栉孔扇贝生殖相关基因DEAD-box家族和boule的cDNA克隆及其发育表达图式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生殖细胞的发生是发育生物学研究的重要领域。模式动物中的深入研究正在逐步揭示生殖细胞起源和发育的分子机制。同时,功能保守基因的发现也为大量非模式动物的生殖细胞研究提供了契机。本文采用同源克隆策略,在栉孔扇贝中分离获得了生殖相关的DEAD-box家族基因中的Cf-vasa、Cf-PL10和Cf-p68以及DAZ家族基因中的Cf-boule的cDNA,对其进行了序列特征和时空表达分析,并以Cf-vasa mRNA为标记,鉴定了栉孔扇贝原生殖细胞起源的方式和时间,及其在早期幼虫发育中的迁移。
     DEAD-box家族基因编码一类ATP依赖的RNA解旋酶,该家族蛋白被分为VASA, PL10和p68三个亚家族。其中,vasa在许多生物中为原生殖细胞形成和配子发生所需,一些PL10相关基因(人的DBY和果蝇的bel)则参与了配子发生。从栉孔扇贝精巢中克隆得到的DEAD-box基因Cf-vasa、Cf-PL10和Cf-p68的cDNA全长分别为5578 bp、2494 bp和2950 bp,开放阅读框分别编码801、760和703个氨基酸的蛋白。Cf-VASA、Cf-PL10和Cf-p68蛋白具有DEAD-box家族共有的9个保守结构域和GG重复序列,Cf-VASA、Cf-PL10具有特有的ARKF框,Cf-VASA的N端区域存在3个特有的锌指结构(CCHC框)。系统进化分析显示3个蛋白首先与各自的亚家族成员聚类,证明栉孔扇贝Cf-vasa、Cf-PL10和Cf-p68基因在进化上高度保守。空间表达的RT-PCR分析和性腺发育周期的原位杂交结果显示,Cf-vasa在除成熟精子外的所有生殖细胞中特异表达,表明该基因可能参与栉孔扇贝两性配子的发生。胚胎和幼虫RT-PCR分析检测到受精卵至原肠胚的各期胚胎都含有Cf-vasa mRNA。整体原位杂交结果显示Cf-vasa mRNA在受精卵植物极呈高密度集中分布,并随卵裂传递至早期胚胎的特定分裂球,原肠胚中含Cf-vasa mRNA的细胞增至2个,且随之后的幼虫发育逐渐增多。根据以上结果推测,Cf-vasa mRNA可能作为母源生殖质成分参与栉孔扇贝原生殖细胞的决定形成。表达Cf-vasa的原生殖细胞形成于原肠胚时期,在担轮幼虫中对称分布于口凹两侧,并随幼虫发育迁移至D型幼虫末端后,继续沿边缘向腹面迁移。另外,RT-PCR分析检测到Cf-PL10和Cf-p68在性腺和其它成体组织中都有表达。增殖期和成熟期性腺的Cf-PL10表达水平明显强于外套膜、闭壳肌和鳃,Cf-p68在卵巢中随性腺发育成熟表达渐强,暗示这两个基因可能参与了栉孔扇贝的配子发生。
     boule是DAZ基因家族的一员,编码一类RNA结合蛋白,该蛋白调控减数分裂起始的功能在进化上具有保守性。栉孔扇贝Cf-boule cDNA从精巢中克隆得到,全长1879 bp,编码278个氨基酸的蛋白。Cf-BOULE蛋白具有DAZ家族特有的RNP-1和RNP-2结构域,以及1个DAZ重复序列。RT-PCR结果显示,Cf-boule在性腺、闭壳肌和外套膜中表达,性腺中的表达量明显高于后者。生长期性腺的表达水平高于增殖期,卵巢的表达强于相同发育阶段的精巢。原位杂交结果进一步表明,Cf-boule在除成熟精子外的所有生殖细胞中都有表达,推测栉孔扇贝Cf-boule可能参与调控精子发生中的减数分裂。胚胎和幼虫的RT-PCR分析检测到Cf-boule mRNA含量在受精卵至囊胚的各期胚胎中相似,原肠胚和担轮幼虫中明显增加,表明栉孔扇贝早期胚胎中的Cf-boule mRNA是母源性的,原肠胚和担轮幼虫中则有明显的合子表达。整体原位杂交结果显示,Cf-boule mRNA在受精卵至原肠胚的各期胚胎中弥散分布,与Cf-vasa mRNA的分布差异表明Cf-boule mRNA不作为生殖质成分参与栉孔扇贝原生殖细胞的形成。担轮幼虫的原生殖细胞和面盘上方少数细胞中可见Cf-boule的高水平表达,但在随后的发育中消失。Cf-boule在栉孔扇贝胚胎发育包括生殖细胞发生和分化中的作用尚待验证。
Ontogenesis of germ cells is an important problem in developmental biology. The outstanding studies in model animals are revealing the molecular mechanisms of germ cell origin and development, in which some functionally conserved genes through evolution have been discovered. These genes might be useful as markers for an extensive investigation on germ cells of non-model animals. In this thesis, cDNAs of reproduction-related genes including Cf-vasa, Cf-PL10 and Cf-p68 of DEAD-box family and Cf-boule of DAZ family were isolated from Zhikong scallop Chlamys farreri using a homologous cloning strategy, followed by analysis of characterization and spatio-temporal expression. Cf-vasa mRNA was used as a molecular marker to establish the early developmental pattern of scallop primordial germ cells (PGCs) including the model and timing of PGCs origin and the migration in early larvae.
