A Meta-analysis Cancer Epidemiol Biomarkers Prev 2006;15(10):1956-63.
    [66]Leclerc DC,E.;Goyette,P.;Adjalla,C.E.;Christensen,B.;Ross,M.;Eydoux,P.;Rosenblatt,D.S.;Rozen,R.;Gravel,R.A..Human methionine synthase:cDNA cloning and identification of mutations in patients of the cblG complementation group of folate/cobalamin disorders.Hum.Molec.Genet 1996;5:1867-74.
    [67]Harmon DL,Shields,D.C.,Woodside,J.V.,McMaster,D.,YarnelI,J.W.,,Young IS,Peng,K.,Shane,B.,Evans,A.E.and Whitehead,A.S.Methionine synthase D919G polymorphism is a significant but modest determinant of circulating homocysteine concentrations..Genet.Epidemiol.1999;17:298-309.
    [68]Chen J,Stampfer,M.J.,Ma,J.,Selhub,J.,Malinow,M.R.,Hennekens,C.H.,and Hunter DJ.Influence of a methionine synthase(D919G) polymorphism on plasma homocysteine and folate levels and relation to risk of myocardial infarction.Atherosclerosis,2001;154,667-672.
    [69]Christensen BA,L.;Tran,P.;Leclerc,D.;Sabbaghian,N.;Platt,R.;Gilfix,B.M.;Rosenblatt,D.S.;Gravel,R.A.;Forbes,P.;Rozen,R..Genetic polymorphisms in methylenetetrahydrofolate reductase and methionine synthase,folate levels in red blood cells,and risk of neural tube defects..Am.J.Med.Genet 1999;84:151-7,.
    [70]Doolin M-TB,S.;McDonnell,M.;Hoess,K.;Whitehead,A.S.;Mitchell,L.E..Maternal genetic effects,exerted by genes involved in homocysteine remethylation,influence the risk of spina bifida..Am.J.Hum.Genet.71:1222-1226,2002.
    [71]Bosco PG-R,R.M.;Anello,G.;Barone,C.;Namour,F.;Caraci,F.;Romano,A.;Romano,C.;Gueant,J.L.Methionine synthase(MTR) 2756(A-G) polymorphism,double heterozygosity methionine synthase 2756 AG/methionine synthase reductase (MTRR) 66 AG,and elevated homocysteinemia are 3 risk factors for having a child with Down syndrome.Am.J.Med.Genet 2003.;121A:219-24,.
    [72]Elmore CL,Wu X,Leclerc D,Watson ED,Bottiglieri T,Krupenko NI,Krupenko SA, Cross JC,Rozen R,Gravel RA,Matthews RG.Metabolic derangement of methionine and folate metabolism in mice deficient in methionine synthase reductase.Molecular Genetics and Metabolism 2007;91:85-97.
    [73]Leclerc DW,A.;Dumas,R.;Gafuik,C.;Song,D.;Watkins,D.;Heng,H.H.Q.;Rommens,J.M.;Scherer,S.W.;Rosenblatt,D.S.;Gravel,R.A..Cloning and mapping of a cDNA for methionine synthase reductase,a flavoprotein defective in patients with homocystinuria.Proc.Nat.Acad.Sci 1998 95 3059-64.
    [74]Yamada KG,R.A.;Toraya,T.;Matthews,R.G..Human methionine synthase reductase is a molecular chaperone for human methionine synthase.Proc.Nat.Acad.Sci 2006;103:9476-81.
    [75]Vaughn JD BL,Shelnutt KP,et al.Methionine synthase reductase 66A->G polymorphism is associated with increased plasma homocysteine concentration when combined with the homozygous methylenetetrahydrofolate reductase 677C->T variant.J.Nutr.2004;134(11):2985 90.
    [76]Wilson AP,R.;Wu,Q.;Leclerc,D.;Christensen,B.;Yang,H.;Gravel,R.A.;Rozen,R..A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida.Molec.Genet.Metab 1999;67:317-23.
    [77]James SJP,M.;Pogribny,I.P.;Melnyk,S.;Hine,R.J.;Gibson,J.B.;Yi,P.;Tafoya,D.L.;Swenson,D.H.;Wilson,V.L.;Gaylor,D.W..Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome..Am.J.Clin.Nutr 1999;70:495-501.
    [78]Ohnami S SY,Yoshimura K,Ohnami S,Sakamoto H,Aoki K,Ueno H,Ikeda M,Morizane C,Shimada K,Sakamoto Y,Esaki M,Saito I,Hirose H,Saito D,Sugimura H,Kosuge T,Okusaka T,Yoshida T.His595Tyr polymorphism in the methionine synthase reductase(MTRR) gene is associated with pancreatic cancer risk.Gastroenterology 2008;135(2):477-88.
    [79]Takata Y,Huang,Y.,Komoto,J.,Yamada,T.,Konishi,K.,Ogawa,H.,Gomi,T.,Fujioka,M.& Takusagawa,F.Catalytic mechanism of glycine N-methyltransferase.Biochemistry 2003 42:8394-402.
    [80]Brandon Beagle TLY,Jean Hung,Edward A.Cogger,David J.Moriarty,and Marie A.Caudill.The Glycine N-Methyltransferase(GNMT) 1289 C3T Variant Influences Plasma Total Homocysteine Concentrations in Young Women after Restricting Folate Intake.J.Nutr.2005;135:2780-5.
    [81]Tzu-Ling Tseng Y-PS,Yu-Chuen Huang,Chung-Kwe Wang,Pao-Huei Chen,Jan-Gowth Chang,Kun-Tu Yeh,Yi-Ming Arthur Chen and Kenneth H.Buetow.Genotypic and Phenotypic Characterization of a Putative Tumor Susceptibility Gene,GNMT,in Liver Cancer.Cancer Res.2003;63:647-54.
    [82]李金平.李丽帆,方显明.胱硫醚B-合酶研究进展.西部医学2006 18(5):657-9.
    [83]吴淑庆,钱令嘉.应激对同型半胱氨酸代谢的负性调节.生理学报2004 56(4):521-4.
    [84]Sperandeo MP dFR,Andria G,Sebastio G.A 68-bp insertion found in a homocystinuric patient is a common variant and is skipped by alternative splicing of the cystathionine -synthase mRNA.Am J Hum Genet 1996;59:1391-3.
    [85]陈卓,单可人,齐晓岚.渊谢,婷张,骄马,吴昌学,毅李,艳赵,雁肖,任锡麟.贵州西江苗族、三都水族胱硫醚合酶844 ins68位点的研究.贵阳医学院学报2005:30 (5):403-5.
    [86]Kluijtmans LAJ BG,Trijbels FJM,et al..A common 844 INS68 insertion variant in the cystathionine β-synthase gene.Biochem MolMed 1997;62:23-5.
    [87]Lievers KJ,Kluijtmans LA,Heil SG,Boers GH,Verhoef P,Oppenraay-Emmerzaal Dv,Heijer Md,Trijbels FJ,Blom aHJ.A 31 bp VNTR in the cystathionine b-synthase (CBS)gene is associated with reduced CBS activity and elevated post-load homocysteine levels.European Journal of Human Genetics 2001;9:583±9.
