大鼠切牙Apical bud和磨牙Hertwig’s上皮根鞘细胞生物学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙齿是由口腔上皮和神经嵴来源的外胚间充质相互作用而形成的。人类牙齿的发育,经历蕾状期、帽状期、钟状期、牙根发育和牙齿萌出期。人类的牙齿和啮齿类动物的磨牙在牙冠发育完成以后,成釉器内釉、外釉上皮细胞在颈环处增生,形成两层上皮结构,即Hertwig’s上皮根鞘(Hertwig’s epithelial root sheath,HERS),标志着牙根发育的启动。而啮齿类动物(如大鼠、小鼠)的切牙终生不发育形成典型牙根结构,且终生不断萌出。研究认为,在切牙的末端存在apical bud结构,其中有成体干细胞,后者不断缓慢分裂增生,分化为成釉细胞,形成釉质,使得切牙不断生长。那么HERS和apical bud这两种来源于成釉器的牙上皮细胞究竟有着怎样的生物学性质,它们之间又有怎样的差异而导致形成两种完全不同的发育模式呢?本课题的目的是研究这两种上皮细胞的生物学性质,寻找其间的差异,为牙根发育机制的研究提供实验依据。
     本课题采用组织学、免疫组织化学、细胞培养、RT-PCR、蛋白质组学和体内种植等技术方法进行了以下四部分实验研究,主要研究内容和结果如下:
     第一部分apical bud和HERS组织学研究
     实验一:采用组织学方法观察了出生后(postnatal, PN)0-10d SD大鼠切牙apical bud和磨牙HERS的组织学结构,结果发现:apical bud位于切牙胚唇侧末端,PN0d即已形成,为三层细胞构成的上皮结构,含有内、外釉上皮,及其间的星网层细胞,星网层细胞含量非常丰富,使得apical bud成为球形结构深入末端牙乳头组织中。HERS在PN 7d SD大鼠磨牙胚颈部形成,为内、外釉上皮两层细胞构成,星网层细胞消失,而呈连续的扁平状结构。
     实验二:采用免疫组织化学方法观察了FGF10, Notch1, BMPs在apical bud和HERS组织中的表达。结果发现:FGF10在apical bud周围牙乳头细胞中表达,而HERS内侧牙乳头细胞表达阴性;Notch1表达于apical bud中;BMPs在HERS中表达。表明虽然有着共同的发育起源,但是一些特异的调控因子表达存在差异。提示牙根发育启动存在特异性的调控机制。
     实验三:采用透射电镜方法,观察apical bud和HERS超微结构。结果:apical bud中部分细胞胞膜增厚,形成桥粒样细胞连接,部分细胞中间丝丰富,并呈类似黏液上皮样细胞形态。HERS两层上皮细胞整齐排列,内层为柱状或立方状细胞,细胞之间胞膜相嵌、融合,形成紧密连接。
     第二部分apical bud和HERS细胞生物学性质研究
     实验一:通过机械分离切牙胚颈部唇侧末端和磨牙胚颈部组织,酶消化法原代混合培养,10%FBS DMEM/F12培养液连续培养,差别胰酶消化法进行细胞纯化的方法,分别培养apical bud和HERS细胞。结果发现:在10%FBS DMEM/F12培养液中原代细胞生长状态良好,增殖迅速,经3次差别消化得到纯化的上皮细胞。免疫细胞化学实验证实得到的细胞为上皮细胞。
     实验二:通过MTT检测、流式细胞术、免疫细胞化学、茜素红染色和RT-PCR等方法对apical bud和HERS细胞一些生物学性质进行了初步研究。结果发现:apical bud细胞表达Amelogenin, Ameloblastin, Notch1,而HERS细胞表达BMP2,4。体外培养的apical bud细胞有矿化形成能力。
     第三部分apical bud和HERS细胞差异蛋白质组学研究
     实验一:通过双向凝胶电泳实验对apical bud和HERS细胞蛋白表达谱进行研究和对比。结果发现:apical bud和HERS细胞差异表达蛋白有145个,相对于apical bud细胞,HERS细胞表达的蛋白新增36点,缺失23点,有68点表达上调,有18点下调。
     实验二:通过肽质量指纹谱方法对实验一得到的差异蛋白进行研究,结果:鉴定出10个蛋白质,其功能涉及细胞的氧化还原反应、酶活性等方面。第四部分apical bud和HERS细胞与牙乳头细胞团体内种植实验研究
     利用体外培养的apical bud和HERS细胞分别与切牙和磨牙胚牙乳头细胞重组后,细胞团种植于大鼠肾被膜下。结果发现:apical bud和切牙牙乳头细胞团形成组织结构规则的釉质和牙本质组织,HERS细胞与磨牙牙乳头细胞团形成了骨样牙本质样组织。表明apical bud和牙乳头细胞间可以相互诱导,分化出成釉细胞和成牙本质细胞,形成牙体组织,HERS细胞能够诱导牙乳头细胞分化为成牙本质细胞。
Tooth development is the result of the interactions between ectoderm epithelium and mesenchyme from neural crest. Human tooth development is a reciprocal and consecutive process, which includes bud, cap, bell stages, tooth root development and tooth eruption. As human tooth and rodent molar, after completion of tooth crown, the inner and outer epithelium of enamel organ proliferate at the cervical loop and form a bilayered epithelial sheath, known as Hertwig’s epithelial root sheath (HERS), which is the initiation of root development. However, the rodent incisors grow and erupt continuously the whole life. It is the adult stem cells residing on the apical bud of the incisors that leads to the continuous growth. What reasons exist in these two epithelia, the apical bud and HERS cells, resulting in the two totaly different developmental modals? The aim of this study is to explore the biological characters and differences between the two cells, in order to provide experimental evidence for the studies on the mechanism of root development.
     In this study, histology, immunohistochemistry, cell culture, RT-PCR, in vivo implantation and proteomics methods were used to conduct following four sections of experimental study. The major contents and results are as follows:
     Section 1 Study on apical bud and HERS tissues
     In experiment 1, PN0-10d SD rats’apical bud and HERS structures were systematically observed by histological method. It was found that apical bud resided on the labial tip of the mandibular incisor, which had formed at birth. Inner, outer epithelial and stellate reticulum cells comprised the apical bud and the stellate reticulum cells were pretty populous, which caused a spherical bulge between the dental papilla and follicle tissues. At PN 7d, HERS began to develop at the molar crown cervix. The inner and outer epithelia fused and developed to HERS, and the stellate reticulum cells dissappeared, leading to a continuous and flat shape.
     In experiment 2, the expression of some molecules, such as FGF10, Notch1 and BMPs were detected in/around the apical bud and HERS tissues by immunohistochemistry. It was found that FGF10 was possitive in the dental papilla close to the apical bud, whereas none was existed around the HERS. Notch1 were expressed in the apical bud cells. BMPs was possitive in the HERS cells. The results indicated that some certain molecules were differently expressed by the two cells, although they came from the common origin, the enamel organ.
     In experiment 3, the apical bud and HERS’s ultrastructures were observed by transmission electron micrograph(TEM). Some apical bud cells’membrane thickened and formed brige-like cells connection. Some cells contained plenty middle fiber and presented as mucus-like epithelia phenotype. The bilayed HERS cells lined up regularly, the inner were column and the outer were flat cells. The HERS cells connected tightly by membrane insertion and fusion.
     Section 2 Study on the biological characters of apical bud and HERS cells
     In experiment 1, mechanical separation of the incisor germs’labial tip and molar germs’cervical portion, primary mixed culture by enzyme digestion and differential trypsinization were operated and the two epithelial cells were cultured with 10% fetal bovine serum(FBS) DMEM/F12. It was found that primary cells grew well and proliferated rapidly. Purified epithelial cells were obtained after three times of differential trypsinization, which were confirmed by immunocytochemistry.
     In experiment 2, the biological characters of purified apical bud and HERS cells were investigated primarily by MTT, flow cytometry (FCM), immunocyto- chemistry, alizarin red and RT-PCR. It was found that Amelogenin, Ameloblastin and Notch1 were expressed by apical bud cells, whereas BMP2,4 were expressed by HERS cells. Apical bud cells cultured in vitro had an ability to mineralization formation.