     DEAD-box family genes encode ATP-depended RNA helicase proteins, which are divided into VASA, PL10 and p68 sub-family by phylogenetic analysis. The vasa gene is essential both for germ cell formation and gametogenesis. Some PL10-related genes, such as human DBY and Drosophila bel, are involved in the gametogenesis. Cf-vasa, Cf-PL10 and Cf-p68 cDNAs isolated from C. farreri testis are 5578 bp, 2494 bp and 2950 bp long. The open reading frames (ORFs) encode proteins of 801, 760 and 703 amino acids. Cf-VASA, Cf-PL10 and Cf-p68 proteins share nine conserved motifs and a GG repeat with other DEAD-box members. ARKF motifs only found in VASA- and PL10-related proteins are present in Cf-PL10 and Cf-VASA, which also contains three zinc-finger CCHC motifs conserved among VASA-related proteins. Phylogenetic analysis showed that Cf-VASA, Cf-PL10 and Cf-p68 appeared more closely related to other members of their sub-families, respectively, which indicates that these genes are highly conserved through evolution. RT-PCR analysis of spatial expression and in situ hybridization experiments on developmental cycles of gonads revealed a specific expression of Cf-vasa in all germ cells except mature spermatozoids, suggesting that Cf-vasa might be involved in C. farreri gametogenesis. Cf-vasa mRNAs were detected by RT-PCR in early developmental stages from fertilized oocyte to gastrula. Whole-mount in situ hybridization showed that Cf-vasa mRNAs were localized to the vegetal pole of fertilized oocyte and transmitted to a specific blastomere during cleavages. Two cells containing Cf-vasa mRNAs were observed in gastrula, and the number of these cells increased in following stages. Based on above results, it is postulated that the C. farreri PGCs are determined at early development by maternal germ plasm containing Cf-vasa mRNAs. The putative PGCs with Cf-vasa expression form in gastrula stage, and are located symmetrically at both sides of the stomodeum in trochophore. These cells subsequently migrate to the posterior pole of D-shaped larva and then migrate towards abdomen. Moreover, expression of Cf-PL10 and Cf-p68 in gonads and other adult tissues were detected by RT-PCR. Expression level of Cf-PL10 in proliferative and mature gonads was higher than that in mantle, aductor muscle and gill. Cf-p68 expression in ovary increased along with gonad development. These suggest that Cf-PL10 and Cf-p68 might be involved in C. farreri gametogenesis.
     boule, a member of DAZ gene family, encodes an RNA-binding protein, which play a functionally conserved role in regulating the meiosis entry. A full length Cf-boule cDNA of 1879 bp was isolated from C. farreri testis and encodes a protein of 278 amino acids. Cf-BOULE protein shares the RNP-1, RNP-2 motifs and a DAZ repeat with other DAZ members. Cf-boule expression was detected by RT-PCR in gonads, aductor muscle and mantle, with the most abundance in gonads, where expression level in growing stage was higher than that in proliferative stage. Experiments of in situ hybridization revealed an extensive expression of Cf-boule in all germ cells except mature spermatozoids, suggesting that Cf-boule might be involved in regulating meiosis during C. farreri spermatogenesis. Similar amount of Cf-boule mRNAs in early embryos from fertilized oocyte to blastula was detected by RT-PCR, and that in gastrula and trochophore increased obviously. Above results indicate that Cf-boule mRNAs in early embryos are maternally inherited, and zygotic expression occurs in gastrula and trochophore. Whole-mount in situ hybridization showed a non-specific localization of Cf-boule mRNAs in early development from fertilized oocyte to gastrula. The distributional difference between Cf-boule and Cf-vasa mRNAs suggests that Cf-boule mRNAs are not involved in assembling germ plasm and determining PGCs fate in C. farreri. A high level expression of Cf-boule was observed in the putative PGCs and several cells above velum in trochophore, and disappeared in following stages. The role of Cf-boule in embryonic development including the origin and differentiation of C. farreri germ cells remains unknown.
引文
郭忠海,康现江,穆淑梅。果蝇生殖细胞特化的分子机制。细胞生物学杂志。2006,28:29-32
    Adoutte, A., Balavoine, G., Lartillot, N., Lespinet, O., Prud’homme, B.and de Rosa, R. (2000). The new animal phylogeny: reliability andimplications. Proc. Natl. Acad. Sci. USA 97, 4453-4456.
    Amma, K. (1911).über die Differenzierung der Keimbahnzellen bei denCopepoden. Arch. Zellforsch. 6, 497-576.
    al-Mukhtar, K. A. K. and Webb A. C. (1971). An ultrastructural study of primordial germ cells, oogonia and early oocytes in Xenopus laevis. J. Embryol. Exp. Morph. 26, 195-217.
    Alphey, L., Jimenez, J., White-Cooper, H., Dawson, I., Nurse, P. and Glover, D. (1992). twine, a cdc25 homologue that functions in the male and female germline of Drosophila. Cell 69, 977-988.
    Avis, J. M., Allain, F. H.-T., Howe, P. W. A., Varani, G., Nagai, K. and Neuhaus, D. (1996). Solution structure of the N-terminal RNP domain of U1A protein: the role of C-terminal residues in structure stability and RNAbinding. J. Mol. Biol. 257, 398-411.
    Anderson, D. T. (1973). Embryology and Phylogeny in Annelids and Arthropods. Oxford: Pergamon.
    Bateson, W. (1885). The later stages in the development of Balanoglossus kowalevskii, with a suggestion as to the affinities of the Enteropneusta. Quart. J. Microscop. Sci. 25, 81-122.
    Beard, J. (1900). The morphological continuity of the germ cells in Raja batis. Anat. Anz. 18, 465-485.
    Beard, J. (1902a). The germ cells of Pristiurus. Anat. Anz. 21, 50-61.
    Beard, J. (1902b). The germ cells. I. Raja batis. Zool. Jahrb. Abt. Anat. Ontogenie Tiere 16, 615-702.
    Bednarz, S. (1973). The developmental cycle of the germ cells in several representatives of Trematoda (Digenera). Zool. Pol. 23, 279-326.
    
    Bentley, D., Keshishian, H., Shankland, M., and Toroian-Raymond, A. (1979). Quantitative staging of embryonic development of the grasshopper, Schistocerca nitens. J. Embryol. Exp. Morphol. 54, 47–74.
    Berg, G. J. and Gassner, G. (1978). Fine structure of the blastoderm embryo of the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: gelechiidae). Int. J. Insect Morphol. Embryol. 1, 81-105.
    Bolker, J. A. and Raff, R. A. (1996). Developmental genetics and traditional homology. BioEssays 18, 489-494.
    Boterenbrood, E. C. and Nieuwkoop, P. D. (1973). The formation of the mesoderm in the urodelan amphibians. V. Its regional induction by the endoderm. Wilhelm Roux’Archiv. Entwick. Org. 173, 319-332.
    Bounoure, L. (1939). L’origine des Cellules Reproductrices et le Problème de la Lignée Germinale. Paris: Gauthier-Villars.
    Braat, A. K., Speksnijder, J. E. and Zivkovic, D. (1999). Germ line development in fishes. Int. J. Dev. Biol. 43, 745-760.
    Braat, A. K., Zandbergen, T., van de Water, S., Goos, H. J., and Zivkovic, D. (1999). Characterization of zebrafish primordial germ cells: Morphology and early distribution of vasa RNA. Dev. Dyn. 216, 153–167.
    Bradley, J. T., Kloc, M., Wolfe, K. G., Estridge, B. H. and Bilinski, S. M. (2001). Balbiani bodies in cricket oocytes: development, ultrastructure, and presence of localized RNAs. Differentiation 67, 117-127.
    Brusca, G. J. and Brusca, R. C. (2003). Invertebrates. Sunderland, MA: Sinauer Associates. Buehr, M. and Blackler, A. W. (1970). Sterility and partial sterility in the South African clawed toad following the pricking of the egg. J. Embryol. Exp. Morphol. 23, 375-384.
