若干无机团簇电子离域特性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芳香性空间共轭概念在有机化学领域已经研究非常成熟,但是在无机化学领域的研究寥寥无几。为此,我们尝试对一系列结构已知的含氧族或卤素无机团簇离子或化合物进行理论分析。针对这些无机团簇具有特殊结构特点,即两个亚单元间的距离大于标准的单键键长而小于正常的范德华半径之和,通过理论研究,首次揭示其亚单元间的芳香性空间共轭相互作用。具体结果如下:
     1.具有类周环化反应过渡态芳香性离子:6c-10eSe_2I_4~(2+)、S_2O_4~(2-)利用多种方法证明Se_2I_4~(2+)和S_2O_4~(2-)的两个V形分子片之间存在芳香性空间共轭作用。共轭的V形分子片间没有饱和基团,电子离域(10πe)凭借空间共轭作用来实现,与周环化反应的Hückel芳香性过渡态相类似,因而Se_2I_4~(2+)和S_2O_4~(2-)芳香性称作类周环化反应过渡态芳香性。
     2.具有类周环化反应过渡态芳香性的离子:4c-6eI_4~(2+)、S_6N_4~(2+)、N_2O_2对I_4~(2+)、S_6N_4~(2+)、N_2O_2进行理论研究,结果表明I_4~(2+)的两个I~(2+)、S_6N_4~(2+)的两个反式五元环上相对的S-S亚单元、N_2O_2的两个NO分子片间存在6πe芳香性空间共轭作用。与前者类似,相互共轭的两个亚单元间没有饱和基团,因而I_4~(2+)、S_6N_4~(2+)、N_2O_2具有的芳香性也称为类周环化反应过渡态芳香性。
     3.具有同芳香性的离子:6c-10eS_8~(2+)、Se_8~(2+)计算表明S_8~(2+)和Se_8~(2+)跨环的两个亚单元存在芳香性空间共轭相互作用。环上的两个亚单元X2X3X4(X=S orSe)和X6X7X8(X=S orSe)每个贡献5个π电子,通过空间共轭相互作用形成10π电子芳香性。但是,与亚单元相连的价饱和-S-或-Se-基团,部分干扰或影响着两个亚单元间的共轭作用,因此S_8~(2+)和Se_8~(2+)被称作是6c-10e同芳香性体系。
     4.具有同芳香性离子:4c-6eTe6~(2+)理论研究表明船形Te6 ~(2+)的底部两对Te-Te间相互作用为芳香性空间共轭相互作用。由于船头和船尾两个价键饱和Te原子,分别与相互共轭的两对Te-Te原子相连,在一定程度上干扰两对中心Te原子的4c-6e共轭,因而Te6~(2+)离子归于4c-6e同芳香性体系。
     5.可能具有双重同芳香性的S_4N_4和Se4N4;
Aromatic through-space conjugation has been widely recognized and exploitedin organic compounds and ions, while it hasn’t been applied to explain the bondingsof inorganic compounds and ions. In the dissertation, we have shown, by means ofquantum chemistry, that a series of inorganic compounds and ions, whose structureshave been long-known and characterized, are aromatic due to through-spaceconjugations. This is the first time that the aromatic through-space conjugation isfound in inorganic compounds and ions with known structures. The main pointsobtained read as follows:
     1. Pericyclic Tansition-state-like (PTS-like) aromaticity in Se_2I_4~(2+) and S_2O_4~(2-)Our theoretical calculations reveal that Se_2I_4~(2+) and S_2O_4~(2-) are aromatic resultingfrom 6c-10e through-space conjugation. Since no linkage exists between the twoconjugated V-shaped units, the aromaticity arising from the 6c-10e through-spaceconjugation can be termed as PTS-like aromaticity, analogous to the aromaticthrough-space conjugations disclosed previously for the Diels-Alder transition state.
     2. PTS-like aromaticity in I_4~(2+), S_6N_4~(2+) and N_2O_2 Our theoretical studies concerned I_4~(2+), S_6N_4~(2+) and N_2O_2 reveal that there existsaromatic through-space conjugation between the two I_2~+ units , the opposite S-S unitson the two trans-five-member ring and the two NO units. Between the two conjugatedunits there is no saturated linkages, therefore, the aromaticity resulting from 6πeconjugation also termed as PTS-like aromaticity with similarity to the first point.
     3. Homoaromatic inorganic ions 6c-10e S_8~(2+)、Se_8~(2+)Our calculations disclose that between the two transannular units of X2X3X4and X6X7X8(X=S or Se) exists 10πe aromatic through-space conjugation with eachunit contributing 5πe. The saturated linkages of -S- or -Se- between two conjugatedunits partially disturb the conjugation of two conjugated units,S_8~(2+) and Se_8~(2+) are stillaromatic , thus belong to homoaromatic system.