    [88]Ladner RD.The role of dUTPase and uracil-DNA repair in cancer chemotherapy.Curr.Protein Pept.Sci 2001;2:361-70.
    [89]E.Chu CJA.The role of thymidylate synthase as an RNA binding protein.BioEssay 1996;18 191-8.
    [90]高长明,吴建中,刘燕婷,丁建华,李苏平,苏平,胡旭,开海淘.胸苷酸合成酶基因多态性和生活习惯及亚甲基四氢叶酸还原酶基因协同作用与胃癌的易感性.中华流行病学杂志2003:24(2):599-603.
    [91]Pestalozzi BC PH,Gelber RD.Prognostic importance of thymidylate synthase expression in early breast cancer.J Clin Oncol 1997;15(5):1923-31.
    [92]Gonen M HA,Zervoudakis A,et al.Thymidylate synthase expression in hepatic tumors is a predictor of survival and progression in patients with respectable metastatic colorectal cancer.J Clini Oncol 2003;21(3):406-12.
    [93]付振营,乔保平.胸苷酸合成酶在膀胱癌组织中的表达及意义.河南肿瘤学杂志2005:18(6):397-9.
    [94]Tomiak A,Vincent M,Earle CC,Johnston PG,Kocha W,Taylor M,Maroun J,Eidus L,Whiston F,Stitt L.Thymidylate synthase expression in stage Ⅱ and Ⅲ colon cancer:a retrospective review.Am J Clin Oncol 2001;24(6):597-602.
    [95]C.W.Carreras DVS.The catalytic mechanism and structure of thymidylate synthase.Annu.Rev.Biochem 1995;64:721-62.
    [96]Marsh SC-D,E.S.;Li,T.;Liu,X.;McLeod,H.L..Ethnic variation in the thymidylate synthase enhancer region polymorphism among Caucasian and Asian populations.Genomics 1999 58 310-2.
    [97]Luo HR LX,Yao YG,et al.Length polymorphism of thymidylate synthase regulatory region in Chinese population and evolution of the novel alleles.Biochem Genet 2002;40(1-2):41-51.
    [98]Kaneda S,Nalbantoglu J,Takeishi K,Shimizu K,Gotoh O,Seno T,Ayusawa D.Structural and functional analysis of the human thymidylate synthase gene.J Biol Chem 1990;265(33):20277-84.
    [99]Chu E,Voeller D,Koeller DM,Drake JC,Takimoto CH,Maley GF,Maley F,Allegra CJ.Identification of an RNA binding site for human thymidylate synthase.Proc Natl Acad Sci U S A 1993;90(2):517-21.
    [100]S.Kaneda KT,D.Ayusawa,K.Shimizu,T.Seno,S.Altman.Role in translation of a triple tandemly repeated sequence in the 5'untranslated region of human thymidylate synthase mRNA.Nucleic Acids Res.1987;15:1259-70.
    [101]Kawakami KS,D.;Park,J.M.;Danenberg,K.D.;Uetake,H.;Brabender,J.;Omura,K.;Watanabe,G.;Danenberg,P.V.Different lengths of a polymorphic repeat sequence in the thymidylate synthase gene affect translational efficiency but not its gene expression Clin. Cancer Res 2001;7:4096-101.
    [102] Watanabe KKaG. Identification and Functional Analysis of Single Nucleotide Polymorphism in the Tandem Repeat Sequence of Thymidylate Synthase Gene. Cancer Res. 2003;63:6004-7.
    [103] Michael V. Mandola JS, Susan Muller-Weeks, Gregory Cesarone, Mimi C. Yu, Heinz-Josef Lenz, and Robert D. Ladner. A Novel Single Nucleotide Polymorphism within the 5' Tandem Repeat Polymorphism of the Thymidylate Synthase Gene Abolishes USF-1 Binding and Alters Transcriptional Activity. Cancer Res 2003 63 2898-904.
    [104] Silanes ILd, Esteller MPQaM. Aberrant regulation of messenger RNA 3'-untranslated region in human cancer. Cellular Oncology 2007;29:1 17.
    [105] Rudolf Pullmann J, Abdelmohsen K, LaI A, Martindale JL, Ladner RD, Gorospe aM. Differential Stability of Thymidylate Synthase 3'-Untranslated Region Polymorphic Variants Regulated by AUF1. The Journal of Biological Chemistry 2006;281 (33):23456-63.
    [106] Mandola MV SJ, Zhang W, Groshen S, Yu MC, Iqbal S, Lenz HJ, Ladner RD. A 6 bp polymorphism in the thymidylate synthase gene causes message instability and is associated with decreased intratumoral TS mRNA levels. Pharmacogenetics 2004;14(5):319-27.
    [107] Qiuling Shi ZZ, Ana S.Neumann,Guojun Li, Margaret R.Spitz and Qingyi Wei Case-Control analysis of thymidylate synthase polymorphisms and risk of lung cancer. Carcinogenesis 2005;26 (3):649-56.
    [108] Jianxiong Chu BJD. Natural antisense (rTSa) RNA induces site-specific cleavage of thymidylate synthase mRNA. Biochimica et Biophysica Acta 2002; 1587:183 93.
    [109] Jia Chen DJH, Meir J. Stampfer, Charles Kyte, Wendy Chan, James G. Wetmur,Rebecca Mosig, Jacob Selhub, and Jing Ma. Polymorphism in the Thymidylate Synthase Promoter Enhancer Region Modifies the Risk and Survival of Colorectal Cancer. Cancer Epidemiology Biomarkers & Prevention 2003; 12:958-62.
    [110] Hishida A, Matsuo,K., Hamajima,N., Ito,H., Ogura,M., Kagami,Y.,Taji,H., Morishima,Y., Emi,N. and Tajima,K. Associations between polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and susceptibility to malignant lymphoma. Haematologica 2003;88, 159-166.
    [111] Skibola CF, Smith,M.T., Hubbard,A., Shane,B., Roberts,A.C, Law,G.R., Rollinson,S., Roman,E., Cartwright,R.A. and Morgan,G.J. . Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia. . Blood 2002;99, 3786-3791.
    [112] Krajinovic MC, I.; Chiasson, S. . Polymorphism of the thymidylate synthase gene and outcome of acute lymphoblastic leukaemia. Lancet 2002;359:1033-4.
    [113] Pullarkat ST, Stoehlmacher,J., Ghaderi,V., Xiong,Y.-P., lngles,S.A.,Sherrod,A., Warren,R., Tsao-Wei,D., Groshen,S. and Lenz,H.-J. Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. . Pharmacogenomics J. 2001 ;1: 65-70.
    