     Section 3 Comparative proteomics between apical bud and HERS cells
     In experiment 1, the proteins expressed by apical bud and HERS cells were investigated by two-dimensional electrophoresis. It was found that 145 differential proteins appeared. Compared to apical bud cells, 36 new spots appeared, 23 spots disappeared, 68 spots were up-regulated and 18 were down-regulated in the HERS cells.
     In experiment 2, differential proteins obtained from the above were investigated by peptide mass fingerprinting method. It was found that 10 proteins were identified, whose functions involved in the aspects of redox regulation of the cell, Catalysis of the NADPH-dependent reduction of 3-deoxyglucosone, and so on.
     Section 4 Study on the cell pellet of the apical bud or HERS cells combined by dental papilla cells implanted in vivo
     In this experiment, apical bud cells and HERS cells were recombined respectively with incisor or molar dental papilla cells and implanted into the rats’renal capsules. It was found that apical bud and incisor papilla cells pellet developed into well-formed enamel and dentin tissues, whereas the combination of HERS cells and molar papilla cells produced bone-like dentin tissues. The result demonstrated that apical bud and dental papilla cells could induce each other, resulting in ameloblats and odontoblasts differentiation, and eventually form dental structures.
引文
1. Nanci A, Somerman MJ. Periodontium. In‘‘Ten Cate’s Oral Histology: Development, Structure, and Function’’. Mosby,St.Louis. Nanci A, 2003. 445.
    2. Owens PDA. Ultrastructure of Hertwig’s epithelial root sheath during early root development in premolar teeth in dogs. Arch Oral Biol. 1978, 23:97-104.
    3. Gurling FG, Sampson WJ. Epithelial root-sheath changes during molar formation in the mouse. Arch Oral Biol. 1985, 30:757-764.
    4. Yamamoto T, Domon T, Takahashi S, Arambawatta AK, Wakita M. Immunolocation of proteoglycans and bone-related noncollagenous glycoproteins in developing acellular cementum of rat molars. Cell Tissu Res. 2004, 317:299-312.
    5. Yamamoto H, Ishizeki K, Sasaki J, Nawa T. Ultrastructural andhistochemical changes and apoptosis of IEE in rat enamel-free area. J Craniofac Genet Dev Biol. 1998,18:44-50.
    6. Yamamoto H, Cho SW, Kim EJ, Kim JY, Fujiwara N, Jung HS. Developmental properties of the Hertwig’s epithelial root sheath in mice. J Dent Res. 2004, 83(9):688-692.
    7. Luan X, Ito Y, Diekwisch TG. Evolution and development of Hertwig’s epithelial root sheath. Dev Dyn. 2006, 235(5):1167–1180.
    8. Thomas HF. Root formation. Int J Dev Biol. 1995, 39(1): 231–237.
    9. Cho MI, Garant PR. Ultrastructural evidence of directed cell migration during initial cementoblast diVerentiation in root formation. J Periodontal Res. 1988, 23(4): 268–276.
    10. DiekwischTG. Developmental biology of cementum. Int J Dev Biol. 2001,45(5–6): 695–706.
    11. MacNeil RL, Thomas HF. Development of the murine periodontium II. Role of theepithelial root sheath in formation of the periodontal attachment. J Periodontol. 1993,64(4): 285–291.
    12. Wentz FM, Weinmann JP, Schour I. Prevalence, distribution and morphological changes of the epithelial remnants in the molar region of the rat. J Dent Res. 1950, 29: 639–646.
    13. Hasegawa N, Kawaguchi H, Ogawa T, Uchida T, Kurihara H. Immunohistochemical characteristics of epithelial cell rests of Malassez during cementum repair. J Periodontal Res. 2003, 38(1): 51–56.
    14. Harada H, Mitsuyasu T, Toyono T, Toyoshima K. Epithelial stem cells in teeth. Odontology. 2002, 90:1-6.
    15. Kawano S, Saito M, Handa K, Morotomi T, Toyono T, Seta Y, Nakamura N. Characterization of dental epithelial progenitor cells derived fromcervical-loop epithelium in a rat lower incisor. J Dent Res. 2004, 83:129-133.
    16. Ohshima H, Nakasone N, Hashimoto E, Sakai H, Nakakura-Ohshima K, Harada H. The eternal tooth germ is formed at the apical end of continuously growing teeth. Arch Oral Biol. 2005, 50:153-157.
    17. Teitel-Kalweit D, Donath K. Histologic studies on the distribution of the epithelial rests of Malassez between the 10th and 90th year of life. Dtsch Zzhnarztl Z. 1985, 40:551-554.
    18. Kaneko H, Hashimoto S, Enokiya Y, Ogiuchi H, Shimono M. Cell proliferation and death of Hertwig’s epithelial root sheath in the rat.Cell Tissue Res. 1999, 298(1):95–103.
    19. Cerri PS, Freymuller E, Katchburian E. Apopotosis in the early developing periodontium of rat molars. Anat Rec. 2000, 258:136-144.
    20. Cerri PS, Katchburian E. Apoptosis in the epithelial cells of the rests of Malassez of the periodontium of rat molars. J Periodont Res. 2005, 40:365-372.
    21. Lester KS. The incorporation of epithelial cells by cementum. J Ultrastruct Res. 1969, 27:63-87.
    22. Andujar MB, Magloire H, Hartmann DJ, Ville G, Grimaud JA. Early mouse molar root development: cellular changes and distribution of fibronection, laminin and type-IV collagen. Differentiation. 1985, 30:112-122.
    23. Helder MN, Karg H, Bervoets TJ. Bone morphogenetic protein-7 (osteogenic protein-1, OP-1) and tooth development. J Dent Res. 1998, 77(4):545.
    24. Suzuki M, Inoue T, Shimono M. Behavior of epithelial root sheath during tooth root formation in porcine molars: TUNEL, TEM, and immunohisto-chemical studies. Anat Embryol (Berl). 2002, 206(1-2):13-20.
    25. Diekwisch TG. The developmental biology of cementum. Int J Dev Biol. 2001, 45:695-706.
    26. Slavkin HC, Bessem C, Fincham AG. Human and mouse cementum proteins immunologically related to enamel proteins. Biochem Biophys Acta. 1989, 991:12-18.
    27. Jayawardena CK, Takahashi N, Watanabae E, Takano Y. On the origin of intrinsic matrix of acellular extrinsic fiber cementum: Studies on growing cementum pearls of normal and bisphosphonate-affected guinea pig molars. Eur J Oral Sci. 2002, 110(3): 261-269.
    28. Beertsen W, VandenBos T, Everts V. Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: Inhibition of acellular cementum formation. J Dent Res. 1999, 78(6): 1221-1229.
    29. Vanden BT, Handoko G, Niehof A, Ryan LM, Coburn SP, Whyte MP, Beertsen W. Cementum and dentin inhypophosphatasia. J Dent Res. 2005, 84(11):1021–1025.
    30. Paynter KJ, Pudy G. A study of the structure, chemical nature, and development of cementum in the rat. Anat Rec. 1958, 131(2): 233–251.
    31. Bosshardt DD, Selvig KA. Dental cementum: The dynamic tissue covering of the root. Periodontol 2000. 1997, 13: 41–75.
    32. Cho MI, Garant PR. Development and general structure of the periodontium. Periodontol 2000. 2000, 24: 9–27.
    33. Saygin NE, Giannobile WV, Somerman MJ. Molecular and cell biology of cementum. Periodontology 2000. 2000, 24: 73–98.
    34. Ten Cate AR. The development of the periodontium-a largely ectomesenchymally derived unit. Periodontol 2000. 1997, 13: 9–19.
    35. Diekwisch TG. Pathways and fate of migratory cells during late tooth organogenesis. Connect Tissue Res. 2002, 43(2–3): 245–256.
    36. Chai Y, Jiang X, Ito Y, Bringas PJ, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 2000, 127(8): 1671–1679.
    37. Kemoun P, Laurencin-Dalicieux S, Rue J, Farges JC, Gennero I, Conte-Auriol F. Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives(EMD) in vitro. Cell Tissue Res. 2007, 329(2):283-294.
    38. Slavkin HC, Boyde A. Cementum: An epithelial secretory product? J Dent Res. 1975, 53: 157.
    39. Bosshardt DD. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res. 2005, 84(5):390–406.
    40. Bosshardt DD, Nanci A. Immunodetection of enamel-and cementum-related (bone) proteins at the enamel-free area and cervical portion of the tooth in rat molars. J Bone Miner Res. 1997, 12(3): 367–379.