     4. homoaromaticity in Te_6~(2+) with 4c-6e conjuationBy our calculations, the 4c-6e through-space conjugation is revealed to induce adiatropic (aromatic) ring current in the central Te4 (Te3-Te4…Te5-Te6) plane. Sincethe central two pairs ofTe atoms are connected bytwo apical Te atoms (Te1 andTe4)that are not explicitly involved in the through-space conjugation, the boat-shapedTe62+ isbishomoaromaticinnature.5.Possibilityofdualbishomoaromaticityin S4N4andSe4N4Aftercarefullyanalyzingtheelectronsandatomicorbitalsthatarenotinvolvedinthe formation of the frameworks of X4N4 (X=S, Se) molecules, we propose that theyhave dual bishomoaromaticity. Two separated N-X-N species within the top half ofthe X4N4 molecule, each containing five-electrons, form a bishomoaromatic systemwith totally ten-electrons that fulfills the (4n+2)e Hückel rule. Similarly, the bottomhalf of the X4N4 molecule contains another ten-electrons bishomoaromatic systemFurthermore, the two fused bishomoaromatic systems are orthogonal and, hence,should contribute synergetically to the overall aromaticity. However, the clearpicuture of two orthogonal orbital is not found in X4N4(X=S, Se) real orbital, hence,their contribution to the overall aromaticiy can’t be available, and the dualbishomoaromaticityisapossibility.6.Sphericallyaromatic inorganicions:X64+(X=Te、Se、S)In terms of molecular orbital and VB analysis, 6c-8e through-space conjugationbetween two Te32+ units is 3-dimensional (3D) conforms to the 2(N+1)2 rule ofspherical aromaticity, thus, molecule is spherical aromaiticityin nature. The sphericalaromaticity of this tetracation is also manifested by the NICS value from calculationand by grouping its MOs according to spherical harmonics. Similarly, two hypothetictetracations Se64+ and S64+ , the lighter homologues of Te64+, are also sphericalaromaticity.We have presented new conceptual applications of aromatic through-spaceconjugations that were well-established in organic chemistry to a lot of inorganicsystems that have through-space ?π?*- ?π?* bonding(s) between two weakly interactedradical subunits. Of particular interest are the spherical aromatic through-spaceconjugation of Te64+, which is new conjugated form and has not been reported before.Consequently,thisstudynotonlyextendsthearomaticthrough-spaceconjugationintoinorganic field but also expands the concept of aromatic through-space conjugationitself.7.ExperimentalandtheoreticalstudyonAuCn-(1≤n≤10)clustersA series of AuCn- clusters were generated by laser vaporization on home-madetime-of-flight mass spectrometer and the abundance of AuCn- display odd-evenalternation with even-n clusters being relatively more abundant. The structure andstabilityof AuCn- (n≤12) has been studied using B3lyp method with Lan2dz basis setfor Au atom and 6-31G(d) for C atom. For even-n AuCn- cluster, the geometricalmutation fromlinearAuC2- tobentAuCn-(n=4,6,8,10,12)andthecontrarygeometriesbetween neutral and anionic even-n geometries are well interpreted usingMullican–Walsh model. The structural change with carbon chain extends and thecomparison with CnH- clusters was also analyzed. The calculated incremental energy,adiabatic electron affinity (AEA) and vertical detachment energy (VDE) show thesame odd-even pattern with n=even higher than n=odd, which is consistent with theobserved odd-even alternation of the TOF signal intensities. This parity effects areattributed to electronic configuration of AuCn- that even-n ones have closed shell andmostofodd-noneshavenot-fully-filledelectronicshell.8.TheoreticalstudyonstructuresandpropertiesofC2Sn-(5≤n≤10)Systematic density functional calculation reveals that the ground geometries ofC2Sn-(5≤n≤10) clusters are classified into three type ring-like structures, respectivelywith two separated carbon atoms in the ringor with two adjacent carbon atoms partlyor completely in the ring, corresponding to C2Sn-(5≤n≤8), C2S9- and C2S10-. Thestabilized factors that underlie these favorable structures are discovered, includingtheweak S…S bond, excess electron andπelectrons delocalization, the relief of stericringstrain.Key Words: aromaticity, aromatic through-space conjugation in inorganicclusters,aromaticityofinorganiccluster,dopedcarbonclusters.
引文
(1) Faraday, M. Philos. Trans. R. London 1825, 440.
    (2) (a) Kekulé, A. Bull. Soc. Chim. Parts 1865, 3, 98. (b) Kekulé, A. Ann. 1866, 137, 129. (c) Kekulé, A. Bull. Acad. R. Belg. 1865, 19,551 (d) Kekulé, A. Lehrbuch der Organtsche Chemie; Enk.; Erlangen, 1866; Vol 2. (e) Kekulé, A. Ann. 1872, 162, 77.
    (3) Erlenmeyer, E. Ann. 1866, 137, 327/344.
    (4) (a) Hückel, E. Z. Phys. 1931, 70, 204. (b) Hückel, E. Z. Phys. 1931, 72 310. (c) Hückel, E. Z. Phys. 1932, 76, 628.
    (5) For a recent review of aromaticity , see the special volume of Chemical Review 2005, 105. or earlier volume of Chemical Review 2001, 101.
    (6)Chen, Z. F.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Chem. Rev., 2005, 105, 3842.
    (7) (a) Dewar, M. J. S. J. Am. Chem. Soc. 1984, 106, 669. (b) Cremer, D.; Gauss, J. J. Am. Chem. Soc. 1986, 108, 7467.
    (8) (a) Jackman, L. M.; Sternhell, S. Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, 2nd ed.; Pergamon Press: Braunschweig, Germany, 1969. (b) Dauben, H. J.; Wilson, J. D.; Laity, J. L. In Nonbenzenoid Aromatics; Snyder, J. P., Ed.; Academic Press: New York, 1971.
    (9) Chandrasekhar, J.; Jemmis, E. D.; Schleyer, P. v. R. Tetrahedron, Lett. 1979, 3707.
    (10) Schleyer, P. v. R.; Jiao, H. J.; Glukhovtsev, M. N.; Chandrasekhar, J.; Kraka, E. J. Am. Chem. Soc. 1994, 116, 10129.
    (11) (a) Clar, E.; Sanig?k, ü.; Zander, M. Tetrahedron 1968, 24, 2817. (b) Clar, E. Polycyclic Hydrocarbons; Academic Press Inc: London, 1964; Vol 1. and Vol 2. (c) Clar, E. The Aromatic Sextet; Wiley: London, 1972. (d)Randic, M.Chem. Rev. 2003, 103, 3449.
    (12) Belloli, R. C. J. Chem. Educ. 1983, 60, 190.