    [114] Calascibetta. Nucleotides Nucleic Acids 2004 23 (8-9): 1377-9.
    [115] Ulrich CM, Bigler, J., Bostick, R., Fosdick, L., and Potter, J. D. . Thymidylate synthase promoter polymorphism, interaction with folate intake, and risk of colorectal adenomas. Cancer Res. 2002;62:3361-4.
    
    [116] Jia Chen CK, Wendy Chan,James G. Wetmur.Charles S. Fuchs,and Edward Giovannucci. Polymorphism in the Thymidylate Synthase Promoter Enhancer Region and Risk of Colorectal Adenomas. Cancer Epidemiol Biomarkers Prev 2004; 13 (12):2247-50.
    
    [117] Kealey CB, K. S.; Woodside, J. V.; Young, I.; Murray, L; Boreham, C. A.; McNulty, H.; Strain, J. J.; McPartlin, J.; Scott, J. M.; Whitehead, A. S. . A common insertion/deletion polymorphism of the thymidylate synthase (TYMS) gene is a determinant of red blood cell folate and homocysteine concentrations. Hum. Genet 2005;116:347-53.
    
    [118] Trinh BNO, C.-N.; Coetzee, G. A.; Yu, M. C; Laird, P. W. . Thymidylate synthase: a novel genetic determinant of plasma homocysteine and folate levels. Hum. Genet 2002.;111 299-302.
    
    [119] Wen Tan XM, Li Wang, Chunyuan Yu,Ping Xiong, Gang Liang, Tong Sun, Yifeng Zhou,Xuemei Zhang, Hui Li and Dongxin Lin. Significant increase in risk of gastroesophageal cancer is associated with interaction between promoter polymorphisms in thymidylate synthase and serum folate status. Carcinogenesis 2005;26 (8): 1430-5.
    
    [120] Zhengdong Zhang YX, Jianwei Zhou,Xinru Wang, Liwei Wang, Xu Hu, Jiangtao Guo,Qingyi Wei and Hongbing Shen. Polymorphisms of thymidylate synthase in the 50- and 30-untranslated regions associated with risk of gastric cancer in South China: a case-control analysis. Carcinogenesis 2005;26 (10):1764-9.
    
    [121] Wen Tan XM, Li Wang1, Chunyuan Yu, Ping Xiong, Gang Liang, Tong Sun, Yifeng Zhou,Xuemei Zhang, Hui Li1 and Dongxin Lin. Significant increase in risk of gastroesophageal cancer is associated with interaction between promoter polymorphisms in thymidylate synthase and serum folate status. Carcinogenesis 2005;26(8): 1430-5, .
    
    [122] Garrow TAB, A. A.Whitehead, V. M. Chen, X.-N. Duncan, R. G. Korenberg, J. R. Shane, B Cloning of human cDNAs encoding mitochondrial and cytosolic serine hydroxymethyltransferases and chromosomal localization. J. Biol. Chem. 1993. ;268:11910-6.
    
    [123] Renee D. Kalmbach SFC, Aron P. Troen, Paul F. Jacques, Ralph D'Agostino,and Jacob Selhub. A 19-Base Pair Deletion Polymorphism in Dihydrofolate Reductase Is Associated with Increased Unmetabolized Folic Acid in Plasma and Decreased Red Blood Cell Folate. J. Nutr. 2008;138:2323 7.
    
    [124] Johnson WGS, E. S.; Spychala, J. R.; Chatkupt, S.; Ming, S. X.; Buyske, S. . New 19 bp deletion polymorphism in intron-1 of dihydrofolate reductase (DHFR): a risk factor for spina bifida acting in mothers during pregnancy? Am. J. Med. Genet 2004 124A:339-45, .
    
    [125] SA. C. Betaine in human nutrition. Am J Clin Nutr 2004;80:539-49.
    