    41. Bosshardt DD, Nanci A. Hertwig’s epithelial root sheath, enamel matrix proteins, and initiation of cementogenesis in porcine teeth. J Clin Periodontol. 2004, 31(3):184–192.
    42. Bosshardt DD, Schroeder HE. Cementogenesis reviewed: A comparison between human premolars and rodent molars. Anat Rec. 1996, 245(2): 267–292.
    43. MacNeil RL, Somerman MJ. Development and regeneration of the periodontium: Parallels and contrasts. Periodontol 2000. 1999, 19: 8–20.
    44. Zeichner-David M. Regeneration of periodontal tissues: Cementogenesisrevisited. Periodontol 2000. 2006, 41: 196–217.
    45. Zeichner-David M, Oishi K, Su Z, Zakartchenko V, Chen LS, Arzate H, Bringas PJ. Role of Hertwig’s epithelial root sheath cells in tooth root development. Dev Dyn. 2003, 228(4): 651–663.
    46. Lezot F, Davideau JL, Thomas B, Sharpe P, Forest N, Berdal A. Epithelial Dlx-2 homeogene expression and cementogenesis. J. Histochem. Cytochem. 2000,48(2), 277–284.
    47. Toyosawa S, Okabayashi K, Komori T, Ijuhin N. mRNA expresssion and protein localization of dentin matrix protein 1 during dental root formation. Bone. 2004; 34:124-133.
    48. Bosshardt DD. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res. 2005, 84(5):390–406.
    49. Tummers M, Thesleff I. Root or crown: A developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development. 2003, 130(6): 1049–1057.
    50. Yokohama-Tamaki T, Ohshima H, Fujiwara N, Takada Y, Ichimori Y, Wakisaka S, Ohuchi H, Harada H. Cessation of Fgf10 signaling, resulting in a defective dental epithelial stem cell compartment, leads to the transition from crown to root formation. Development. 2006, 133(7): 1359–1366.
    51. Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev. 2000, 92(1): 19–29.
    52. Thesleff I. Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci. 2003, 116(Pt 9): 1647–1648.
    53. Harada H, Kettunen P, Jung HS, Mustonen T, Wang YA, Thesleff I. Localization of putative stem cells in dental epitheliumand their association with Notch and FGF signaling. J Cell Biol. 1999, 147(1): 105–120.
    54. Lezot F, Davideau JL, Thomas B, Sharpe P, Forest N, Berdal A. Epithelial Dlx-2 homeogene expression and cementogenesis. J Histochem Cytochem. 2000, 48(2): 277–284.
    55. Handa K, Saito M, Yamauchi M. Cementum matrix formation in vivo by cultured dental follicle cells. Bone. 2002, 31(5):606-611.
    1. Fuchs E, Segre JA. Stem cells: A new lease on life. Cell. 2000, 100(1): 143–155.
    2. Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 2001, 19:193-204.
    3. Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell. 1997, 88(3):287-298.
    4. Harada H, Kettunen P, Jung HS. Localization of putative stem cells in dentalepithelium and their association with Notch and FGF signaling. J Cell Biol. 1999, 147(1):105-120.
    5. Fuchs E. Skin stem cells: rising to the surface. J Cell Biol. 2008, 180(2):273-84.
    6. Gronthos S, Brahim J, Li W. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002, 81(8):531-535.
    7. Robey PG. Stem cells near the century mark. J Clin Invest. 2000, 105(11): 1489–1491.
    8. Watt FM, Hogan BLM. Out of eden: Stem cells and their niches. Science. 2000, 287:1427-1430.
    9. Marshman E, Booth C, Potten CS. The intestinal epithelial stem cells. Bio Essays. 2002, 24:91-98.
    10. Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev. 2003, 13:543-550.
    11. Zhang J, Niu C, Ye L. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003, 425(6960):836-841.
    12. Bartold PM, Shi S, Gronthos S. Stem cells and periodontal regeneration. Periodontol 2000. 2006, 40:164–172.
    13. Chai Y, Slavkin HC. Prospects for tooth regeneration in the 21st century: A perspective. Microsc Res Tech. 2003, 60(5):469–479.
    14. Fong HK, Foster BL, Popowics TE, Somerman MJ. The crowning achievement: Getting to the root of the problem. J Dent Educ. 2005, 69(5):555–570.
    15. Ohazama A, Modino SA, Miletich I, Sharpe PT. Stem-cell-based tissue engineering of murine teeth. J Dent Res. 2004, 83(7): 518–522.
    16. Risbud MV, Shapiro IM. Stem cells in craniofacial and dental tissue engineering. Orthod Craniofac Res. 2005, 8(2):54–59.
    17. Thesleff I, Tummers M. Stem cells and tissue engineering:Prospects for regenerating tissues in dental practice. Med Princ Pract. 2003, 12(1): 43–50.
    18. Gronthos S, Mankani M, Brahim J, Robey PG., Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000, 97(25):13625–13630.
    19. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004, 364:149-155.
    20. Handa K, Saito M, Yamauchi M, Kiyono T, Sato S, Teranaka T. Cementum matrix formation in vivo by cultured dental follicle cells. Bone. 2002,31: 606-611.
    21. Zhao M, Reddi A, Jin Q, Berry JE, Somerman MJ. BMP-2 induces differentiation of dental follicle cells. J Dent Res. 2001, 80:786.
    22. Diekwisch TG. The developmental biology of cementum. Int J Dev Biol. 2001, 45:695-706.
    23. Luan X, Ito Y, Dangaria S, Diekwisch TG. Dental follicle progenitor cell heterogeneity in the developing mouse periodontium.Stem Cells Dev. 2006, 15(4):595-608.
    24. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod. 2008,34(2):166-171.
    25. Ballini A, De Frenza G, Cantore S, Papa F, Grano M, Mastrangelo F, TetèS, Grassi FR. In vitro stem cell cultures from human dental pulp and periodontal ligament: new prospects in dentistry. Int J Immunopathol Pharmacol. 2007, 20(1):9-16.
    26. Goldberg M, Smith A. Cells and extracellular matrices of dentin and pulp: Abiological basis for repair and tissue engineering. Crit. Rev. Oral Biol. Med. 2004, 15(1): 13–27.
    27. Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S, Robey PG, Shi S. Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res. 2003, 82(12): 976–981.
    28. Shi S, Robey PG., Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone. 2001, 29(6): 532–539.
    29. Miura M, Gronthos S, Zhao M, Lu B, Fisher L W, Robey PG., Shi S. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA. 2003, 100(10):5807–5812.
    30. Laino G, Graziano A, Aquino R, Pirozzi G, Lanza V, Valiante S, DeRosa A, Naro F, Vivarelli E, Papaccio G. An approachable human adult stem cell source for hard‐tissue engineering. J Cell Physiol. 2006, 206(3):693–701.
    31. Grzesik WJ, Narayanan AS. Cementum and periodontal wound healing and regeneration. Crit Rev Oral Biol Med. 2002, 13(6): 474–484.
    32. Taba MJ, Jin Q, Sugai JV, Giannobile WV. Current concepts in periodontal bioengineering. Orthod Craniofac Res. 2005, 8(4): 292–302.
    33. Wang HL, Greenwell H, Fiorellini J, Giannobile W, Ovenbacher S, Salkin L, Townsend C, Sheridan P, Genco RJ. Periodontal regeneration. J Periodontol. 2005, 76(9):1601–1622.
    34. Zohar R, Tenenbaum HC. How predictable are periodontal regenerative procedures? J Can Dent Assoc. 2005, 71(9):675–680.
    35. Bartold PM, McCulloch CA, Narayanan AS, Pitaru S. Tissue engineering: A new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000. 2000, 24: 253–269.
    36. Gould TR, Melcher AH, Brunette DM. Migration and division of progenitor cell populations in periodontal ligament after wounding. J Periodontal Res. 1980, 15(1):20–42.
    37. McCulloch CA. Progenitor cell populations in the periodontal ligament of mice. Anat Rec. 1985, 211(3): 258–262.
    38. McCulloch CA. Origins and functions of cells essential for periodontal repair: Therole of fibroblasts in tissue homeostasis. Oral Dis. 1995, 1(4):271–278.