    (13) Zander, M. Polycyclische Aromaten-Kohlenwassersioff und Fullerene; Teubner: Stuttgart, 1995.
    (14) For a recent spherical review, see: Chen, Z. F.; King, R. B. Chem. Rev. 2005, 105, 3613.
    (15) Saunders, M.; Jimenez-Vazquez, H. A.; Cross, R. J.; Mroczkowski, S.; Freedberg,D. I.; Anet, F. A. L. Nature 1994, 367, 256.
    (16) Rzepa, H. S. Chem. Rev. 2005, 105, 3697.
    (17) Heilbronner, E. Tetrahedron Lett. 1964, 1923.
    (18) Mauksch, M.; Gogonea, V.; Jiao, H. J.; Schleyer, P. v. R. Angew. Chem. Int. Ed. 1998, 37, 2395.
    (19) Barborak, J. C.; Su, T. M.; Schleyer, P. v. R.; Boche, G.; Schneider, G. J. Am. Chem. Soc. 1971, 93, 279.
    (20) Anastassiou, A. G.; Yakali, E. J. Chem. Soc. Chem. Commun. 1972, 92.
    (21) Kawase, T.; Oda, M. Angew. Chem. Int. Ed. 2004, 43, 4396.
    (22) Ajami, D.; Oeckler, O.; Simon, A.; Herges, R. Nature 2003, 426, 819.
    (23) Fokin, A. A.; Jiao, H. J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1998, 120, 9364.
    (24) W instein ,S. J. Am. Chem. Soc. 1959, 81, 6254.
    (25) Winstein, S.; Sonnenberg, J.; deVries, L. J. Am. Chem. Soc. 1959, 81, 6523.
    (26) For a recent review of homoaromaticity, see: Chem. Rev. 2001, 101, 1185.
    (27) (a)Chen, Z.; Wannere, C.S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Chem. Rev. 2005, 105, 3842. (b) for the pioneering work see: Evans, M. G.; Warhurst, E. Trans. Faraday Soc. 1938, 34, 614.
    (28) Evans, M. G.; Warhurst, E. Trans. Faraday Soc. 1938, 34, 614 。
    (29) Zimmerman, H. E. J. Am. Chem. Soc. 1966, 88, 1564.
    (30) Zimmerman, H. E. Accts. Chem. Res. 1972, 4, 272.
    (31) (a)Woodward, R. B.; Hoffmann, R. Angew. Chem. Int. Ed. 1969, 8, 781. (b) 余从煊,欧育湘,温敬铨 编 《物理有机化学》p413.
    (32) 卢 嘉锡 结构化学 1989, 8 (5),327 。
    (33) Proft, F. D.; Fowler, P. W.; Havenith, R. W. A.; Schleyer, P. v. R.; Lier, G. V.; Geerlings, P. Chem. Eur. J. 2004, 10, 940.
    (34) (a)Zhai, H. J.; Alexandrova, A. N.; Birch, K. A.; Boldyrev, A. I.; Wang, L. S. Angew. Chem. Int. Ed. 2003, 42, 6004. (b) Zhai, H. J.; Kiran, B.; Li, J.; Wang, L. S. Nature materials 2003, 2,827.
    (35) Aihara, J. I.; Kanno, H.; Ishida, T. J. Am. Chem. Soc. 2005, 127, 13324.
    (36) Li, Z. H.; Moran, D.; Fan, K. N.; Schleyer, P. v. R. J. Phys. Chem. A 2005, 109, 3711.
    (37) (a) Jiao, H. J.; Schleyer, P. v. R.; Glukhovtsev, M. N. J. Phys. Chem. 1996, 100,12299. (b) Jursic, B. S. Int. J. Quantum Chem. 1998, 69, 679. (c) Jursic, B. S. Int. J. Quantum Chem. 1999, 73, 451.
    (38) King, R. B. Inorg. Chim. Acta 2003, 350, 126.
    (39) (a)Wei, C. H; Dahl, L. F. J. Am. Chem. Soc. 1966, 88, 1821. (b)Mason, R.; Rae, A. I. M. J. Chem. Soc. A 1968, 778. (c) Churchill, M. R.; Deboer, B. G. Inorg. Chem. 1977, 16, 878. (d) Corey, E. R.; Dahl, L. F. J. Am. Chem. Soc. 1961, 83, 2203.
    (40) Huang, X.; Zhai, H, J.; Kiran, B.; Wang, L. S. Angew. Chem. Int. Ed. 2005, 44, 7251.
    (41) Tanaka, H.; Neukermans, S; Jansens, E.; Silverans, R. E. Lievens, P. J. Am. Chem. Soc. 2003,125, 2862.
    (42) Zhai, H. J.; Alexandrova, A. N.; Birch, K. A.; Boldyrev, A. I.; Wang, L. S. Angew. Chem. Int. Ed. 2003, 42, 6004.
    (43) Zhai, H. J.; Alexandrova, A. N.; Birch, K. A.; Boldyrev, A. I.; Wang, L. S. Angew. Chem. Int. Ed. 2003, 42, 6004.
    (44) Exner, K.; Schleyer, P. v. R. Science 2000, 290, 1937.
    (45) Li, X.; Kuznetsov, A. E.; Boldyrev, A. I.; Wang, L. S. Science 2001, 291, 859.
    (46) (a)Kuznetsov, A.E.; Boldyreva. I.; Wang, L. S. J. Am. Chem. Soc. 2001, 123, 8825. (b) Boldyrev, A. I.; Kuznetsov, A. E. Inorg. Chem. 2002, 41, 532.
    (47) Twamley, B.; Power, P. P. Angew, Chem. Int. Ed. 2000, 39, 3500.