    [126] Xinran X, MD G, SH Z, YL L, JG W, SLT, PT B, Al N, RM S, Jia C. Choline metabolism and risk of breast cancer in a population-based study. FASEB J. 2008;22 (6):2045-52. [127] Kristin A. Waite NRCaDEV. Choline Deficiency-Induced Liver Damage Is Reversible in Pem(?) Mice. J. Nutr 2002; 132:68 71.
    [128] Saito S IA, Sekine A, Miura Y, Sakamoto T, Ogawa C, Kawauchi S, Higuchi S, Nakamura Y. Identification of 197 genetic variations in six human methyltransferase genes in the Japanese population. J Hum Genet 2001;46:529-37.
    [129] Kerry-Ann da Costa OGK, Jiannan Song, Joseph A. Galanko, Leslie M.Fischer, and Steven H. Zeisel. Common genetic polymorphisms affect the human requirement for the nutrient choline. FASEB J. 2006; 20 (9):1336-44.
    [130] Vance JEV, D. E. Specific pools of phospholipids are used for lipoprotein secretion by cultured rat hepatocytes. J. Biol. Chem. 1986;261:4486-91.
    [131] G W, C A, SG Y, DE V. Early embryonic lethality caused by disruption fo the gene for choline kinase alpha,the first enzyme in phosphatidylcholine biosynthesis. J Biol Chem 2008;283 (3):1456-62.
    [132] Enaw JoE, Zhu H, Yang w, LU W, Shaw GM, Lammer EJ, Finnell RH. CHKA and PCYT1A gene polymorphisms, hcoline intake and spina bifida risk in a Califonia population. BMC med 2006;4:36.
    [133] Shannon B GS, Beilby J, et al. . A polymorphism in the methylenetetrahydrofolate reductase gene predisposes to colorectal cancers with microsatellite instability. Gut 2002;50:520-4.
    [1]Xinran X,Marilie DG,P ZH,james GW,Manlong R,Teitelbaum,Julie AB,Regina MS,Jia C.Polymorphisms of one-carbon-metabolizing genes and risk of breast cancer in a population-based study.Carcinogenesis 2007;28(7):1504-9.
    [2]William G.Johnson ESS,John R.Spychala,Sansnee Chatkupt,Sue X.Ming,and Steven Buyske.New 19 bp Deletion Polymorphism in Intron-1 of Dihydrofolate Reductase(DHFR):A Risk Factor for Spina Bifida Acting in Mothers During Pregnancy.American Journal of Medical Genetics 2004;124A:339-45.
    [3]Ritchie MD HL,Roodi N,Bailey LR,Dupont VVD,Pad FF,Moore JH.Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer.American Journal of Human Genetics 2001;69(1):138-47.
    [4]Jinying Zhao L J,and Momiao Xiong.Test for Interaction between Two Unlinked Loci.The American Journal of Human Genetics 2006;79:831-45.
    [5]吴学森.基因、环境交互作用的统计遗传学理论与方法研究.复旦大学博士后工作报告2007.
    [1]Mu L-N,Cao W,Zhang Z-F,Cai.L,Jiang Q-W,You N-C,Goldstein BY,Wei G-R,Chen C-W,Lu Q-Y,Zhou X-F,Ding B-G,Chang J,Yu S-Z.Methylenetetrahydrofolate reductase(MTHFR) C677T and A1298C polymorphisms and the risk of primary Hepatocellular Carcinoma(HCC) in a Chinese population.Cancer Causes Control 2007;18:665-75.
    [2]Chu E,Voeller D,Koeller DM,Drake JC,Takimoto CH,Maley GF,Maley F,Allegra CJ.Identification of an RNA binding site for human thymidylate synthase.Proc Natl Acad Sci U S A 1993;90(2):517-21.
    [3]S.Kaneda KT,D.Ayusawa,K.Shimizu,T.Seno,S.Altman.Role in translation of a triple tandemly repeated sequence in the 5'untranslated region of human thymidylate synthase mRNA.Nucleic Acids Res.1987;15:1259-70.
    [4]Kawakami KS,D.;Park,J.M.;Danenberg,K.D.;Uetake,H.;Brabender,J.;Omura,K.;Watanabe,G.;Danenberg,P.V.Different lengths of a polymorphic repeat sequence in the thymidylate synthase gene affect translational efficiency but not its gene expression Clin.Cancer Res 2001;7:4096-101.
    [5]Watanabe KKaG.Identification and Functional Analysis of Single Nucleotide Polymorphism in the Tandem Repeat Sequence of Thymidylate Synthase Gene.Cancer Res.2003;63:6004-7.