    39. Melcher AH. Cells of periodontium:Their role in the healing of wounds. Ann R Coll Surg Engl. 1985, 67(2):130–131.
    40. Seo BM, Miura M, Sonoyama W, Coppe C, Stanyon R, Shi S. Recovery of stem cells from cryopreserved periodontal ligament. J Dent Res. 2005, 84(10): 907–912.
    41. Bartold PM, Shi S, Gronthos S. Stem cells and periodontal regeneration. Periodontol 2000. 2006, 40:164–172.
    42. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res. 2005, 8(3):191–199.
    43. Harada H, Mitsuyasu T, Toyono T, Toyoshima K. Epithelial stem cells in teeth. Odontology. 2002, 90(1): 1–6.
    44. Ohshima H, Nakasone N, Hashimoto E, Sakai H, Nakakura-Ohshima K, Harada H. The eternal tooth germ is formed at the apical end of continuously growing teeth. Arch Oral Biol. 2005, 50(2):153–157.
    45. Yamashiro T, Wang XP, Li Z, Oya S, Aberg T, Fukunaga T, Kamioka H, Speck NA, Takano-Yamamoto T, Thesleff I. Possible roles of runx1 and sox9 in incipient intramembranous ossification. J Bone Miner Res. 2004,19(10): 1671-1677.
    46. Morotomi T, Kawano S, Toyono T, Kitamura C, Terashita M, Toyoshima K, Harada H. In vitro diVerentiation of dental epithelial progenitor cells through epithelial-mesenchymal interactions. Arch Oral Biol. 2005, 50(8): 695-705.
    47. Wang XP, Suomalainen M, Felszeghy S. An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biol. 2007,5(6):e159.
    48. Nishimura EK, Jordan SA, Oshima H. Dominant role of the niche in melanocyte stem-cell fate determination. Nature. 2002, 416(6883):854-860.
    49. Hogan BLM. Morphogenesis. Odontology. 1999, 96:225-233.
    50. Tummers M, Thesleff I. Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development. 2003, 130:1049-1057.
    51. Harada H, Toyono T, Toyoshima K. FGF10 maintains stem cell compartment in developing mouse incisors. Development. 2002, 129:1533-1541.
    52. Thesleff I, Wang XP, Suomalainen M. Rrgulation of epithelial stem cells in tooth regeneration.C R Biol. 2007, 330:561-564.
    53. Luan X, Ito Y, Diekwisch TG. Evolution and development of Hertwig's epithelial root sheath. Dev Dyn. 2006, 235(5):1167-1180.
    54. Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev. 2000, 92:19-29.
    55. Tummers M, Thesleff I. Root or crown: A developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development.2003, 130(6): 1049-1057.
    56. Harada H, Toyono T, Toyoshima K, Ohuchi H. FGF10 maintains stem cell population during mouse incisor development. Connect Tissue Res. 2002,43(2-3):201-204.
    57. Harada H, Ohshima H. New perspectives on tooth development and the dental stem cell niche. Arch Histol Cytol. 2004, 67(1):1-11.
    58. Yokohama-Tamaki T, Ohshima H, Fujiwara N, Takada Y, Ichimori Y, Wakisaka S, Ohuchi H, Harada H. Cessation of Fgf10 signaling, resulting in a defective dental epithelial stem cell compartment, leads to the transition from crown to root formation. Development. 2006, 133(7): 1359-1366.
    1. Bechtel JJ, Petty TL, Saccomanno G. Five year survival and later outcome of patients with X-ray occult lung cancer detected by sputum cytology. Lung Cancer. 2000, 30:1-7.
    2. Hieter P, Boguski M. Functional genomics: it’s all you read it. Science.1997, 278:60l-602.
    3. Bader GD, Heilbut A, Andrens B. Functional genomics and protemic: Charting a multidimensional map of the yeast cel1. Trends Cell Biol. 2003, 13:344-356.
    4. Moritz AL, Ji H, Schutz F. A proteome strategy for fractionating proteins an d peptides using for continuous free-flow electrophoresis coupled off-line to reversed-phase high-performance liquid chromatography. Anal Chem. 2004, 76:4811-4824.
    5. Patterson SD. Proteomics: the industrialization of protein chemistry. Curr Opin Biotech. 2000, 11: 413-418.
    6. Jain KK. Proteomics:new technologies and their applications. DDT. 2001, 6(9):457-459.
    7. Wilkins MR, Pasquali C, Appel RD. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology. 1996, 14(1): 61-65.
    8. Wilkins MR, Sanchez JC, Williams KL. Current challenges and future applications for protein maps and post-translational vector maps in proteome projects. Electrophoresis. 1996, 179(5): 830-838.
    9. Wasinger VC,CordweU SJ,Cerpa-Poljak A. Progress with gene-product mapping of the mollicutes: mycoplasma genitalium. Electrophoresis. 1995, 16(7): 1090-1094.
    10. Soo JL,Kyun HK,Ji SP.Comparative analysis of cell surface proteins in chronic and acute leukemia cell lines.Bioehem Biophys Res Commun. 2007,357:620-626.
    11. Pandey A, Mann M. Proteomics to study genes and genomes. Nature. 2000, 405(6788):837-846.
    12. Zhao JH, Wang XQ, Liu ZH. Content and methods of functional genomics. Prog Biochem Biophy. 2000, 27:6-8.
    13. Cao ZC, Yu JW, Hang WN. Proteomics-leading the postgenome era. China Biotechnology. 2005, 25:33-38.
    14. Veerasingharn SJ, Sellerd KW, Raizada MK. Functional genomics as an emerging strategy for the investigation of central mechanisms in experimental hyperterrsion. Prog Biophys Mol Biol. 2004, 84:107-123.
    15. Kodadck T. Protein mieroarray:prospects and problems. Chem Bio. 2001, 8:105-115.
    16.刘上峰,傅俊江.双向电泳技术原理及其应用.国外医学生理病理科学与临床分册. 2002, 22(2):197-199.
    17. O’Farrell PH. High-resolution two-dimensional electrophoresis of protein. Bio1 Chem. 1975, 250:4007-4021.
    18. Jensen ON, Wilm M,Shevchenko A. Method in molecular Biology:2-D Proteome analysis protocols. Humana Press Inc. 1998, 112:513-530.
    19. Barry RC,Alsaker BL,Robison JF.Quantitative evaluation of sample application methods for semipreparative separations of basic proteins by two-dimensional gel electrophoresis. Electrophoresis. 2003,24:3390-3404.
    20. Yan JX,Devenish AT,Wait R.Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics. 2002,2(12):1682-1698.
    21. Tonge R, Shaw J, Middleton B. Validation and development of fluorescence two-dimensional differential gel electrophoresis Proteomics technology. Proteomics. 2001, 1(3):377-396.
    22. Ana M,Laura GG,Willy RG.Derivatization of biomolecules for chemiluminesocent detection in capillary electrophoresis. Anal TechnolBiomed Life Sci. 2003, 793(1):49-74.
    23. Fields S.Proteomics in Genomeland. Science , 2001, 291(5507) :1221-1224.
    24. Gygi SP, Corthals GL, Zhang Y. Evaluation of two-dimensional gel electrophoresis-hasedproteome analysis technology. Proc Natl Acad Sci USA. 2000, 97(17): 9390-9395.
    25. Han DK, Eng J, Zhou H. Quantltative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Bioteehnol. 2001, 19(10): 946-951.
    26. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989,246(4926):64-71.
    27. Karas M,Hillenkamp F. Laser desorption of proteins with molecular masses exceeding 10000 daltons. Anal Chem. 1988, 60(20):2299-2301.
    28. Zhang W,Czernik AJ,Yungwirth L.Matrix-assisted laser desorption mass spectrometric peptide mapping of proteins separated by two-dimensional gel electrophoresis: Determination of phosphorylation in synapsin I. Protein Sci. 1994, 3(4):677-686.
    29. Haebel S, KehrJ. Matrix-assisted laser desorption/ionization time of flight mass spectrometry peptide mass fingerprints and post source decay: a 1ool for the identification and analysis of phloem proteins from Cucurbita maxima Dueh. Separated by two-dimensional polyacrylamide gel electrophoresis. Planta. 2001, 213:586-593.
    30. Moore LE, Pfeiffer R, Warner M. Identificati0n of bio-markers of arsenic exposure and metabolism in urine using SELDI technology. Bio Chem Mol Toxieol. 2005, 19(3): 176-185.