    (48) Kuznetsov, A. E.; Birch, K. A.; Boldyrev, A. I.; Li, X.; Zhai, H. J.; Wang, L. S. Science 2003,300,622.
    (49) Chen, Z. F.; Corminboeuf, C.; Heine, T.; Bohmann, J.; Schleyer, P. v. R. . J. Am. Chem. Soc. 2003, 125, 13930.
    (50) Fowler, P. W.; Havenith, R. W. A; Steiner, E. Chem. Phys. Lett. 2001, 342, 85.
    (51) Kuznetsov, A. E.; Corbett, J. D.; Wang, L. S.; Boldyrev, A. I. Angew. Chem. Int. Ed. 2001, 40, 3369.
    (52) (a) Wannere, C. S.; Corminboeuf, C.; Wang, Z. X.; Wodrich, M. D.; King, R. B.; Schleyer, P. v. R. J. Am. Chem. Soc. 2005, 127, 5701. (b) Corminboeuf, C.; Wannere, C. S.; Roy, D.; King, R. B.; Schleyer, P. v. R. Inorg. Chem. 2006, 45, 214.
    (53) King, R. B. Chem. Rev. 2001, 101, 1119.
    (54) (a) Schleyer, P. v. R.; Najafian, K. Inorg. Chem. 1998, 37, 3454. (b) Schleyer, P. v.R.; Najafian, K.; Mebel, A. M. Inorg. Chem. 1998, 37, 6765. (c) Najafian, K.; Schleyer, P. v. R.; Tidwell, T. T. Inorg. Chem. 2003, 42, 4190
    (55) King, R. B.; Heine, T.; Corminboeuf, C.; Schleyer, P. v. R. J. Am. Chem. Soc. 2004, 126, 430.
    (56) (a) Jemmis, E. D.; Schleyer, P. v. R. J. Am. Chem. Soc. 1982, 104, 4781. (b) Jemmis, E. D. J. Am. Chem. Soc. 1982, 104, 7017.
    (57) Gagliardi, L.; Pyykko, P. J. Am. Chem. Soc. 2001, 123, 9700.
    (58) Lein, M.; Frunzke, J. Frenking, G. Angew. Chem. Int. Ed. 2003, 42, 1303.
    (59) Hirsch, A.; Chen Z. F.; Jiao, H. J. Angew. Chem. Int. Ed. 2001, 40, 2834.
    (60) O’Neill M. E.; Wade, K. J. Mol. Struct. 1983, 103, 259.
    (61) (a) Neukermans, S.; Janssens, E.; Chen, Z.; Silverans, R. E.; Schleyer, P. v. R.; Lievens, P. Phys. Rev. Lett. 2004, 92, 163401.
    (62) (a) Esenturk, E. N.; Fettinger, J.; Lam, Y. F.; Eichhorn, B. Angew. Chem. Int. Ed. 2004, 43, 2132. (b) Esenturk, E. N.; Fettinger, J.; Eichhorn, B. Chem. Comm. 2005, 247.
    (63) Johansson, M. P.; Sundholm, D.; Vaara, J. Angew. Chem. Int. Ed. 2004, 43, 4412.
    (64) Gao, Y.; Zeng, X. C. J. Am. Chem. Soc. 2005, 127, 3698.
    (65) Pyykko, P.; Runeberg, N. Angew. Chem. Int. Ed. 2002, 41, 2174.
    (66) Li, X.; Kiran, B.; Li, J.; Zhai, H. J.; Wang, L. S. Angew. Chem. Int. Ed. 2002, 41, 4786.
    (67) (a) Li, J.; Li, X.; Zhai, H. J.; Wang, L. S. Science 2003, 299, 864. (b) Zhang, H. F.; Stender, M.; Zhang, R.; Wang, C.; Li, J.; Wang, L. S. J. Phys. Chem. B 2004, 108, 12259.
    (68) King, R. B.; Chen, Z.; Schleyer, P. v. R. Inorg. Chem. 2004, 43, 4564.
    (69) Ruck, M. Angew. Chem. Int. Ed. Engl. 1997, 36, 1971.
    (70) Xu Z. T.; Lin, Z. Y. Angew. Chem. Int. Ed. Engl. 1998, 37, 1686.
    (71) King, R. B. Dalton Trans., 2003, 395.
    (72) For a pioneering work about coarctate aromaticity, see (a) Herges, R. Angew. Chem. Int. Ed. 1994, 33, 255. (b) Berger,C.; Bresler, C.; Dilger, Ulrich, G. D.; Herges, R.; Rottele, H.; Schroder, G. Angew. Chem. Int. Ed. 1998, 37, 1850; For Multicyclic M?bius Rings, see review: Ref.18
    (73) Hall, D.; Rzepa, H. S. Org. Biomol. Chem. 2003, 1, 182.
    (74) (a) Dea, I.; Levalois-Mitjaville, J.; Grutzmacher, H.; Gramlich, V.; de Jaeger, R. J. Eur. Inorg. Chem. 1999, 1673. (b)Pastor, S. D.; Shum, S. P.; Rodebaugh, R. K.; Debellis, A. D.; Clarke, F. H. Helv. Chim. Acta 1993, 76, 900. (c) Tani, K.; Yamagata, T.; Nagata, K. Acta Crystallogr., Sect. C: (Cryst. Struct. Commun.) 1994, 50, 1274. (d) Hans, J.; Day, R. O.; Howe, L.; Holmes, R. R. Inorg. Chem. 1992, 31, 1279. (e) Jung, O. S.; Kim, Y. T.; Lee, Y. A.; Kim, Y. J.; Chae, H. K. Inorg. Chem. 1999, 38, 5457. (f) Allcock, H. R.; Stein, M. T.; Stanko, J. A. J. Am. Chem. Soc. 1971, 93, 3173. (g) Dileman, C. B.; Kamer, P. C.; Reek, J. N. H.; Van Leeuwen, P. W. N. M. Helv. Chim. Acta 2001, 84, 3269. (h) Bertozzi, F.; Crotti, P.; Del Moro, F.; Feringa, B. L.; Macchia, F.; Pineschi, M. Chem. Commun. 2001, 2606. (i) Kumar, D.; Gupta, A. D. Macromolecules 1995, 28, 6323.