    [6]Marsh SC-D,E.S.;Li,T.;Liu,X.;McLeod,H.L..Ethnic variation in the thymidylate synthase enhancer region polymorphism among Caucasian and Asian populations.Genomics 1999 58 310-2.
    [7]张启南,陆培新,王金兵,吴燕,陆振宏.原发性肝癌高危人群前瞻研究.肿瘤研究与临床1996:8(2):127-8.
    [8]Wang L KQ,Chen W,Wang J,Tan Y,Zhou Y,Hua Z,Ding W,Niu J,Shen J,Zhang Z,Wang X,Xu Y,Shen H.Polymorphisms of MTHFD,plasma homocysteine levels,and risk of gastric cancer in a high-risk Chinese population.Clin Cancer Res 2007;13(8):2526-32.
    [9]Watkins D,Ru M,Hwang H-Y,Kim CD,Murray A,Philip NS,Kim W,Legakis H,Wai T,Hilton JF,Ge B,Dore C,Hosack A,Wilson A,Gravel RA,Shane B,Thomas J.Hudson aDSR.Hyperhomocysteinemia Due to Methionine Synthase Deficiency,cblG:Structure of the MTR Gene,Genotype Diversity,and Recognition of a Common Mutation,P1173L.Am.J.Hum.Genet.2002;71:143-53.
    [10]AK B,A Y,M S,TK N.Novel mutations in the 5'-UTR of the FOLR1 gene.Clin Chem Lab Med.2006;44(2):161-7.
    [11]Wang L MX,Tan W,Lu X,Zhao P,Zhao X,Shan Y,Li H,Lin D.Genetic polymorphisms in methylenetetrahydrofolate reductase and thymidylate synthase and risk of pancreatic cancer.Clin Gastroenterol Hepatol.2005 3(8):738-42.
    [12]Andong Qiu M J,Antoinette Sakaris,Sang Hee Min,Shrikanta Chattopadhyay,Eugenia Tsai,Claudio Sandoval,Rongbao Zhao,Myles H.Akabas,and I.David Goldman.Identification of an Intestinal Folate Transporter and the Molecular Basis for Hereditary Folate Malabsorption.Cell 2006;127:917-28.
    [13]Zhao R HM,Goldman ID.The relationship between folate transport activity at low pH and reduced folate carrier function in human Huh7 hepatoma cells.Biochim Biophys Acta 2005 30:715(1):57-64.
    [14]Renee D.Kalmbach SFC,Aron P.Troen,Paul F.Jacques,Ralph D'Agostino,and Jacob Selhub.A 19-Base Pair Deletion Polymorphism in Dihydrofolate Reductase Is Associated with Increased Unmetabolized Folic Acid in Plasma and Decreased Red Blood Cell Folate.J.Nutr.2008;138:2323-7.
    [15]Rudolf Pullmann J,Abdelmohsen K,Lal A,Martindale JL,Ladner RD,Gorospe aM.Differential Stability of Thymidylate Synthase 3'-Untranslated Region Polymorphic Variants Regulated by AUF1.The Journal of Biological Chemistry 2006;281(33):23456-63.
    [16]Mandola MV S J,Zhang W,Groshen S,Yu MC,Iqbal S,Lenz H J,Ladner RD.A 6bp polymorphism in the thymidylate synthase gene causes message instability and is associated with decreased intratumoral TS mRNA levels.Pharmacogenetics 2004;14(5):319-27.
    [17]Jianxiong Chu BJD.Natural antisense(rTSa) RNA induces site-specific cleavage of thymidylate synthase mRNA.Biochimica et Biophysica Acta 2002;1587:183-93.
    [18]Qiuling Shi ZZ,Ana S.Neumann,Guojun Li,Margaret R.Spitz and Qingyi Wei Case-Control analysis of thymidylate synthase polymorphisms and risk of lung cancer.Carcinogenesis 2005;26(3):649-56.
    [19]Cornelia M.Ulrich KC,John D.Potter,Jeannette Bigler,Bette Caan and Martha L.Slattery Polymorphisms in the Reduced Folate Carrier,Thymidylate Synthase,or Methionine Synthase and Risk of Colon Cancer Cancer Epidemiology Biomarkers & Prevention 2005 Vol.14:2509-16,.
    [20]Ulrich CM,Bigler,J.,Bostick,R.,Fosdick,L.,and Potter,J.D..Thymidylate synthase promoter polymorphism,interaction with folate intake,and risk of colorectal adenomas.Cancer Res.2002;62:3361-4.
    [21]Xinran X,Marilie DG,P ZH,james GW,Manlong R,Teitelbaum,Julie AB,Regina MS,Jia C.Polymorphisms of one-carbon-metabolizing genes and risk of breast cancer in a population-based study.Carcinogenesis 2007;28(7):1504-9.
    [22]Wen Tan XM,Li Wang,Chunyuan Yu,Ping Xiong,Gang Liang,Tong Sun,Yifeng Zhou,Xuemei Zhang,Hui Li and Dongxin Lin.Significant increase in risk of gastroesophageal cancer is associated with interaction between promoter polymorphisms in thymidylate synthase and serum folate status.Carcinogenesis 2005;26(8):1430-5.