    31. Mehl JT, Hercules DM.Direct TLC-MALDI coupling using a hybrid plate. Anal Chem. 2000,72(1):68-73.
    32. Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci USA. 1993, 90(11):5011-5015.
    33. Lueking A,Horn M,Eickhoff H. Protein microarrays for gene expression and antibody screening. Anal Biochem. 1999, 270(1):103-111.
    34. Zhu H,Snyder M.Protein chip technology. Curr Opin Chem Biol. 2003,7(1):55-63.
    35. Humphery SI, Cordwell SJ, Blackstock WP. Proteome research: Comple- mentarity and limitations with respect to the RNA and DNA worlds. Electrophoresis. 1997, 18(8):1217-1242.
    36. Cui JW, Wang J, He K. Two-dimensional electrophoresis protein profiling as an analytical tool for human acute leukemia classification. Electrophoresis. 2005, 26(1):268-279.
    37. Patel BB, Li XM, Dixon MP. Searchable high-resolution 2D gel proteome of the human colon crypt. J Proteome Res. 2007, 6(6):2232-2238.
    38. Nguyen DM, Schrump DS. Lung cancer staging in the genomics era. Thorac Surg Clin. 2006;16(4): 329-337.
    39. Wadsworth JT, Somers KD, Cazares LH. Serum protein profiles to Identify head and neck cancer. Clin Cancer Res. 2004, 10(5): 1623-1632。
    40. Macarthur DJ,Jacques NA. Proteome Analysis of Oral Pathogens. J Dent Res. 2003, 82(11):870-876.
    41. Huang CM. Comparative proteomic analysis of human whole saliva. Arch Oral Biol. 2004, 49(12):951-962.
    42. Lundy FT, Orr DF,Gallagher JR.Identification and overexpression of human neutrophil -defensins (human neutrophil peptides 1, 2 and 3) in squamous cell carcinomas of the human tongue. Oral Oncol. 2004, 40(2):139-144.
    43. Huang X, Wei Y, Li L, Wen Y, Yang J, Liu B, Song X, Zhao J. Serum proteomics study of the squamous cell carcinoma antigen 1 in tongue cancer.Oral Oncol. 2006, 42(1):26-31.
    44. Nagpal JK,Das BR.Oral cancer: reviewing the present understanding of its molecular mechanism and exploring the future directions for its effective management. Oral Oncol. 2003, 39(3):213-221.
    45. An J, Sun JY, Yuan Q, Tian HY, Qiu WL, Guo W, Zhao FK. Proteomics analysis of differentially expressed metastasis-associated proteins in adenoid cystic carcinoma cell lines of human salivary gland. Oral Oncol, 2004, 40(4): 400-408.
    46. Min N,Zhuan B,Ming-Wen F. J Oral Sci Res. 2005, 21(4):402-404.
    47. Hubbard MJ,Kon JC.Proteomic analysis of dental dissues. Anal Technol Biomed Life Sci. 2002, 771(1/2):211-220.
    48. Tom Berkelman, Tirra Stenstedt. 2-D electrophoresis principles and methods. Amersham Biosciences. 1998.
    49. Gygi SP,Rist B,Aebersold R.Measuring gene expression by quantitative proteome analysis. Curr Opin Biotechnol. 2000, 11(4):396-401.
    1. Ohshma H, Nakasone N, Hashimoto E. The eternal tooth germ is formed at the apical end of continuously growing teeth. Arch Oral Biol. 2005, 50(2):153-157.
    2. Harada H, Mitsuyasu T, Toyono T, Toyoshima K. Epithelial stem cells in teeth. Odontology. 2002, 90(1): 1–6.
    3. Luan X, Ito Y, Diekwisch TG. Evolution and development of Hertwig’s epithelial root sheath. Dev Dyn. 2006, 235(5):1167-1180.
    4. Thomas HF. Root formation. Int J Dev Biol. 1995, 39(1): 231-237.
    5. Yamamoto H, Cho SW, Kim EJ, Kim JY, Fujiwara N, Jung HS. Developmental Properties of the Hertwig’s Epithelial Root Sheath in mice. J Dent Res, 2004, 83(9): 688-692.
    6.刘晓辉.大鼠磨牙Hertwig上皮根鞘在牙根发育中作用的实验研究.博士学位论文. 2007, 51-56.
    7.邢向辉.大鼠牙根发育模式相关基因的筛选及部分基因功能的研究.博士学位论文. 2005, 41-45.
    8. Tummers M, Thesleff I. Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development. 2003, 130(6):1049-1057.
    9. Harada H, Ohshima H. New perspectives on tooth development and the dental stem cell niche. Arch Histol Cytol. 2004, 67(1):1-11.
    10. Helder MN, Karg H, Bervoets TJ. Bone morphogenetic protein-7(osteogenic protein-1, OP-1) and tooth development. J Dent Res. 1998, 77(4):545.
    11. Suzuki M, Inoue T, Shimono M. Behavior of epithelial root sheath during tooth root formation in porcine molars: TUNEL, TEM, and immunohisto- chemical studies. Anat Embryol (Berl). 2002, 206(1-2):13-20.
    12. Cho MI, Garant PR. Ultrastructural evidence of directed cell migration during initial cementoblast diVerentiation in root formation. J Periodontal Res. 1988, 23(4): 268–276.
    13. DiekwischTG. Developmental biology of cementum. Int J Dev Biol. 2001, 45(5–6): 695–706.
    14. MacNeil RL, Thomas HF. Development of the murine periodontium II. Role of theepithelial root sheath in formation of the periodontal attachment. J Periodontol. 1993, 64(4): 285–291.
    15. Yokohama-Tamaki T, Ohshima H, Fujiwara N, Takada Y, Ichimori Y, Wakisaka S, Ohuchi H, Harada H. Cessation of Fgf10 signaling, resulting in a defective dental epithelial stem cell compartment, leads to the transition from crown to root formation. Development. 2006, 133(7): 1359–1366.
    16. Thesleff I, J?rvinen E, Suomalainen M. Affecting tooth morphology and renewal by fine-tuning the signals mediating cell and tissue interactions. Novartis Found Symp. 2007, 284:142-53; 153-63.
    17. Harada H, Toyono T,Toyoshima K. FGF10 maintains stem cell compartment in developing mouse incisors. Development. 2002, 129:1533-1541.
    18. Fong HK, Foster BL, Popowics TE, Somerman MJ. The crowning achieve- ment: Getting to the root of the problem. J Dent Educ. 2005,69(5):555–570.
    19. Zeichner-David M,Oishi K,Su Z. Role of Hertwig’s epithelial root sheath cells in tooth root development. Dev Dyn. 2003, 228:651-663.
    20. Yamashiro T, Wang XP, Li Z, Oya S, Aberg T, Fukunaga T, Kamioka H, Speck NA, Takano-Yamamoto T, Thesleff I. Possible roles of runx1 and sox9 in incipient intramembranous ossification. J Bone Miner Res. 2004, 19(10): 1671-1677.
    21. Jernvall J, Abert T, Kettunen P, Keranen S, Thesleff I. The life history ofembroyonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development. 1998, 125:161-169.
    22. Hogan BLM. Morphogenesis. Odontology. 1999, 96:225-233.
    23. Tummers M, Thesleff I. Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development. 2003, 130:1049-1057.
    24. Harada H, Toyono T, Toyoshima K. FGF10 maintains stem cell compartment in developing mouse incisors. Development. 2002, 129:1533-1541.
    25. Harada H, Kettunen P, Jung HS. Localizationg of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol. 1999, 147(1):105-120.
    26. Fortini ME, Artavanis-Tsakonas S. Notch: neurogenesis is only part of the picture. Cell. 1993, 75:1245-1247.
    27. Bray S. A Notch affair. Cell. 1998, 93:499-503.
    28. Carlesso N, Aster JC, Sklar J. Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood. 1999, 93:838-848.
    29. Miralles F, Lamotte L, Couton D. Interplay between FGF10 and Notch signalling is required for the self-renewal of pancreatic progenitors. Int J Dev Biol. 2006, 50(1):17-26.
    30. Hart A, Papadopoulou S, Edlund H. FGF10 maintains notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells. Dev Dyn. 2003, 228(2):185-193.