    Bassez, T., Paris, J., Omilli, F., Dorel, C. and Osborne, H. B. (1990). Posttranscriptional regulation of ornithine decarboxylase in Xenopus oocytes. Development 110, 955-962.
    Blackler, A. W. (1958). Contribution to the study of germ-cells in the Anura. J. Embryol. Exp. Morph. 6, 491-503.
    Bounoure, L. (1934). Recherches sur la lignee germinale chez la grenouille rousse aux premiers stades du developpment. Ann. Sci. Nat. 17, 67-248.
    Buehr, M. L. and Blackler, A. W. (1970). Sterility and partial sterility in the South African clawed toad following the pricking of the egg. J. Embryol. Exp. Morph. 23, 375-384.
    Burd, C. G., Swanson, M. S., Gorlach, M. and Dreyfuss, G. (1989). Primary structures of theheterogeneous nuclear ribonucleoprotein A2, B1 and C2 proteins: A diversity of RNA-binding proteins is generated by small peptide inserts. Proc. Natl. Acad. Sci. USA 86, 9788-9792.
    Burd, C. G. and Dreyfuss, G. (1994). Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615-621.
    Carani, C., Gromoll, J., Brinkworth, M. H., Simoni, M., Weinbauer, G. F. and Nieschlag, E. (1997). cynDAZLA: a cynomolgus monkey homologue of the human autosomal DAZ gene. Mol. Hum. Reprod. 3, 479-483.
    Cenci, G., Bonaccorsi, S., Pisano, C., Verni, F. and Gatti, M. (1994). Chromatin and microtubule organization during premeiotic, meiotic and early postmeiotic stages of Drosophila melanogaster spermatogenesis. J. Cell Sci. 107, 3521-3534.
    Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156-159.
    Cleine, J. H. and Dixon, K. E. (1985). The effect of egg rotation on the differentiation of primordial germ cells in Xenopus laevis. J. Embryol. Exp. Morph. 90, 79-99.
    Cooke, H. J., Lee, M., Kerr, S. and Ruggiu, M. (1996). A murine homologue of the human DAZ gene is autosomal and expressed only in the male and female gonads. Hum. Molec. Genet. 5, 513-516.
    Courtot, C., Fankhauser, C., Simanis, V. and Lehner, C. F. (1992). The Drosophila cdc25 homologue twine is required for meiosis. Development 116, 405-416.
    Czolowska, R. (1972). The fine structure of the‘germinal cytoplasm’in the egg of Xenopus laevis. Wilhelm Roux Arch. EntwMech. Org. 169, 335-344.
    Caldwell, W. H. (1887). The Embryology of Monotremata and Marsupialia. Part I. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 178, 463-486.
    Carré, D., Djediat, C. and Sardet, C. (2002). Formation of a large Vasapositive granule and its inheritance by germ cells in the enigmatic Chaetognaths. Development 129, 661-670.
    
    Carrera, P., Johnstone, O., Nakamura, A., Casanova, J., Ja¨ckle, H., and Lasko, P. (2000). VASA mediates translation through interaction with a Drosophila yIF2 homolog Mol. Cell 5, 181–187.
    Chiquoine, A. D. (1954). The identification, origin, and migration of the primordial germ cells in the mouse embryo. Anat. Rec. 2, 135-146.
    Dale, L., Howes, G., Price, B. M. and Smith, J. C. (1992). Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115, 573-585.
    Dawes, R. (1996). Characterization of the locust Dax gene: Implication for a family of divergent Hox genes and their changing role in early development. PhD thesis, University of Cambridge Department of Genetics.
    Dawes, R., Dawson, I., Falciani, F., Tear, G., and Akam, M. (1994). Dax, a locust Hox gene related to fushi-tarazu but showing no pair-rule expression. Development 120, 1561–1572.
    Dearden, P., Grbic, M., Falciani, F., and Akam, M. (2000). Maternal expression and early zygotic regulation of the Hox3/zen gene in the grasshopper Schistocerca gregaria. Evol. Dev. 2, 261–270.
    Dearden, P. K., and Akam, M. (2001). Early embryo patterning in the grasshopper, Schistocerca gregaria: wg, dpp and caudal expression. Development 128, 3435–3444.
    Dehal, P., Satou, Y., Campbell, R. K., Chapman, J., Degnan, B., De Tomaso, A., Davidson, B., Di Gregorio, A., Gelpke, M., Goodstein, D. M. et al. (2002). The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298, 2157-2167.
    Deppe, U., Schierenberg, E., Cole, T., Krieg, C., Schmitt, D., Yoder, B. and von Ehrenstein, G. (1978). Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 75, 376-380.
    Dixon, K. E. (1994). Evolutionary aspects of primordial germ cell formation. CIBA Found. Symp. 182, 92-120.
    Dohmen, M. R. and Lok, D. (1975). The ultrastructure of the polar lobe of Crepidula fornicata. J. Embryol. Exp. Morphol. 34, 419-428.
    Dohmen, M. R. and Verdonk, N. H. (1974). The structure of a morphogenetic cytoplasm, present in the polar lobe of Bithynia tentaculata (Gastropoda, Prosobranchia). J. Embryol. Exp. Morphol. 31, 423-433.
    Dorer, D. R., Christensen, A. C., and Johnson, D. H. (1990). A novel RNA helicase gene tightly linked to the Triplo-lethal locus of Drosophila. Nucleic Acids Res. 18, 5489–5494.
    Dorn, R., Morawietz, H., Reuter, G., and Saumweber, H. (1993). Identification of an essential Drosophila gene that is homologous to the translation initiation factor eIF-4A of yeast and mouse. Mol. Gen. Genet. 237, 233–240.
    Eddy, E. M. (1975). Germ plasm and the differentiation of the germ cell line. Int. Rev. Cytol. 43, 229-280.
    Elpatievsky, W. (1909). Die Urgeschlechtszellenbildung bei Sagitta. Anat. Anz. 35, 226-239. Ephrussi, A. and Lehmann, R. (1992). Induction of germ cell formation by oskar. Nature 358, 387-392.
    Everett, N. B. (1945). The present status of the germ-cell problem in vertebrates. Biol. Rev. 20, 45-55.
    Extavour, C. and García-Bellido, A. (2001). Germ cell selection in genetic mosaics in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98, 11341-11346.
    Eyal-Giladi, H., Ginsburg, M. and Farbarov, A. (1981). Avian primordial germ cells are of epiblastic origin. J. Embryol. Exp. Morphol. 65, 139-147.
    Eberhart, C. G. and Wasserman, S. A. (1995). The pelota locus encodes a protein required for meiotic cell division: an analysis of G2/M arrest in Drosophila spermatogenesis. Development 121, 3477-3486.