    [23]Zhengdong Zhang YX,Jianwei Zhou,Xinru Wang,Liwei Wang,Xu Hu,Jiangtao Guo,Qingyi Wei and Hongbing Shen.Polymorphisms of thymidylate synthase in the 50- and 30-untranslated regions associated with risk of gastric cancer in South China:a case-control analysis.Carcinogenesis 2005;26(10):1764-9.
    [24]Wen Tan XM,Li Wang1,Chunyuan Yu,Ping Xiong,Gang Liang,Tong Sun,Yifeng Zhou,Xuemei Zhang,Hui Lil and Dongxin Lin.Significant increase in risk of gastroesophageal cancer is associated with interaction between promoter polymorphisms in thymidylate synthase and serum folate status.Carcinogenesis 2005;26(8):1430-5,.
    [25]Wilcken BB,F.;Li,Z.;Zhu,H.;Ritvanen,A.;Redlund,M.;Stoll,C.;Alembik,Y.;Dott,B.;Czeizel,A.E.;Gelman-Kohan,Z.;Scarano,G.Geographical and ethnic variation of the 677C-T allele of 5,10 methylenetetrahydrofolate reductase (MTHFR):findings from over 7000 newborns from 16 areas world wide.J.Med.Genet.2003;40:619-25.
    [26]章斐然,郝玲,王建英,陆渊源,朱敏敏.蒋新液,俞楠.中老年妇女叶酸水平分析.中国妇幼保健2004:19:110-2.
    [27]郝玲,田熠华.谭明,唐仪,李竹.我国部分地区35-64岁人群血浆叶酸水平与年龄性别差异比较.营养学报2002 24(4):352-5.
    [28]Lance W.Hahn MDRaJHM.Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions.Bioinformatics 2003;19(3):376-82.
    [1].Parkin DM,Bray F,Ferlay J,Pisani P.Global cancer statistics,2002.CA Cancer J Clin 2005;55:74-108.
    [2].Yang L,Parkin DM,Ferlay J,Li L,Chen Y.Estimates of cancer incidence in China for 2000 and projections for 2005.Cancer Epidemiol Biomarkers Prev 2005;14:243-250.
    [3].Kiyohara C,Yoshimasu K,Shirakawa T,Hopkin JM.Genetic polymorphisms and environmental risk of lung cancer:a review.Rev Environ Health 2004;19:15-38.
    [4].Harfe BD,Jinks-Robertson S.DNA mismatch repair and genetic instability.Annu Rev Genet 2000;34:359-399.
    [5].Jacob S,Praz F.DNA mismatch repair defects:role in colorectal carcinogenesis.Biochimie 2002;84:27-47.
    [6].Brown KD,Rathi A,Kamath R,Beardsley DI,Zhan Q,Mannino JL,Baskaran R.The mismatch repair system is required for S-phase checkpoint activation.Nat Genet 2003;33:80-84.
    [7].Surtees JA,Argueso JL,Alani E.Mismatch repair proteins:key regulators of genetic recombination.Cytogenet Genome Res 2004;107:146-159.
    [8].Ellison AR,Lofing J,Bitter GA.Human MutL homolog(MLH1) function in DNA mismatch repair:a prospective screen for missense mutations in the ATPase domain.Nucleic Acids Res 2004;32:5321-5338.
    [9].Zienolddiny S,Ryberg D,Gazdar AF,Haugen A.DNA mismatch binding in human lung tumor cell lines.Lung Cancer 1999;26:15-25.
    [10].Kolodner RD,Marsischky GT.Eukaryotic DNA mismatch repair.Curr Opin Genet Dev 1999;9:89-96.
    [11].Gu L,Hong Y,McCulloch S,Watanabe H,Li GM.ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair.Nucleic Acids Res 1998;26:1173-1178.
    [12].Hibi K,Takahashi T,Yamakawa K,Ueda R,Sekido Y,Ariyoshi Y,Suyama M,Takagi H, Nakamura Y, Takahashi T. Three distinct regions involved in 3p deletion in human lung cancer. Oncogene 1992; 7: 445-449.
    [13]. Hsu HS, Wen CK, Tang YA, Lin RK, Li WY, Hsu WH, Wang YC. Promoter hypermethylation is the predominant mechanism in hMLH1 and hMSH2 deregulation and is a poor prognostic factor in nonsmoking lung cancer. Clin Cancer Res 2005; 11:5410-5416.
    [14]. Xinarianos G, Liloglou T, Prime W, Maloney P, Callaghan J, Fielding P, Gosney JR, Field JK. hMLH1 and hMSH2 expression correlates with allelic imbalance on chromosome 3p in non-small cell lung carcinomas. Cancer Res 2000; 60: 4216-4221.
    [15]. Shin YK, Heo SC, Shin JH, Hong SH, Ku JL, Yoo BC, Kim IJ, Park JG. Germline mutations in MLH1, MSH2 and MSH6 in Korean hereditary non-polyposis colorectal cancer families. Hum Mutat 2004; 24: 351.