    31. Thesleff I, Mikkola M. The role of growth factors in tooth development. Int Rev Cytol. 2002, 217:93-135.
    32. Neubuser A, Peters H, Ballings R, Martin GR. Antagonistic interactionsbetween FGF and BMP4 signaling pathways: A mechanism for positioning the sites of tooth formation. Cell. 1997,90:147-155.
    33. Peters H, Balling R. Teeth: where and how to make them. Trends Genet. 1999,15: 59-65.
    34. Ferguson CA, Tucker AS, Christensen L. Activin is an essential early mesenchymal signal in tooth development that is required for patterning of the murine dentition. Genes Dev. 1998, 12:2636-2649.
    35. Sarkar L, Sharpe PT. Expression of Wnt signaling pathway genes during tooth development. Mech Dev. 1999, 85:197-200.
    36. Kettunen P, Laurikkala J, Itaranta P. Association of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis, Dev Dyn. 2000, 219:322-332.
    37. Coin R, Lesot H, Vonesch JL, Haikel Y, Ruch JV. Aspects of cell proliferation kinetics of the inner dental epithelium during mouse molar and incisor morphogenesis: a reappraisal of the role of the enamel knot area. Int J Dev Biol. 1999, 43:261-267.
    38. Andl T, Ahn K, Kairo A. Epithelial Bmpr 1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development. 2004, 131:2257-2268.
    39. Liu W, Sun X, Braut A. Distinct function for Bmp signaling in lip and palate fusion in mice. Development. 2005, 132:1453-1461.
    40. Harada H, Kettunen P, Jung HS. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol. 1999, 147(1):105-120.
    41. Wang XP, Suomalainen M, Felszeghy S. An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biol. 2007,5(6):e159.
    1. Thomas HF. Root formation. Int J Dev Biol. 1995, 39:231-237.
    2. Diekwisch TG. The developmental biology of cementum. Int J Dev Biol. 2001, 145(5–6):695–706.
    3. Luan X, Ito Y, Diekwisch TG. Evolution and development of Hertwig's epithelial root sheath. Dev Dyn. 2006, 235(5):1167-1180.
    4. Yokohama-Tamaki T, Ohshima H, Fujiwara N, Takada Y, Ichimori Y, Wakisaka S, Ohuchi H, Harada H. Cessation of Fgf10 signaling, resulting in a defective dental epithelial stem cell compartment, leads to the transition from crown to root formation. Development. 2006, 33(7):1359-1366.
    5. Harada H,Mitsuyasu T,Toyono T. Epithelial stem cells in teeth. Odontology. 2002. 90:1-6.
    6. Tummers M , Thesleff I. Root or Crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development. 2003, 130:1049-1057.
    7. Harada H, Kettunen P, Jung HS. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol. 1999, 147(1):105-120.
    8. Kawano S, Saito M, Handa K, Morotomi T, Toyono T, Seta Y, Nakamura N, Uchida T, Toyoshima K, Ohishi M, Harada H. Characterization of dental epithelial progenitor cells derived from cervical loop epithelium in rat lower incisor. J Dent Res. 2004, 83(2):129–133.
    9. Ohshima H, Nakasone N, Hashimoto E, Sakai H, Nakakura-Ohshima K, Harada H. The eternal tooth germ is formed at the apical end of continuously growing teeth. Arch Oral Biol. 2005, 50:153-157.
    10. Jinga VV, Gafencu A, Antohe F, Constantinescu E, Heltianu C, Raicu M, Manolescu I, Hunziker W, Simionescu M. Establishment of a pure vascular endothelial cell line from human placenta. Placenta. 2000, 21(4):325-36.
    11. Na GY, Paek SH, Park BC, Kim DW, Lee WJ, Lee SJ, Kim MK, Kim JC. Isolation and characterization of outer root sheath melanocytes of humanhair follicles. British Journal of Dermatology. 2006, 155 (5):902–909.
    12. Tang YL, Shen L, Qian K, Phillips MI. A novel two-step procedure to expand cardiac Sca-1+ cells clonally. Biochem Biophys Res Commun. 2007, 359(4):877-83.
    13. Hui-Jun MA, Xue-Zhuang YUE, Da-Guang WANG, Cheng-Rang LI, Wen-Yuan ZHU. A modified method for purifying amelanotic melanocytes from human hair follicles. J Derm. 2006, 33: 239–248.
    14. Fuchs E,Segre JA. Stem cells: a new lease on life. Cell. 2000, 100:143-152.
    15. Harada H , Toyono T , Toyoshima K. FGF10 maintains stem cell compartment in developing mouse incisors. Development. 2002, 129(6):1533-1541.
    16. Thesleff I, Wang XP, Suomalainen M. Regulation of epithelial stem cells in tooth regeneration. C R Biol. 2007, 330(6-7):561-564.
    17. Wang XP, Suomalainen M, Felszeghy S. An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biol, 2007:5(6):e159.
    18. Kawano S, Saito M, Handa K. Characterization of dental epithelial progenitor cells derived from cervical-loop epithelium in a rat lower incisor. J Dent Res. 2004, 83(2):129-33.
    19. Morotomi T, Kawano S, Toyono T. In vitro differentiation of dental epithelial progenitor cells through epithelial-mesenchymal interactions. Arch Oral Biol. 2005, 50(8):695-705.
    20.司徒镇强,吴军正.细胞培养[M].西安:世界图书出版公司. 1996:77-87.
    21. Mouri Y, Shiba H, Mizuno N. Differential gene expression of bone-related proteins in epithelial and fibroblastic cells derived from human periodontal ligament. Cell Biol Int. 2003, 27(7):519-524.
    22. Suzuki M, Inoue T, Shimono M. Behavior of epithelial root sheath duringtooth root formation in porcine molars TUNEL, TEM, and immunohisto- chemical studies. Anat Embryol. 2002; 206(1-2):13-20.
    23. Yamamoto T, Domon T, Takahashi S. Immunolocation of proteoglycans and bonerelated noncollagenous glycoproteins in developing acellular cementum of rat molars. Cell Tissue Res. 2004, 317:299–312.
    24. Bosshardt DD. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res. 2005, 84(5):390– 406.
    25. Thomas HF, Kollar EJ. Differentiation of odontoblasts in grafted recombi- nants of murine epithelial root sheath and dental mesenchyme. Arch Oral Biol. 1989, 34(1):27-35.
    26. Zeichner-David M, Oishi K, Su Z, Zakartchenko V, Chen LS, Arzate H, Bringas PJr. Role of Hertwig’s epithelial root sheath cells in tooth root development. Dev Dyn. 2003, 228:651-663.
    27. Sonoyama W, Seo BM, Yamaza T. Human Hertwig's epithelial root sheath cells play crucial roles in cementum formation. J Dent Res. 2007, 86(7): 594-599.
    28. MacNeil RL, Thomas HF. Development of murine periodontium. II. Role of the epithelial root sheath in formation of the periodontal attachment. J Periodontol. 1993, 64:285–291.
    29. Tabata MJ, Matsumura T, Liu JG. Expression of cytokeratin14 in ameloblast- lineage cells of the developing tooth of rat, both in vivo and in vitro. Arch Oral Biol. 1996, 41(11):1019-1027.
    30. Lumsden AG. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development. 1988, 103:155–169.
    31. MacKenzie A, Ferguson MW, Sharpe PT. Expression patterns of thehomeobox gene, Hox-8, in the mouse embryo suggest a role in specifying tooth initiation and shape. Development. 1992, 115:403–420.
    32. Thesleff I, Vaahtokari A, Partanen AM. Regulation of organogenesis. Common molecular mechanisms regulating the development of teeth and other organs. Int J Dev Biol. 1995, 39:35–50.
    33. Vainio S, Karavanova I, Jowett A, Thesleff I. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell. 1993, 75:45–58.
    34. Zhang YD, Chen Z, Song YQ, Liu C, Chen YP. Making a tooth: growth factors, transcription factors, and stem cells. Cell Res. 2005; 15(5):301-316.
    35. Thesleff I, Nieminen P. Tooth morphogenesis and cell differentiation. Curr Opin Cell Biol. 1996, 8:844-850.
    36. Harada H, Toyono T, Toyoshima K, Yamasaki M, Itoh N, Kato S, Sekine K, Ohuchi H. FGF10 maintains stem cell compartment in developing mouse incisor. Development. 2002, 129:1533–1541.