    Eberhart, C. G., Maines, J. Z. and Wasserman, S. A. (1996). Meiotic cell cycle requirement for a fly homologue of human Deleted in Azoospermia. Nature 381, 783-785.
    Ephrussi, A. and Lehmann, R. (1992). Induction of germ cell formation by oskar. Nature 358, 387-392.
    Forristall, C., Pondel, M., Chen, L. and King M. L. (1995). Patterns of localization and cytoskeletal association of two vegetally localized RNAs, Vg1 and Xcat-2. Development 121, 201-208.
    Frenk Mora, S. E. (1993). Embryology in its relation to genetics and evolution. PhD thesis, University of Cambridge Department of Genetics.
    Fujimura, M. and Takamura, K. (2000). Characterization of an ascidian DEAD-box gene, Ci-DEAD1: specific expression in the germ cells and its mRNA localization in the posterior-most blastomeres in early embryos. Dev. Genes Evol. 210, 64-72.
    Fujiwara, Y., Komiya, T., Kawabata, H., Sato, M., Fujimoto, H., Furusawa, M. and Noce, T. (1994). Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc. Natl. Acad. Sci. USA 91, 12258-12262.
    Gatenby, J. B. (1917). The segregation of the germ-cells in Trichogramma evanescens. Quart. J. Microscop. Sci. 62, 149-187.
    Gavis, E. R., Lunsford, L., Bergsten, S. E., and Lehmann, R. (1996). A conserved 90 nucleotide element mediates translational repression of nanos RNA. Development 122, 2791–2800.
    Ghabrial, A., and Schupbach, T. (1999). Activation of a meiotic checkpoint regulates translation of Gurken during Drosophila oogenesis. Nat. Cell Biol. 6, 354–357.
    Ghirardelli, E. (1954). Studi sul determinante germinale (d.g.) nei Chetognati: Richerche sperimentali su Spadella cephaloptera Busch. Pubbls. Staz. zool. Napoli 25, 444-453.
    Ghirardelli, E. (1955). Studi sul determinante germinale (d.g.) nei Chetognati: Effetti della centrifugazione delle uova e azione del LiCl ed NaSCN. Atti Acad. naz. Lincei Rc. 19, 498-502.
    Ginsburg, M., Snow, M. H. L. and McLaren, A. (1990). Primordial germ cells in the mouse embryo during gastrulation. Development 110, 521-528.
    Gomperts, M., García-Castro, M., Wylie, C. and Heasman, J. (1994). Interactions between primordial germ cells play a role in their migration in mouse embryos. Development 120, 135-141. Gustafsson, M. K. S. (1976). Studies on cytodifferentiation in neck region of Diphyllobothrium
    dendriticum Nitzch, 1824. Z. Parasitenk 50, 323-329.
    Gruidl, M. E., Smith, P. A., Kuznicki, K. A., McCrone, J. S., Kirchner, J., Roussell, D. L., Strome, S., and Bennett, K. L. (1996). Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 93, 13837–13842.
    Gururajan, R., Perry-O’Keefe, H., Melton, D. A., and Weeks, D. L. (1991). The Xenopus localized messenger RNA An3 may encode an ATP-dependent RNA helicase. Nature 349, 717–719.
    Gurdon, J. B. (1977). Methods for nuclear transplantation in amphibians. In Methods in Cell Biology (ed. G. Stein, J. Stein and L. J. Kleinsmith), pp. 125- 139. New York: Academic Press.
    Harland, R. M. (1991). In situ hybridization: An improved whole-mount method for Xenopusembryos. In Methods in Cell Biology (ed. B. K. Kay and H. B. Peng), pp. 685-695. New York: Academic Press.
    Heasman, J., Quarmby, J. and Wylie C. C. (1984). The mitochondrial cloud of Xenopus oocytes: the source of the germinal granule material. Dev. Biol. 105, 458-469.
    Hoyle, H. D. and Raff, E. C. (1990). Two Drosophila beta tubulin isoforms are not functionally equivalent. J. Cell. Biol. 111, 1009-1026.
    Harlow, E. and Lane, D. (1988).“Antibodies: A Laboratory Manual.”Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    Hay, B., Jan, L. Y., and Jan, Y. N. (1988). A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55, 577–587.
    Hay, B., Jan, L. Y., and Jan, Y. N. (1990). Localization of vasa, a component of Drosophila polar granules, in maternal-effect mutants that alter embryonic anteroposterior polarity. Development 109, 425–433.
    Ho, K., Dunin-Borkowski, O. M., and Akam, M. (1997). Cellularization in locust embryos occurs before blastoderm formation. Development 124, 2761–2768.
    Heasman, J., Quarmby, J. and Wylie, C. C. (1984). The mitochondrial cloud of Xenopus oocytes: the source of germinal granule material. Dev. Biol. 105, 458-469.
    Heymons, R. (1891). Die Entwicklung der Weiblichen Geschlechtsorgane von Phyllodromia (Blatta) germanica. Z. Wiss. Zool. 53.
    Heymons, R. (1901). Entwicklungsgeschichte der Scolopender. Zoologica 33, 1-244.
    Heys, F. (1931). The problem of the origin of germ cells. Q. Rev. Biol. 6, 1-45.
    Hird, S. N., Paulsen, J. E. and Strome, S. (1996). Segregation of germ granules in living Caenorhabditis elegans embryos: cell-type-specific mechanisms for cytoplasmic localisation. Development 122, 1303-1312.
    Hogan, B. L. (1996). Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580-1594.
    Holland, L. Z. and Holland, N. D. (1992). Early development in the lancelet (=Amphioxus) Branchiostoma floridae from sperm entry through pronuclear fusion: presence of vegetal pole plasm and lack of conspicuous ooplasmic segregation. Biol. Bull. 182, 77-96.
    Houston, D. W. and King, M. L. (2000a). A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development 127, 447-456.
    Houston, D. W. and King, M. L. (2000b). Germ plasm and molecular determinants of germ cell fate. Curr. Top. Dev. Biol. 50, 155-181.
    Huettner, A. F. (1923). The origin of the germ cells in Drosophila melanogaster. J. Morphol. 2, 385-422.
    Hughes, R. L. and Hall, L. S. (1998). Early development and embryology of the platypus. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353, 1101-1114.
    Humphrey, R. R. (1925). The primordial germ cells of Hemidactylium and other Amphibia. J. Morphol. Physiol. 41, 1-43.
    Humphrey, R. R. (1929). The early position of the primordial germ cells in Urodeles: evidence from experimental studies. Anat. Rec. 42, 301-314.
    Ikenishi, K. (1998). Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus. Dev. Growth Differ. 40, 1–10.