    (75) (a) Craig, D. P.; Paddock, N. L. Nature 1958, 181, 1052. (b) Craig, D. P. J. Chem. Soc. 1959, 997.
    (76) Kos, A. J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1980, 102, 7929.
    (77) (a) Ruiz, J.; Vivanco, M.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. Organometallics 1993, 12, 1811. (b) Daff, P. J.; Etienne, M.; Donnadieu, B.; Knottenbelt, S. Z.; McGrady, J. E. J. Am. Chem. Soc. 2002, 124, 3818. (c) Holl, M. M.; Kersting, M.; Pendley, B. D.; Wolczanski, P. T. Inorg. Chem. 1990, 29, 1518.
    (78) Walba, D. M.; Richards, R. M.; Haltiwanger, R. C. J. Am. Chem. Soc. 1982, 104, 3219.
    (79) (a) Flapan, E. In Graph Theory and Topology in Chemistry; King, R. B., Rouvray, D. H., Eds.; Elsevier:1987, Amsterdam. (b) Simon, J. B. Topology 1986, 25, 229.
    (80) (a) Perret-Aebi, L. E.; von Zelewsky, A.; Dietrich-Buchecker, C.; Sauvage, J. P. Angew. Chem. Int. Ed. 2004, 43, 4482. (b) Albrecht-Gary, A. M.; Dietrich-Buchecker, C. O.; Guilhem, J.; Meyer, M.; Pascard, C.; Sauvage, J. P. Recl. Trav. Chim. PaysBas 1993, 112, 427. (c) Safarowsky, O.; Nieger, M.; Frohlich, R.; Vogtle, F. Angew. Chem. Int. Ed. 2000, 39,1616. (d) Ashton, P. R.; Matthew, O. A.; Menzer, S.; Raymo, F. M.; Spencer, N.; Stoddart, J. F.; Williams, D. J. Liebigs Ann. Recl. 1997, 12, 2485. (e) Deza, M.; Dutour, M.; Fowler, P. W. J. Chem. Inf. Comput. Sci. 2004, 44, 1282.
    (81) Geier, J.; Grutzmacher, H.; Exner, K.; Prinzbach, H. Angew. Chem. Int. Ed. 2005, 44, 2433.
    (82) Chen, Z. F.; Jiao, H. J.; Hirsch, A.; Schleyer, P. v. R. Angew. Chem. Int. Ed. 2002, 41, 4309.
    (83) Geier, J.; Grutzmacher, H.; Exner, K.; Prinzbach, H. Angew. Chem. Int. Ed. 2005, 44, 2433.
    (84) Chen, Z. F.; Hirsch, A.; Nagase, S.; Thiel, W.; Schleyer, P. v. R. J. Am. Chem. Soc. 2003, 125, 15507.
    (85) Faraday, M. Philos. Trans. R. London 1825, 440.
    (86) Loschmidt, J. “Chemische Studien 1”Private Printing, Vienna 1861. This rare booklet was reprinted by Ostwalds Klassiker Exakten Wiss. 1901,913[R. Anschütz].
    (87) (a) Pascal, P. Ann. Chim. Phys. 1910, 19, 5. (b) Pascal, P. Ann. Chim. Phys. 1912, 25, 289. (c) Pascal, P. Ann. Chim. Phys. 1913, 28, 218.
    (88) (a) Crocker, E. C. J. Am. Chem. Soc. 1922, 44, 1618. For a review on the background of the aromatic sextet concept, see: (b) Balaban, A. T.; Schleyer, P. v. R.; Rzepa, H. S. Chem. Rev. 2005, 105, 3436.
    (89) Armit, J. W.; Robinson, R. J. Chem. Soc. 1925, 127, 1604.
    (90) (a) Pauling, L.; Sherman, J. J. Chem. Phys. 1933, 1, 606. (b) Pauling, L. C. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press; Ithaca, New York, 1960. (c) Wheland, G. W. Resonance in Organic Chemistry; Wiley: New York, 1955.
    (91) Kistiakowski, B.; Ruhoffm, J. R.; Smith, H. A.; Vaughan, W. E. J. Am. Chem. Soc. 1936, 58, 146.
    (92) The GIAO method has been further developed by various scientists; examples are : (a)Hameka, H. R. Mol. Phys. 1958, 1, 203. (b) McWeeny, R. Phys. Rev. 1962, 126, 1028. (c) Edwards, T. G.; McWeeny, R. Chem. Phys. Lett. 1971, 10, 283. (d) Ditchfield, R. J. Chem. Phys. 1972, 56, 5688. (e) Epstein, S. T. J. Chem. Phys. 1973, 58, 1592. (f) Mallion, R. B. Mol. Phys. 1973, 25, 1415. (g)Chesnut, D. B.; Morre, K. D. J. Comput. Chem. 1985, 10, 648. (h) Wolinski, K.; Hinton, J. F.; Paulay, P. J. Am. Chem. Soc. 1990, 112, 8251.
    (93) Meyer, L. H.; Saika, A.; Gutowski, H. S. J. Am. Chem. Soc. 1953, 75, 4567.
    (94) (a) Bernstein, H. J.; Schneider, W. G.; People, J. A. Proc. R. Soc. London, Ser. A 1956, 236, 515. (b) Pople, J. A. J. Chem. Phys. 1956, 24, 1111. (c) People, J. A.Mol. Phys. 1958, 1, 175.