    37. Morotomi T, Kawano S, Toyono T, Kitamura C, Terashita M, Uchida T. In vitro differentiation of dental epithelial progenitor cells through epithelial– mesenchymal interactions. Archives of Oral Biology. 2005, 50(8): 695-705.
    38. Slavkin HC, Bringas P Jr, Bessem C. Hertwig's epithelial root sheath differentiation and initial cementum and bone formation during long-term organ culture of mouse mandibular first molars using serumless, chemically-defined medium. J Periodontal Res. 1989, 24(1): 28-40.
    39. Bosshardt DD, Nanci A. Immunolocalization of epithelial and mesenchymal matrix constituents in association with inner enamel epithelial cells. J Histochem Cytochem. 1998, 46(2): 135-142.
    40. Nakatomi M, Morita I, Eto K, Ota MS. Sonic hedgehog signaling isimportant in tooth root development. J Dent Res, 2006, 85(5): 427-31.
    41.司徒镇强,吴军正主编.细胞培养.西安:世界图书出版西安公司,2004.245
    42. Limeback H. Enamel protein and collagen production by cells subcultured from porcine tooth bud explants. Biochem Cell Biol. 1987, 65: 698–709.
    43. DenBesten PK, Mathews CH, Gao C, Li W. Primary culture and characteriza- tion of enamel organ epithelial cells. Connect Tissue Res. 1998, 38(1-4): 3-8.
    44. DenBesten PK, Machule D, Zhang Y, Yan Q, Li W. Characterization of human primary enamel organ epithelial cells in vitro. Arch Oral Biol, 2005, 50(8): 689-694.
    45.边兴艳,尹学念. MTT比色法及其应用.国外医学临床生物化学与检验学分册. 1998, 19(2): 83-85.
    46. Artavanis-Tsakonas S, Simpson P. Choosing a cell fate: a view from the Notch locus. Trends Genet. 1991, 7:403-408.
    47. Artavanis-Tsakonas S, Matsuno K, Fortini ME. Notch signaling. Science. 1995, 268:225-232.
    48. Lewis J. Notch signaling and the control of cell fate choices in vertebrates. Semin Cell Dev Biol. 1998, 9:583-589.
    49. Hogan BLM. Morphogenesis. Odontology. 1999, 96:225-233.
    50. Johansson CB, Momma S, Clarke DL.Identification of a neural stem cell in the adult mammalian central nervous system. Cell. 1999, 96(1):25-34.
    51. Artavanis-Tsakonas S,Rand MD,Lake RJ.Notch signaling:cell fate control and signal integration in development. Science. 1999,284(5415):770-776.
    52. Gronthos S, Mankani M, Brahim J. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000, 97(25): 13625-13630.
    53.陆群,吴补领,王冀姝. Notch信号分子于小鼠牙髓干细胞样细胞表达的研究.华西口腔医学杂志. 2004, 22(1):54-56.
    54. Paine ML, Snead ML. Tooth developmental biology: Disruptions to enamel‐matrix assembly and its impact on biomineralization. Orthod Craniofac Res. 2005, 8(4):239–251.
    55. Hatakeyama J, Philp D, Hatakeyama Y, Haruyama N, Shum L, Aragon MA, Gibson CW, Sreenath T, Kleinman HK, Kulkarni AB. Amelogenin-mediated regulation of osteoclastogenesis, and periodontal cell proliferation and migration.J Dent Res. 2006, 85(2):144–149.
    56. Hatakeyama J, Sreenath T, Hatakeyama Y, Thyagarajan T, Shum L, Gibson CW, Wright JT, Kulkarni AB. The receptor activator of nuclear factor-kappa B ligand-mediated osteoclastogenic pathway is elevated in amelogenin- nullmice. J Biol Chem. 2003, 278(37): 35743–35748.
    57. Boabaid F, Gibson CW, Kuehl MA, Berry JE, Snead ML, Nociti FH, Katchburian E, Somerman MJ. Leucine-rich amelogenin peptide: A candidate signaling molecule during cementogenesis. J Periodontol. 2004, 75(8): 1126–1136.
    58. Bosshardt DD, Nanci A. Hertwig’s epithelial root sheath, enamel matrix proteins, and initiation of cementogenesis in porcine teeth. J Clin Periodontol. 2004, 31(3):184–192.
    59. Nebgen DR, Inoue H, Sabsay B, Wei K, Ho CS, Veis A. Identification of the chondrogenic-inducing activity from bovine dentin (bCIA) as a low-molecular-mass amelogenin polypeptide. J Dent Res. 1999, 78(9): 1484–1494.
    60. Shimizu E, Saito R, Nakayama Y, Nakajima Y, Kato N, Takai H, Kim DS, Arai M, Simmer J, Ogata Y. Amelogenin stimulatesbone sialoprotein(BSP)expressionthrough fibroblast growth factor 2 response element and trans- forming growth factor-betal activation elementin the promoter of the BSP gene. J Periodontol. 2005, 76(9):1482–1489.
    61. Veis A, Tompkins K, Alvares K, Wei K, Wang L, Wang XS, Brownell AG, Jengh SM, Healy KE. Specific amelogenin gene splice products have signaling eVects on cells in culture and in implants in vivo. J Biol Chem. 2000, 275(52): 41263–41272.
    62. Viswanathan HL, Berry JE, Foster BL, Gibson CW, Li Y, Kulkarni AB, Snead ML, Somerman MJ. Amelogenin: A potential regulator of cementum associated genes. J Periodontol. 2003, 74:1423–1431.
    63. Gibson CW, Yuan ZA, Hall B, Longenecker G, Chen E, Thyagarajan T, Sreenath T, Wright JT, Kulkarni AB. Targeted disruption of the amelogenin gene results in abnormal enamel. J Dent Res. 2001, 80:143.
    64. Gibson CW, Yuan, ZA, Hall B, Longenecker G, Chen E, Thyagarajan T, Sreenath T, Wright JT, Decker S, Piddington R, Harrison G, Kulkarni AB. Amelogenin deficient mice display anamelogenesis imperfect aphenotype. J Biol Chem. 2001, 276:31871–31875.
    65. Simmer JP, Fincham AG. Molecular machanisms of dental enamel formation. Crit Rev Oral Biol Med. 1995, 6(2):84–108.
    66. Zeichner-David M, Oishi K, Su Z, Zakartchenko V, Chen LS, Arzate H, Bringas PJr. Role of Hertwig’s epithelial root sheath cells in tooth root development. Dev Dyn. 2003, 228(4): 651–663.
    67. Fujiwara N, Tabata MJ, Endoh M, Ishizeki K, Nawa T. Insulin-like growth factor-I stimulates cell proliferation in the outer layer of Hertwig's epithelial root sheath and elongation of the tooth root in mouse molars in vitro. Cell Tissue Res. 2005, 320(1): 69-75.
    68. Fong CD, Slaby I, Hammarstrom L. Amelin: an enamel-related protein, transcribed in the cells of epithelial root sheath. J Bone Miner Res. 1996, 11(7): 892-898.
    69. Janones DS, Massa LF, Arana-Chavez VE. Immunocytochemical examination of the presence of amelogenin during the root development of rat molars. Arch Oral Biol. 2005, 50(5): 527-532.
    70. Hu JC, Sun X, Zhang C, Simmer JP. A comparison of enamelin and amelogenin expression in developing mouse molars. Eur J Oral Sci. 2001, 109(2): 125-132.
    1. Wasinger VC, CordweU SJ, Cerpa-Poljak A. Progress with gene-product mapping of the mollicutes: mycoplasma genitalium. Electrophoresis. 1995, 16(7): 1090-1094.
    2. Abbott A. And now for the proteome....Nature. 2001, 409(6822):747.
    3. Fields S. Proteomics in Genomeland. Science. 2001, 291(5507):1221-1224.
    4. Tyers M, Mann M. From genomics to proteomics. Nature. 2003, 422(6928): 193-197.
    5. Wilkins MR, Sanchez JC, Cooley AA. Bioteehnol Genet Eng Rev. 1996, 13(1):19-50.
    6. Kahn P. Science. 1995,270(5235):369-370.
    7. Swinbanks D. Nature. 1995, 378(6558):653.
    8. Pandey A, Mann M. Proteomics to study genes and genomes. Nature. 2000, 405(6788):837-846.
    9. Sloncze Wski JL. Proteomics is getting easier in some ways. Nature. 1999, 402-478.
    10. Tummers M, Thesleff I. Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development, 2003, 130(6): 1049-1057.
    11. Luan X, Ito Y, Diekwisch TG. Evolution and development of Hertwig’s epithelial root sheath. Dev Dyn. 2006, 235(5):1167-1180.