    [16]. Kim JC, Roh SA, Koo KH, Ka IH, Kim HC, Yu CS, Lee KH, Kim JS, Lee HI, Bodmer WF. Genotyping possible polymorphic variants of human mismatch repair genes in healthy Korean individuals and sporadic colorectal cancer patients. Fam Cancer 2004;3: 129-137.
    [17]. Okada T, Noji S, Goto Y, Iwata T, Fujita T, Okada T, Matsuzaki Y, Kuwana M, Hirakata M, Horii A, Matsuno S, Sunamura M, Kawakami Y. Immune responses to DNA mismatch repair enzymes hMSH2 and hPMS1 in patients with pancreatic cancer, dermatomyositis and polymyositis. Int J Cancer 2005; 116: 925-933.
    [18]. Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 2000; 14: 927-939.
    [19]. Lee SD, Alani E. Analysis of interactions between mismatch repair initiation factors and the replication processivity factor PCNA. J Mol Biol 2006; 355: 175-184.
    [20]. Luo Y, Lin FT, Lin WC. ATM-mediated stabilization of hMutL DNA mismatch repair proteins augments p53 activation during DNA damage. Mol Cell Biol 2004; 24: 6430-6444.
    [21]. Duckett DR, Bronstein SM, Taya Y, Modrich P. hMutSalpha- and hMutLalpha-dependent phosphorylation of p53 in response to DNA methylator damage. Proc Natl Acad Sci U S A 1999; 96: 12384-12388.
    [22]. Hickman MJ, Samson LD. Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents. Proc Natl Acad Sci U S A 1999; 96: 10764-10769.
    [23]. Pedrazzi G, Perrera C, Blaser H, Kuster P, Marra G, Davies SL, Ryu GH, Freire R, Hickson ID, Jiricny J, Stagljar I. Direct association of Bloom's syndrome gene product with the human mismatch repair protein MLH1. Nucleic Acids Res 2001; 29:4378-4386.
    [24]. Tran PT, Simon JA, Liskay RM. Interactions of Exo1p with components of MutLalpha in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2001; 98: 9760-9765.
    [25]. Bellacosa A, Cicchillitti L, Schepis F, Riccio A, Yeung AT, Matsumoto Y, Golemis EA, Genuardi M, Neri G. MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1. Proc Natl Acad Sci U S A 1999; 96:3969-3974.
    [26]. Argueso JL, Kijas AW, Sarin S, Heck J, Waase M, Alani E. Systematic mutagenesis of the Saccharomyces cerevisiae MLH1 gene reveals distinct roles for MIh1p in meiotic crossing over and in vegetative and meiotic mismatch repair. Mol Cell Biol 2003; 23: 873-886.
    [27]. Raschle M, Dufner P, Marra G, Jiricny J. Mutations within the hMLH1 and hPMS2 subunits of the human MutLalpha mismatch repair factor affect its ATPase activity, but not its ability to interact with hMutSalpha. J Biol Chem 2002; 277: 21810-21820.
    [28]. Bolufer P, Barragan E, Collado M, Cervera J, Lopez JA, Sanz MA. Influence of genetic polymorphisms on the risk of developing leukemia and on disease progression. Leuk Res 2006; 30: 1471-1491.
    [29]. Hall MC, Shcherbakova PV, Fortune JM, Borchers CH, Dial JM, Tomer KB, Kunkel TA. DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair. Nucleic Acids Res 2003; 31: 2025-2034.
    [30]. Hu Z, Wang H, Shao M, Jin G, Sun W, Wang Y, Liu H, Wang Y, Ma H, Qian J, Jin L, Wei Q, Lu D, Huang W, Shen H. Genetic variants in MGMT and risk of lung cancer in Southeastern Chinese: a haplotype-based analysis. Hum Mutat 2007; 28: 431-440.
    [31]. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225-2229.
    [32]. Landi S, Gemignani F, Canzian F, Gaborieau V, Barale R, Landi D, Szeszenia-Dabrowska N, Zaridze D, Lissowska J, Rudnai P, Fabianova E, Mates D, Foretova L, Janout V, Bencko V, Gioia-Patricola L, Hall J, Boffetta P, Hung RJ, Brennan P. DNA repair and cell cycle control genes and the risk of young-onset lung cancer. Cancer Res 2006; 66: 11062-11069.
    