    Ikenishi, K. and Nieuwkoop, P. D. (1978). Location and ultrastructure of primordial germ cells (PGCs) in Ambystoma mexicanum. Dev. Growth Diff. 20, 1-9.
    Ikenishi, K., Kotani, M. and Tanabe, K. (1974). Ultrastructural changes associated with UV irradiation in the‘germinal plasm’of Xenopus laevis. Dev. Biol. 36, 155-168.
    Ikenishi, K., Nakazato, S. and Okuda, T. (1986). Direct evidence for the presence of germ cell determinant in vegetal pole cytoplasm of Xenopus laevis and in a subcellular fraction of it. Dev. Growth Diff. 28, 563-568.
    Illmensee, K. and Mahowald, A. P. (1974). Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc. Natl. Acad. Sci. USA 4, 1016-1020.
    Illmensee, K. and Mahowald, A. P. (1976). The autonomous function of germ plasm in a somatic region of the Drosophila egg. Exp. Cell Res. 97, 127-140.
    Illmensee, K., Mahowald, A. P. and Loomis, M. R. (1976). The ontogeny of germ plasm during oogenesis in Drosophila. Dev. Biol. 49, 40-65.
    Ikenishi, K., Okuda, T., Nakazato, S. (1984). Differentiation of presumptive primordial germ cell (pPGC)-like cells in explants into PGCs in experimental tadpoles. Dev. Biol. 103,258-262.
    Illmensee, K. and Mahowald, A. P. (1974). Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc. Natl. Acad. Sci. USA 71, 1016-1020.
    Kerr, J. B. and Dixon K. E. (1974). An ultrastructural study of germ plasm in spermatogenesis of Xenopus laevis. J. Embryol. Exp. Morph. 32, 573-592.
    King, M. L. (1995). mRNA localization during frog oogenesis. In Localized RNAs (ed. H. D. Lipshitz), pp. 137-148. Heidelberg: Germany Springer- Verlag.
    Kloc, M., Spohr, G. and Etkin L. D. (1993). Translocation of repetitive RNA sequences with the germ plasm in Xenopus oocytes. Science 262, 1712-1714.
    Kobayashi, S., Yamada, M., Asaoka, M. and Kitamura, T. (1996). Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature 380, 708-711.
    Iseto, T. and Nishida, H. (1999). Ultrastructural studies on the centrosomeattracting body: electron-dense matrix and its role in unequal cleavages in ascidian embryos. Dev. Growth Diff. 41, 601-609.
    Johnson, A. D., Bachvarova, R. F., Drum, M. and Masi, T. (2001). Expression of axolotl DAZL RNA, a marker of germ plasm: widespread maternal RNA and onset of expression in germ cells approaching the gonad. Dev. Biol. 234, 402-415.
    Johnson, A. D., Drum, M., Bachvarova, R. F., Masi, T., White, M. E. and Crother, B. I. (2003). Evolution of predetermined germ cells in vertebrate embryos: implications for macroevolution. Evol. Dev. 5, 414-431.
    Jones, C. M., Lyons, K. M., Lapan, P. M., Wright, C. V. and Hogan, B. L. (1992). DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction. Development 115, 639-647.
    Juberthie, C. (1964). Recherches sur la biololgie des Opilions. Ann. Spél. 19, 1-237.
    Karagenc, L., Cinnamon, Y., Ginsburg, M. and Petitte, J. N. (1996). Origin of primordial germ cells in the prestreak chick embryo. Dev. Genet. 19, 290-301.
    Kautzsch, G. (1910).über die Entwicklung von Agelena labyrinthica Clerck. II. Teil. Zool. Jarhb. Anat. 30, 535-602.
    Klag, J. (1982). Germ line of Tetrodontophora bielanensis (Insecta, Collembola). Ultrasctructural study on the origin of primordial germ cells. J. Embryol. Exp. Morphol. 72, 183-195.
    Klag, J. and Swiatek, P. (1999). Differentiation of primordial germ cells during embryogenesis of Allacma fusca (L.) (Collembola: Symphypleona). Int. J. Insect Morphol. Embryol. 28, 161-168.
    Kloc, M., Bilinski, S., Chan, A. P. and Etkin, L. D. (2001). Mitochondrial ribosomal RNA in the germinal granules in Xenopus embryos revisited. Differentiation 67, 80-83.
    Kloc, M., Dougherty, M. T., Bilinski, S., Chan, A. P., Brey, E., King, M. L., Patrick, C. W., Jr and Etkin, L. D. (2002). Three-dimensional ultrastructural analysis of RNA distribution within germinal granules of Xenopus. Dev. Biol. 241, 79-93.
    Knaut, H., Pelegri, F., Bohmann, K., Schwarz, H., and Nusslein-Volhard, C. (2000). Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. J. Cell Biol. 149, 875–888.
    Kobayashi, T., Kajiura-Kobayashi, H., and Nagahama, Y. (2000). Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, Tilapia,
    Oreochromis niloticus. Mech. Dev. 99, 139–142.
    Komiya, T., Itoh, K., Ikenishi, K. and Furusawa, M. (1994). Isolation and characterization of a novel gene of the DEAD box protein family which is specifically expressed in germ cells of Xenopus laevis. Dev. Biol. 162, 354–363, doi:10.1006/dbio.1994.1093.
    Komiya, T., and Tanigawa, Y. (1995). Cloning of a gene of the DEAD box protein family which is specifically expressed in germ cells in rats. Biochem. Biophys. Res. Commun. 207, 405–410.
    Kotani, M. (1957). On the formation of the primordial germ cells from the presumptive ectoderm of Triturus gastrulae. J. Inst. Polytech. Osaka City Univ. D. 8, 145-159.
    Kühn, A. (1913). Die Sonderung der Keimesbezirke in der Entwicklung der Sommereier von Polyphemus pediculus de Geer. Zool. Jahrb. Abt. Anat. Ontogenie Tiere 35, 243-340.
    Kumé, M. and Dan, K. (1968). Invertebrate Embryology. Belgrade: Prosveta. Ladurner, P., Rieger, R. and Bagu?à, J. (2000). Spatial distribution and differentiation potential of stem cells in hatchlings and adults in the marine platyhelminth Macrostomum sp.: a bromodeoxyuridine analysis. Dev. Biol.226, 231-241.
    Lasko, P. (1999). RNA sorting in Drosophila oocytes and embryos. FASEB J. 13, 421–433.
    Lasko, P. F., and Ashburner, M. (1988). The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature 335, 611–617.
    Lasko, P. F., and Ashburner, M. (1990). Posterior localization of Vasa protein correlates with, but is not sufficient for, pole cell development. Genes Dev. 4, 905–921.