    12. Wang D, Park JS, Chu JS, Krakowski A, Luo K, Chen DJ, Li S. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-Beta stimulation. J Biol Chem. 2004, 279(42):43725-43734.
    13. Kratchmarova I, Blagoev B, Haack-Sorensen M. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science. 2005, 308: l472-l477.
    14.吕天羽,王康,刘建军.双向电泳两种凝胶染色方法的比较.广东医学杂志. 2006, 27:1454-1458.
    15. Candiano G, Brusch M, Musante L. Blue silver: a very sensitive colloidalCoomassie G-250 staining for proteome analysis. Electrophoresis. 2004, 25(9): 1327-1333.
    16. Ward LD, Reid GE, Moritz RL, Simpson RJ. Strategies for internal amino acid sequence analysis of proteins separated by polyacrylamide gel electrophoresis. J Chromatogr. 1990, 519:199-216.
    17. Iwahara S, Satoh H, Song DX, Webb J, Burlingame AL, Nagae Y, Mueller- Eberhard U. Purification, characterization, and cloning of a heme-binding protein (23 kDa) in rat liver cytosol. Biochemistry. 1995, 34:13398-13406.
    18. The MGC Project Team. The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC) . Genome Res. 2004, 14:2121-2127.
    19. Hirotsu S, Abe Y, Okada K, Nagahara N, Hori H, Nishino T, Hakoshima T. Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein kDa/proliferation-associated gene product. Proc Natl Acad Sci USA. 1999, 96: 12333-12338.
    20. Takahashi M, Fujii J, Teshima T, Suzuki K, Shiba T, Taniguchi N. Identity of a major 3-deoxyglucosone-reducing enzyme with aldehyde reductase in rat liver established by amino acid sequencing and cDNA expression. Gene. 1993, 127: 249-253.
    21. Takahashi M , Lu YB, Myint T, Fujii J, Wada Y, Taniguchi N. In vivo glycation of aldehyde reductase, a major 3-deoxyglucosone reducing enzyme: identification of glycation sites. Biochemistry. 1995, 34:1433-1438.
    22. Chiaverotti TA, Battula N, Monnat RJ. Rat hypoxanthine phosphoribosyl- transferase cDNA cloning and sequence analysis. Genomics. 1991, 11:1158-1160.
    23. Chiaverotti TA, Battula N, Monnat RJ. Rat hypoxanthine phosphoribosyl- transferase cDNA cloning and sequence analysis. Adv Exp Med Biol. 1991, 309:117-120.
    24. Jansen JG, Vrieling H, Van Zeeland AA, Mohn GR. The gene encoding hypoxanthine-guanine phosphoribosyltransferase as target for mutational analysis: PCR cloning and sequencing of the cDNA from the rat. Mutat Res. 1992, 266:105-116.
    25. Chen T, Mittelstaedt RA, Heflich RH. DNA sequence flanking the protein coding regions of the rat Hprt gene. Mutat Res. 1998, 382:79-80.
    26. Kim S, Kim B, Jeng J, Song BJ. Submitted (APR-1994) to the EMBL/GenBank/DDBJ databases.
    27. Lubec G, Afjehi-Sadat L. Submitted (NOV-2006) to UniProtKB.
    28. Noguchi T, Inoue H, Tanaka T. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem. 1986, 261:13807-13812.
    29. Takenaka M, Noguchi T, Inoue H, Yamada K, Matsuda T, Tanaka T. Rat pyruvate kinase M gene: its complete structure and characterization of the 5'-flanking region. J Biol Chem. 1989, 264:2363-2367.
    30. Parkinson C, Kato H, Cheng S. The nucleotide sequence of a full length cDNA encoding rat pituitary pyruvate kinase. Nucleic Acids Res. 1989, 17:7106-7106.
    31. Lubec G, Afjehi-Sadat L, Chen WQ, Kang SU. Submitted (JUL-2007) to UniProtKB.
    32. Knoops B, Clippe A, Bogard C, Arsalane K, Wattiez R, Hermans C, Duconseille E, Falmagne P, Bernard A. Cloning and characterization of AOEB166, a novel mammalian antioxidant enzyme of the peroxiredoxinfamily. J Biol Chem. 1999, 274:30451-30458.
    33. Okuda A, Sakai M, Muramatsu M. The structure of the rat glutathione S-transferase P gene and related pseudogenes. J Biol Chem. 1987, 262:3858-3863.
    34. Suguoka Y, Kano T, Okuda A, Sakai M, Kitagawa T, Muramatsu M. Cloning and the nucleotide sequence of rat glutathione S-transferase P cDNA. Nucleic Acids Res. 1985, 13:6049-6057.
    35. Rushmore TH, HHarris L, Nagai M, Sharma RN, Hayes MA, Cameron RG, Murray RK, Farber E. Purification and characterization of P-52 (glutathione S-transferase-P or 7-7) from normal liver and putative preneoplastic liver nodules. Cancer Res. 1988, 48:2805-2812.
    36. Mannervik B, Alin P, Guthenberg C, Jensson H, Tahir MK, Warholm M, Joernvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci USA. 1985, 82:7202-7206.
    37. Rao M, Manishen WJ, Maheshwari Y, Sykes DE, Siyanova EY, Tyner AL, Weiser MM. Laminin receptor expression in rat intestine and liver during development and differentiation. Gastroenterology. 1994, 107:764-772.
    38. Tohgo A, Takasawa S, Munakata H, Yonekura H, Hayashi N, Okamoto H. Structural determination and characterization of a 40 kDa protein isolated from rat 40S ribosomal subunit. FEBS Lett. 1994, 340:133-138.
    39. Wise MJ, Littlejohn TG, Humphery Smith I. Peptide2mass finger printing and the ideal covering set for protein characterisation. Electrophoresis. 1997, 18(8): 1399-1409.
    40. Rhee SG, Kang SW, Chang TS. Peroxiredoxin, a novel family ofperoxidases. IUBMB Life. 2001, 52:35-41.
    41. Tien Nguyen—nhu N, Knoops B. Mitochondrial and cytosolic expression of human peroxiredoxin 5 in Saccharomyces cerevisiae protect yeast cells from oxidative stress induced by paraquat. FEBS Lett. 2003, 544:148-152.
    42. Chang TS, Jeong W, Choi SY. Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J Biol Chem. 2002, 277:25370-25376.
    43. Woo HA, Chae HZ, Hwang SC. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science. 2003, 300:653-656.
    1. Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res. 2002, 81(10): 695-700.
    2. Duailibi MT, Duailibi SE, Young CS, Bartlett JD, Vacanti JP, Yelick PC. Bioengineered teeth from cultured rat tooth bud cells. J Dent Res. 2004, 83(7): 523-528.
    3.金岩,李玉成,史俊南.组织工程化牙齿研究:机遇与挑战.组织工程与重建外科杂志. 2006;2(1):1-4.
    4. Yu J, Shi J, Deng Z, Zhuang H, Nie X, Wang R, Jin Y. Cell pellets from dental papillae can reexhibit dental morphogenesis and dentinogenesis. Biochem Biophys Res Commun. 2006, 346(1): 116~124.
    5. Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, Jin Y. Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell. 2007.
    6. Yu J, Deng Z, Shi J, Zhai H, Nie X, Zhuang H, Li Y, Jin Y. Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium. Tissue Eng. 2006, 12(11): 3097~3105.
    7.于金华,金岩,史俊南,聂鑫,庄姮,李玉成.大鼠牙胚细胞团块培养法构建组织工程化牙齿.口腔医学. 2006;26(1):10-12.
    8.刘晓辉.大鼠磨牙Hertwig上皮根鞘在牙根发育中作用的实验研究.博士学位论文. 2007, 51-56.
    9. Thomas HF, Kollar EJ. Differentiation of odontoblasts in grafted recombinants of murine epithelial root sheath and dental mesenchyme. Arch Oral Biol. 1989;34(1):27-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700