    (95) (a) Dewar, M. J. S.; Gleicher, G. J. J. Am. Chem. Soc. 1965, 87, 685. (b) Dewar, M. J. S.; Gleicher, G. J. J. Am. Chem. Soc. 1965, 87, 692. (c)Dewar, M. J. S.; Gleicher, G. J. J. Chem. Phys. 1966, 44, 759. (d) Dewar, M. J. S. de Llano, C. J. Am. Chem. Soc. 1969, 91,789. (e) For a review, see: Schaad, L. J.; Hess, B. A.; Jr. Chem. Rev. 2001, 101, 1465.
    (96) (a) Sondheimer, F.; Calder, I. C.; Elix, J. A.; Gaoni, Y.; Garratt, P. J.; Grohmann, K.; di Maio, G.; Mayer, J.; Sargent, M. V.; Wolovsky, R. Chem. Soc. Spec. Publ. 1967, 21, 75. (b) Sondheimer, F. Acc. Chem. Res. 1972, 5, 81.
    (97) Julg. A.; Francois, P. Theor. Chim. Acta 1967, 7, 249.
    (98) (a) Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. Diamagnetic Susceptibility Exa- ltation as Criterion of Aromaticity. In Nonbenzenoid Aromatics; Snyder, J. P., Ed.; Academic Press: New York, 1971; Vol. 2.
    (99) (a) Benson, R. C.; Norris, C. L.; Flygare, W. H.; Beak, P. J. Am. Chem. Soc. 1971, 93, 5591. (c) Schmalz, T. G.; Norris, C. L.; Flygare, W. H. J. Am. Chem. Soc 1973, 95, 7961. (d) Schmalz, T. G.; Gierke, T. D.; Beak, P.; Flygare, W. H. Tetrahedron Lett., 1974, 33, 2885. (e) Flygare, W. H. Chem. Rev. 1974, 74, 653. (f) Palmer, M. H.; Findlay, R. H. Tetrahedron Lett. 1974, 33, 253. (g) Hutter, D. H.; Flygare, W. H. Top. Curr. Chem. 1976, 63, 89.
    (100) (a) Hess, B. A. Jr.; Schaad, L. J. J. Am. Chem. Soc. 1971, 93, 305. (b) Hess, B. A., Jr.; Schaad, L. J. J. Am. Chem. Soc. 1971, 93, 2413. (c) Hess, B. A. Jr.; Schaad, L. J. J. Org. Chem. 1971, 36, 3418. (d) Hess, B. A., Jr.; Schaad, L. J. J. Am. Chem. Soc. 1972, 94, 3068. (e) Hess, B. A., Jr.; Schaad, L. J.; Holyoke, C. W. Tetrahedron 1972, 28, 3657. (f) Hess, B. A., Jr.; Schaad, L. J. J. Am. Chem. Soc. 1973, 95, 3907.
    (101) (a) Clar, E. The Aromatic Sextet; Wiley: London, 1972. (b) Cremer, D.; Günther, J. Ltebtgs Ann. Chem. 1972, 763, 87.
    (102) (a) Kruszewski, J.; Krygowaki, T. M.; Tetrahedron Lett. 1972, 3839. (b) Krygowski, J.; Krygowski, T. M. J. Chem. Inf. Comput. Sci. 1993, 33, 70. (c) Krygowski, T. M.; Cyranski, M. K. Tetrahedron 1996, 52, 1713. (d) see review:Krygowski, T. M.; Cyranski, M. K. Chem. Rev. 2001, 101, 1385.
    (103) Fringuelli, F.; Marino, G.; Taticchi, A. Grandolini, G. J. Chem. Soc., Perkin. Trans. 2 1974, 2, 332.
    (104) (a) Kutzelnigg, W. Isr. J. Chem. 1980, 19, 193. (b) Schindler, M.; Kutzelnigg, W. J. Chem. Phys. 1982, 76, 1919. (c) Schindler, M.; Kutaelnigg, W. J. Am. Chem. Soc. 1983, 105, 1360. (d) Kutzelnigg, W.; Fleischer, U.; Schindler, N. NMR, Bastic Prtnciples and progress; Springer-Verlag: Berlin, 1990; Vol. 23, p165.
    (105) (a) Lazzeretti, P.; Zanasi, R. J. Chem. Phys. 1981, 75, 5019. (b) Lazzeretti, P.; Zanasi, R. Chem. Phys. Lett. 1981, 80, 533. Ab initio current density plots have been widely applied by several groups; see reviews: (c) Gomes, J. A. N.; Mallion, R. B. Chem. Rev. 2001, 101, 1349. (d) Herges, R. Chem. Rev. 2005, 105, 3758.
    (106) Jug, K. J. Org. Chem. 1983, 48, 1344.
    (107) Pozharskki, A. F. Khtm. Geterotsikl. Soedin.(in Russian) 1985, 867.
    (108) (a) Bird, C. W. Tetrahedron 1985, 41, 1409. (b) Bird, C. W. Tetrahedron 1986, 42, 89. (c) Bird, C. W. Tetrahedron 1987, 43, 4725. (d) Bird, C. W. Tetrahedron 1990, 46, 5697. (e) Bird, C. W. Tetrahedron 1992, 48, 335. (f) Bird, C. W. Tetrahedron 1992, 48, 1675.
    (109) Mizoguchi, N. Chem. Phys. Lett. 1987, 134, 371.
    (110) (a) Zhou, Z.; Parr, R. G.; Garst, J. F. Tetrahedtron Lett. 1989, 111, 7371. (c) Zhou, Z.; J. Phys. Org. Chem. 1995, 8, 103. (e) Bird, C. W. Tetrahdron 1997, 53, 3319. (f) De Proft, F.; Geerling, P. Phys. Chem. Chem. Phys. 2004, 6, 242. (g) see review: De Proftk, F.; Geerling, P. Chem. Rev. 2001, 101, 1451.