    Lawson, K. A., Dunn, N. R., Roelen, B. A., Zeinstra, L. M., Davis, A. M., Wright, C. V., Korving, J. P., and Hogan, B. L. (1999). Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424–436.
    Liang, L., Diehl-Jones, W., and Lasko, P. (1994). Localization of Vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development 120, 1201–1211.
    Lassmann, G. W. P. (1936). The early embryological development of Melophagus ovinus L., with special reference to the development of the germ cells. Ann. Entomol. Soc. Am. 29, 397-413.
    Lawson, K. A., Dunn, N. R., Roelen, B. A., Zeinstra, L. M., Davis, A. M., Wright, C. V., Korving, J. P. and Hogan, B. L. (1999). Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424-436.
    Lawson, K. A. and Hage, W. J. (1994). Clonal analysis of the origin of primordial germ cells in the mouse. CIBA Found. Symp. 182, 68-91.
    Lin, S., Long, W., Chen, J. and Hopkins, N. (1992). Production of germ-line chimeras in zebrafish by cell transplants from genetically pigmented to albino embryos. Proc. Natl. Acad. Sci. USA 89, 4519-4523.
    Lehmann, R. and Nüsslein-Volhard, C. (1991). The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development 112, 679-691.
    Mahowald, A. P. (1968). Polar granules of Drosophila. II. Ultrastructural changes during early embryogenesis. J. Exp. Zool. 167, 237-261.
    Melton, D. A. (1987). Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes. Nature 328, 80-82.
    Mosquera, L., Forristall C., Zhou, Y. and King, M. L. (1993). An mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with a nanos-like zinc finger domain.Development 117, 377-386.
    Mahowald, A. P., and Boswell, R. E. (1983). Germ plasm and germ cell development in invertebrates. In“Current Problems in Germ Cell Differentiation”(A. Mclaren and C. C. Wylie, Eds.), pp. 3–17. Cambridge Univ. Press, New York.
    Markussen, F. H., Michon, A. M., Breitwieser, W., and Ephrussi, A. (1995). Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly. Development 121, 3723–3732.
    McLaren, A. (1999). Signaling for germ cells. Genes Dev. 13, 373–376.
    Mochizuki, K., Nishimiya-Fujisawa, C., and Fujisawa, T. (2001). Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Dev. Genes Evol. 211, 299–308.
    Nakao, H. (1999). Isolation and characterization of a Bombyx vasa-like gene. Dev. Genes Evol. 209, 312–316.
    Nelsen, O. E. (1934a). The development of the ovary in the grasshopper, Melanopus differentialis (Acridiidae; Orthoptera). J. Morphol. 55, 515–543.
    Nieuwkoop, P. D. and Faber, J. (1967). Normal Table of Xenopus laevis (Daudin). Amsterdam: North-Holland Publishing Co.
    Nelsen, O. E. (1934b). The segregation of the germ cells in the grasshopper, Melanopus differentialis (Acridiidae; Orthoptera). J. Morphol. 55, 545–565.
    Nieukoop, P. D., and Sutasurya, L. A. (1981).“Primordial Germ Cells of the Invertebrates.”Cambridge Univ. Press, Cambridge.
    Mahowald, A. P. (2001). Assembly of the Drosophila germ plasm. Int. Rev. Cytol. 203, 187-213.
    Manton, S. M. (1928). On the embryology of a mysid crustacean, Hemimysis lamornae. Phil. Trans. R. Soc. Lond. Ser. B. Biol. Sci. 216, 363-463.
    Matova, N. and Cooley, L. (2001). Comparative aspects of animal oogenesis. Dev. Biol. 231, 291-320.
    Matus, D. S., Huber, J. L., Halanych, K. M. and Martindale, M. Q. (2002). The phylogenetic position of the Chaetognaths: a molecular approach using developmental regulatory genes. Integr. Comp. Biol. 42, 1274.
    McLaren, A. (2003). Primordial germ cells in the mouse. Dev. Biol. (in press). Morgan, T. H.(1894). The development of Balanoglossus. J. Morphol. 9, 1-86.
    Naito, M., Sano, A., Matsubara, Y., Harumi, T., Tagami, T., Sakurai, M. and Kuwana, T. (2001). Localization of primordial germ cells or their precursors in stage X blastoderm of chickens and their ability to differentiate into functional gametes in opposite-sex recipient gonads. Reproduction 121, 547-552.
    Nakamura, Y., Makabe, K. W. and Nishida, H. (2003). Localization and expression pattern of type I postplasmic mRNAs in embryos of the ascidian Halocynthia roretzi. Gene Expr. Patterns 3, 71-75.
    Nardi, F., Spinsanti, G., Boore, J. L., Carapelli, A., Dallai, R. and Frati, F. (2003). Hexapod origins: monophyletic or paraphyletic? Science 299, 1887-1889.
    Nelsen, O. E. (1934). The segregation of the germ cells in the grasshopper, Melanoplus differentialis (Acrididae; Orthoptera). J. Morphol. 545-575.
    Nielsen, C. (2001). Animal Evolution: Interrelationships of the Living Phyla. Oxford: Oxford University Press.
    Nieuwkoop, P. D. (1947). Experimental observations on the origin and determination of the germ cells, and on the development of the lateral plates and germ ridges in the urodeles. Arch. Neerl. Zool. 8, 1-205.
    Nieuwkoop, P. D. and Suminski, E. H. (1959). Does the so-called‘germinal plasm’play an important role in the development of the primordial germ cells. Arch. Anat. Microsc. Morphol. Exp. 48, 189-198.
    Nieuwkoop, P. D. and Sutasurya, L. A. (1979). Primordial Germ Cells in the Chordates. Cambridge: Cambridge University Press.
    Nieuwkoop, P. D. and Sutasurya, L. A. (1981). Primordial Germ Cells in the Invertebrates: from epigenesis to preformation. Cambridge: Cambridge University Press.
    Nishida, H. (1987). Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Dev. Biol. 121, 526-541.
    Nishida, H. and Satoh, N. (1983). Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. I. Up to the eight-cell stage. Dev. Biol. 99, 382-394.
    Nishida, H. and Satoh, N. (1985). Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. II. The 16- and 32-cell stages. Dev. Biol. 110, 440-454.
    Nishikata, T., Hibino, T. and Nishida, H. (1999). The centrosome-attracting body, microtubule system, and posterior egg cytoplasm are involved in positioning of cleavage planes in the ascidian embryo. Dev. Biol. 209, 72-85.
    Noce, T., Okamoto-Ito, S. and Tsunekawa, N. (2001). Vasa homolog genes in mammalian germ cell development. Cell Struct. Funct. 26, 131-136.