    [33]. Krajinovic M, Labuda D, Mathonnet G, Labuda M, Moghrabi A, Champagne J, Sinnett D. Polymorphisms in genes encoding drugs and xenobiotic metabolizing enzymes, DNA repair enzymes, and response to treatment of childhood acute lymphoblastic leukemia. Clin Cancer Res 2002; 8: 802-810.
    
    [34]. Mei Q, Yan HL, Ding FX, Xue G, Huang JJ, Wang YZ, Sun SH. Single-nucleotide polymorphisms of mismatch repair genes in healthy Chinese individuals and sporadic colorectal cancer patients. Cancer Genet Cytogenet 2006; 171: 17-23.
    
    [35]. Ng PC, Henikoff S. Accounting for human polymorphisms predicted to affect protein function. Genome Res 2002; 12: 436-446.
    
    [36]. Wei Q, Eicher SA, Guan Y, Cheng L, Xu J, Young LN, Saunders KC, Jiang H, Hong WK, Spitz MR, Strom SS. Reduced expression of hMLH1 and hGTBP/hMSH6: a risk factor for head and neck cancer. Cancer Epidemiol Biomarkers Prev 1998; 7:309-314.
    
    [37]. Etzel CJ, Lu M, Merriman K, Liu M, Vaporciyan A, Spitz MR. An epidemiologic study of early onset lung cancer. Lung Cancer 2006; 52: 129-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700