    (111) (a) Paquette, L. A.; Bauer, W.; Sivik, M. R. Buhl, M.; Feigel, M.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 8776, (b) Jiao, H.; Schleyer, P, v. R. Angew. Chem. Int. Ed. Engl. 1993, 32, 1760. (c) Buhl, M.; Thiel, W.; Jiao, H.; Schleyer, P. v. R. Saunders, M.; Anet, F. A. L. J. Am. Chem. Soc. 1994, 116, 6005. (d) Jiao, H.; Schleyer, P. v. R. J. Am. Chem. Soc. 1995, 117, 11529.
    (112) (a) Schleyer, P. v. R.; Jiao, H.; Glukhovtasev, M. N.; Chandrasekhar, J.; Kraka, E. J. Am. Chem. Soc. 1994, 116, 10129. (b) Schleyer, P. v. R.; Freeman, P. K.; Jiao, J.; Goldfuss, B. Angew. Chem. Int. Ed. Engl. 1995, 34, 337. (c) Sulzbach, H. M.;Schleyer, P. v. R.; Jiao, H.; Xie, Y.; Schaefer, H. F. J. Am. Chem. Soc. 1995, 117, 1369. (d) Jiao, H.; Schleyer, P. v. R. Angew. Chem. Int. Ed. Engl. 1996, 35, 23283. (e) Schleyer, P. v. R.; Jiao, H.; Sulzbach, H. M.; Schaefer, H. F. J. Am. Chem. Soc. 1996, 118, 2093. (f) Goldfuss, B.; Schleyer, P. v. R.; Hampel, F. Organometalltics 1996, 15, 1755.
    (113) ( a) Jiao, H.; Schleyer, P. v . R. J. Chem. Soc. Perkin Trans. 2 1994, 407. (c) Jiao, H.; Schleyer, P. v. R. J. Chem. Soc., Faraday Trans. 1994, 90, 1559. (d) Herges, R.; Jiao, H.; Schleyer, P. v. R. Angew. Chem. Int. Ed. Engl. 1994, 33, 1376. (e) Jiao, H.; Schleyer, P. v. R. Angew. Chem. Int. Ed. Engl. 1995, 34, 334.
    (114) (a) Saunders, M.; Jimenez-Vazquez, H. A.; Corss, R. H.; Mroczkowski, S.; Freedberg, D. L.; Anet, F. A. L. Nature 1994, 367, 256. (b) Saunders, M.; Corss, R. J.; Jimenez-Vazquez, H. A.; Shimshi, R.; Khong, A. Science 1996, 271, 1693. (c) Saunders, M.; Jimenez-Vazquez, H. A.; Cross, R. J.; Billups, W. E.; Geseberg, C.; Gonzalez, A.; Luo, W.; Haddon, R. C. Diederich, F.; Herrmann, A. J. Am. Chem. Soc. 1995, 117, 9305
    (115) Buhl, M. Chem. Eur. J. 1998, 4, 7334.
    (116) Krygowski, T. M.; Ciesielski, A.; Cyranski, M. Chem. Pap. 1995, 49, 128.
    (117) (a) Hirsch, A. The Chemistry of the Fullerenes; Thieme: Stuttgart, Germany, 1994. (b) Hirsch, A. Top. Curr. Chem. 1998, 199, 1.
    (118) Steiner, E.; Fowler, P. W. Int. J. Quantum. Chem. 1996, 60, 609.
    (119) (a) Schleyer, P. v. R.; Jiao, H.; Hommes, N. J. R. v. E.; Malkin, V. G.; Malkina, O. J. Am. Chem. Soc. 1997, 119, 12669. (b) Schleyer, P. v. R.; Manoharan, M.; Wang. Z. X.; Kiran, B.; Jiao, H.; Puchta, R.; Manoharan, M.; Wang, Z. X.; Kiran, B.; Jiao, H.; Ouchta, R.; Hommes, N. J. R. v. E. Org. Lett. 2001, 3, 2465.
    (120) Bohmann, J. A.; Weinhold, F.; Farrar, T. C. J. Chem. Phys. 1997, 107, 1173. The CMO-NICS has been available in NBO 3.0 since 1997, not available in Gaussian 03. NBO 5.x.
    (121) (a) Bean, G. P. J. Org. Chem. 1998, 63, 2497. (b) Sadlejsosnowska, N. J. Org. Chem. 2001, 66, 8737.
    (122) Balawender, R.; Komorowski, L.; De Proft, F.; Geerlings, P. J. Phys. Chem. A 1998, 102, 9912.
    (123) Chesnut, D. B. Chem. Phys. 1998, 231, 1.
    (124) (a) Mo, Y.; Peyerimhoff, S. D. J. Chem. Phys. 1998, 109, 1687. (b) Mo, Y.; Zhang, Y.; Gao, J. J. Am. Chem. Soc. 1999, 121, 5737. (c) Mo, Y.; Song, L.; Wu, W.; Cao, Z.; Zhang, Q. J. Theor. Comput. Chem. 2002, 1, 137.
    (125) (a) Juselius, J.; Sundholm, D. Phys. Chem. Chem. Phys. 1999, 1, 3429. (b) Juselius, H.; Sundholm, D. Phys. Chem. Chem. Phys. 2000, 2, 2145. (c) Juselius, J.; Sundholm, D. J. Org. Chem. 2000, 65, 5233. (d) Juselius, J.; Sundholm, D. Phys. Chem. Chem. Phys. 2001, 3, 2433. (e) Juselius, J.; Straka, M.; Sundholm, D. J. Phys. Chem. A 2001, 105, 9939. (f) Berger, R. J. F.; Schmidt, M. A.; Juselius, J.; Sundholm, D.; Sirsch, P.; Schmidbaur, H. Z. Naturforsch. B 2001, 56, 979. (g) Juselius, J.; Patzschke, M.; Sundholm, D. THEOCHEM 2003, 633, 123.