    Ogawa, M., Amikura, R., Akasaka, K., Kinoshita, T., Kobayashi, S. and Shimada, H. (1999). Asymmetrical distribution of mitochondrial rRNA into small micromeres of sea urchin embryos. Zool. Sci. 16, 445-451.
    Okkelberg, P. (1921). The early history of the germ cells in the Brook Lamprey, Entosphenus wilderi (Gage). J. Morphol. 35, 1-152.
    Olsen, L. C., Aasland, R. and Fjose, A. (1997). A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech. Dev. 66, 95-105.
    Ozdzenski, W. (1967). Observations on the origin of primordial germ cells in the mouse. Zool. Pol. 117, 367-379.
    Pehrson, J. R. and Cohen, L. H. (1986). The fate of the small micromeres in sea urchin development. Dev. Biol. 113, 522-526.
    Peterson, K. J. and Eernisse, D. J. (2001). Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol. Dev. 3, 170-205.
    Ransick, A., Cameron, R. A. and Davidson, E. H. (1996). Postembryonic segregation of the germ line in sea urchins in relation to indirect development. Proc. Natl. Acad. Sci. USA 93, 6759-6763.
    Risley, P. L. (1933). Contributions on the development of the reproductive system in Sternotherus odoratus (Latreille). I. The embryonic origin and migration of the primordial germ cells. Zeit. Zellforsch. mikrosk. Anat. 18, 459-492.
    Ruiz-Trillo, I., Paps, J., Loukota, M., Ribera, C., Jondelius, U., Bagu?à, J. and Riutort, M. (2002). A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc. Natl. Acad. Sci. USA 99, 11246-11251.
    Reijo, R., Lee, T.-Y., Salo, P., Alagappan, R., Brown, L. G., Rosenberg, M., Rozen, S., Jaffe, T., Straus, D., Hovatta, O., de la Chapelle, A., Silber, S. and Page D. C. (1995). Diversespermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nature Genet. 10, 383-393.
    Reijo, R., Alagappan, R. K., Patrizio, P. and Page, D. C. (1996a). Severe oligozoospermia resulting from deletions of azoospermia factor gene on Y chromosome. Lancet 347, 1290-1293.
    Reijo, R., Seligman, J., Dinulos, M. B., Jaffe, T., Brown, L. G., Disteche, C. M. and Page, D. C. (1996b). Mouse autosomal homologue of DAZ, a candidate male sterility gene in humans, is expressed in male germ cells before and after puberty. Genomics 35, 346-352.
    Ressom R. E. and Dixon, K. E. (1988). Relocation and reorganization of germ plasm in Xenopus embryos after fertilization. Development 103, 507-518.
    Robb, D. L., Heasman, J., Raats, J. and Wylie, C. (1996). A kinesin-like protein is required for germ plasm aggregation in Xenopus. Cell 87, 823- 831.
    Rongo, C. and Lehmann, R. (1996). Regulated synthesis, transport and assembly of the Drosophila germ plasm. Trends in Genetics 12, 102-109.
    Ruggiu, M., Speed, R., Taggart, M., McKay, S. J., Kilanowski F., Saunders, P., Dorin, J. and Cooke, H. J. (1997). The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 384, 73-77.
    Sambrook, J., Fritsch, E. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.
    Saxena, R., Brown, L. B., Hawkins, T., Alagappan, R. K., Skaletsky, H., Reeve, M. P., Reijo, R., Rozen. S., Dinulos, M. B., Disteche, C. M. and Page D. C. (1996). The DAZ gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned. Nature Genet. 14, 292-299.
    Shan, Z., Hirschman, P., Seebacher, T., Edelmann, A., Jauch, A., Morell, J., Urbitsh, P. and Vogt, P. H. (1996). A SPGY copy homologous to the mouse gene Dazla and the Drosophila gene boule is autosomal and expressed only in the human male gonad. Hum. Mol. Genet. 5, 2005-2011.
    Siomi, H., Siomi, M. C., Nussbaum, R. L. and Dreyfuss, G. (1993). The protein product of the Fragile X gene, FMR1, has characteristics of an RNAbinding protein. Cell 74, 291-298.
    Smith, D. L. (1966). The role of a‘germinal plasm’in the formation of primordial germ cells inRana pipiens. Dev. Biol. 14, 330-347.
    Spradling, A. C. (1986). P element-mediated transformation. In Drosophila: A Practical Approach (ed. D. B. Roberts), pp. 175-197. Oxford UK: IRL Press. Strome, S. and Wood W. B. (1982). Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae and adults of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 79, 1558-1562.
    Swanson, M. S. and Dreyfuss, G. (1988). Classification and purification of proteins of heterogeneous nuclear ribonucleoprotein particles by RNAbinding specificities. Mol. Cell. Biol. 8, 2237-2241.
    Saffman, E. E. and Lasko, P. (1999). Germline development in vertebrates and invertebrates. Cell. Mol. Life Sci. 55, 1141-1163.
    Saitou, M., Barton, S. C. and Surani, M. A. (2002). A molecular programme for the specification of germ cell fate in mice. Nature 418, 293-300.
    Selwood, L. (1968). Interrelationships between developing oocytes and ovarian tissues in the chiton Sypharochiton septentriones (Ashby) (Mollusca, Polyplacophora). J. Morphol. 125, 71-103.
    Smith, L. D. (1966). The role of a‘germinal plasm’in the formation of primordial germ cells in Rana pipiens. Dev. Biol. 14, 330-347.
    Spengel, J. W. (1893). Die Enteropneusten des Golfes von Neapel. Napoli: Fauna Flora Golfes con Neapel Monogr.
    Stoner, D. S. and Weissman, I. L. (1996). Somatic and germ cell parasitism in a colonial ascidian: possible role for a highly polymorphic allorecognition system. Proc. Natl. Acad. Sci. USA 93, 15254-15259.
    Strome, S. and Wood, W. B. (1982). Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae, and adults of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 79, 1558-1562.
    Sutasurya, L. A. and Nieuwkoop, P. D. (1974). The induction of the primordial germ cells in the urodeles. Wilhelm Roux’Archiv. Entwick. Org. 175, 199-220.
    Swift, C. H. (1914). Origin and early history of the primordial germ-cells of the chick. Am. J. Anat. 483-516.
    Takamura, K., Fujimura, M. and Yamaguchi, Y. (2002). Primordial germ cells originate from the endodermal strand cells in the ascidian Ciona intestinalis. Dev. Genes Evol. 212, 11-18.
    Tam, P. P. and Zhou, S. X. (1996). The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev. Biol. 178, 124-132.
    Technau, G. (1987). A single cell approach to problems of cell lineage and commitment during embryogenesis of Drosophila melanogaster. Development 100, 1-12.
    Torpey, N. P., Heasman, J., and Wylie, C. C. (1992). Distinct distribution of vimentin and cytokeratin in Xenopus oocytes and early embryos. J. Cell Sci. 101, 151-160.
    Turner, D. L. and Weintraub, H. (1994). Expression of achaete-scute homologue 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev. 8, 1434-1447.
    Tamarelle, M. (1979). Recherches ultrastructurales sur la ségregation et le développement de la lignée germinale chez les embryons de quatre collemboles (Insecta: Apterygota). Int. J. Insect Morphol. Embryol. 8, 95-111.
    Tanabe, K. and Kotani, M. (1974). Relationship between the amount of the“germinal plasm”and the number of primordial germ cells in Xenopus laevis. J. Embryol. Exp. Morphol. 31, 89-98.
    Technau, G. M. and Campos-Ortega, J. A. (1986). Lineage analysis of transplanted individual cells in embryos of Drosophila melanogaster Part III. Commitment and proliferative capabilities of pole cells and midgut progenitors. Roux’s Arch. Dev. Biol. 195, 489-498.
    Telford, M. J. and Holland, P. W. (1993). The phylogenetic affinities of the Chaetognaths: a molecular analysis. Mol. Biol. Evol. 10, 660-676.
    Telford, M. J., Lockyer, A. E., Cartwright-Finch, C. and Littlewood, D. T. J. (2003). Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proc. Roy. Soc. Lond. B. 270, 1077-1083.
    Tomioka, M., Miya, T. and Nishida, H. (2002). Repression of zygotic gene expression in the putative germline cells in ascidian embryos. Zool. Sci. 19, 49-55.
    Toyooka, Y., Tsunekawa, N., Takahashi, Y., Matsui, Y., Satoh, M. and Noce, T. (2000). Expression and intracellular localization of mouse Vasahomologue protein during germ cell development. Mech. Dev. 93, 139-149.
    Tsang, T. E., Khoo, P. L., Jamieson, R. V., Zhou, S. X., Ang, S. L., Behringer, R. and Tam, P. P. (2001). The allocation and differentiation of mouse primordial germ cells. Int. J. Dev. Biol. 45, 549-555.
    Tsunekawa, N., Naito, M., Sakai, Y., Nishida, T. and Noce, T. (2000). Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells. Development 127, 2741-2750.
    Ullmann, S. L., Shaw, G., Alcorn, G. T. and Renfree, M. B. (1997). Migration of primordial germ cells to the developing gonadal ridges in the tammar wallaby Macropus eugenii. J. Reprod. Fertil. 110, 135-143.
    Verdonk, N. H. (1973). Cytoplasmic localization in Bithynia tentaculata and its influence on development. Malacol. Rev. 6, 57.
    Walker, C. and Streisinger, G. (1983). Induction of Mutations by Gamma Rays in Pre-gonial Germ Cells of Zebrafish Embryos. Genetics 103, 125-136.
    Walvig, F. (1963). The Gonads and the Formation of the Sexual Cells. In The Biology of Myxine (ed. A. Brodal and R. Fange), pp. 530-580. Oslo: Universitetsforlaget.
    Whitington, P. M. and Dixon, K. E. (1975). Quantitative studies of germ plasm and germ cells during early embryogenesis of Xenopus laevis. J. Embryol. Exp. Morphol. 33, 57-74.
    Williamson, A. and Lehmann, R. (1996). Germ Cell Development in Drosophila. Ann. Rev. Cell Dev. Biol. 12, 365-391.
    Wolff, E. (1964). L’origine de la lignée germinale chez les vertebrés et chez quelques groupes d’invertebrés. Paris: Hermann.
    Wolpert, L. (1998). Principles of development. London/Oxford: Current Biology/Oxford University Press.
    Wakahara, M. (1977). Partial characterization of‘primordial germ cellforming activity’localized in vegetal pole cytoplasm in anuran eggs. J. Embryol. Exp. Morph. 39, 221-233.
    Wakahara, M. (1978). Induction of supernumerary primordial germ cells by injecting vegetal pole cytoplasm into Xenopus eggs. J. Exp. Zool. 203, 159-164.
    White-Cooper, H., Alphey, L. and Glover, D. M. (1993). The cdc25 homologue twine is required for only some aspects of the entry into meiosis in Drosophila. J. Cell Sci. 106, 1035-1044.
    Whitington, P. McD. and Dixon K. E. (1975) Quantitative studies of germ plasm and germ cellsduring early embryogenesis of Xenopus laevis. J. Embryol. Exp. Morph. 33, 57-74.
    Wylie, C. C., Holwill, S., O’Driscoll, M., Snape, A. and Heasman, J. (1984). Germ plasm and germ cell determination in Xenopus laevis as studied by cell transplantation analysis. Cold Spring Harbor Symposia on Quantitative Biology 50, 37-43.
    Woods, F. H. (1931). History of the germ cells in Sphaerium striatinum (Lam.). J. Morphol. Physiol. 51, 545-595.
    Woods, F. H. (1932). Keimbahn determinants and continuity of the germ cells in Sphaerium striatinum (Lam.). J. Morphol. 53, 345-365.
    Wylie, C. (2000). Germ cells. Curr. Opin. Genet. Dev. 10, 410-413.
    Ying, Y. and Zhao, G. Q. (2001). Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev. Biol. 232, 484-492.
    Ying, Y., Liu, X. M., Marble, A., Lawson, K. A. and Zhao, G. Q. (2000). Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol. Endocrinol. 14, 1053-1063.
    Yoon, C., Kawakami, K. and Hopkins, N. (1997). Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124, 3157-3166.
    Zhou, Y. and King, M. L. (1996). Localization of Xcat-2 RNA, a putative germ plasm component, to the mitochondrial cloud in Xenopus stage I oocytes. Development 122, 2947-2953.
    Züst, B. and Dixon, K. E. (1975). The effect of U.V. irradiation of the vegetal pole of Xenopus laevis eggs on the presumptive primordial germ cells. J. Embryol. Exp. Morphol. 34, 209-220.
    Yen, P H., Chai, N. N. and Salido, E. C. (1996). The human autosomal gene DAZLA: testis specificity and a candidate for male sterility. Hum. Mol. Genet. 5, 2013-2017.
    Zhang, J. and King, M. L. (1996). Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning. Development 122, 4119-4129.
    Zhou, Y. and King M. L. (1996). Localization of Xcat-2 RNA, a putative germ plasm component, to the mitochondrial cloud in Xenopus stage I oocytes. Development 122, 2947-2953.
    Züst, B. and Dixon, K. E. (1975). The effect of u.v. irradiation of the vegetal pole of Xenopus laevis eggs on the presumptive primordial germ cells. J. Embryol. Exp. Morph. 34, 209-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700