    (126) Giambiagi, M.; de Giambiagi, M. S.; dos Silva, C. D.; de Figueiredo, A. P. Phys. Chem. Chem. Phys. 2000, 2,3381.
    (127) (a) Chesnut, D. B.; Bartolotti, L. Chem. Phys. 2000, 253, 1 .(b) Fuster, F.; Sevin, A.; Silvi, B. J. Phys. Chem. A 2000, 104, 852. (c) Silvi, B. Phys. Chem. Chem. Phys. 2004, 6, 256.
    (128) Patchkovskii, S.; Thiel, W. J. Mol. Model. 2000, 6, 67.
    (129) Herges, R.; Geuenich, D. J. Phys. Chem. A 2001, 105, 3214
    (130) (a) Steiner, E.; Fowler, P. W. J. Phys. Chem. A 2001, 105, 9553. (b) Steiner, E.; Fowler, P. W. Chem. Commun. 2001, 2220.
    (131) Schleyer, P. v. R.; Puhlhofer, F. Org. Lett. 2002, 4, 2873.
    (132) (a) Sakai, S. J. Phys. Chem. A 2002, 106, 10370. (b) Sakai, S. J. Phys. Chem. A 2003, 107, 9422.
    (133) (a) Poater, J.; Fradera, X.; Duran, M.; Sola, M. Chem. Eur. J. 2003, 9, 400. (b) Poater, J.; Fradera, X.; Duran, M.; Sola, M. Chem. Eur. J. 2003, 9, 1113.
    (134) Matta, C. F.; Hernandez-Trujillo, J. J. Phys. Chem. A. 2003, 107, 7496.
    (135) (a) Corminboeuf, C.; Heine, T.; Weber, J. Phys. Chem. Chem. Phys. 2003, 5, 246. (b) Heine, T.; Schleyer, P. v. R.; Corminboeuf, C.; Seifert, G.; Reviakine, R.; Weber, J. J. Phys. Chem. A 2003, 107, 6470. (c) Corminboeuf, C.; Heine, T.; Seifert, G.; Schleyer. P. v. R.; Weber, J. Phys. Chem. Chem. Phys. 2004, 6, 273.
    (136) Merino, G.; Heine, T.; Seifert, G. Chem. Eur. J. 2004, 10, 4367.
    (137) (a) Santos, J. C.; Tiznado, W.; Contreras, Fuentealba, P. J. Chem. Phys. 2004, 120, 1670. (b) Santos, J. C.; Andres, J.; Aizman, A.; Fuentealba, P. J. Chem. Theory Comput. 2005, 1, 83.
    (138) Matito, E.; Duran, M.; Sola, M. J. Chem. Phys. 2005, 122, No. 014109.
    (139) (a) Juselius, J.; Sundholm, D.; Gauss, J. J. Chem. Phys. 2004, 121, 3952. (b) Johansson, M. P.; Juselius, J.; Sundholm, D. Angew. Chem. Int. Ed. 2005, 44, 1843.
    (1) (a) Hoffmann, R.; Imamura, A.; Hehre, W. J. J. Am. Chem. Soc. 1968, 90, 1499. (b)Hoffmann, R. Acc. Chem. Res. 1971, 4, 1. (c) Fujita, W., Awaga, K. Science 1999,286, 261. (d) Itkis, M. E.; Chi, X.; Cordes, A. W.; Haddon, R. C. Science 2002,296, 1443.
    (2) (a)Sunko, D. E.; Hirsl-Starcevoc S.; Pollack, S. K; Hehre, W. J. J. Am. Chem. Soc.1979, 101, 6163. (b)Pool, B. R.; White, J. M.; Wolynec, P. P. J. Org. Chem. 2000,65, 7595. (c) Alabugin, I. V.; Manoharan, M.; Zeidan T. A. J. Am. Chem. Soc.2003, 125, 14014.
    (3) (a) Winstein, S.; Adams, R. J. Am. Chem. Soc. 1948, 70, 838. (b) Simonetta, M.;Winstein, S. J. Am. Chem. Soc. 1954, 76, 18.
    (4) (a) Winstein, S. J. Am. Chem. Soc. 1959, 81, 6524. (b) Winstein, S.; Sonnenberg,J.; deVeries, L. J. Am. Chem. Soc. 1959, 81, 6523.
    (5) (a) Winstein, S. Chem. Soc. Spec. Publ. 1967, 21, 5. (b) Paquette, L. A. Angew.Chem. Int. Ed. Engl. 1978, 17, 106. (c) Childs, R. F. Acc. Chem. Res. 1984, 17,347. (d) Williams, R. V.; Kurtz, H. A. Adv. Phys. Org. Chem. 1994, 29, 273.
    (6) For recent reviews on homoaromaticity, see: (e) Williams, R. V. Chem. Rev. 2001,101, 1185. (f) Williams, R. V. Eur. J. Org. Chem. 2001, 227.
    (7) For a recent review on the applications of nucleas-independent chemical shift, see:Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Chem.Rev. 2005, 105, 3842. The aromaticity in pericyclic-reaction transition states hasalso been reviewed.
    (8) For the pioneering work on transition-state aromaticity, see: Evans, M. G.;Warhurst, E. Trans. Faraday Soc. 1938, 34, 614.
    (9) (a) Chen, Z. F.; Jiao, H. J.; Hirsch, A.; Schleyer, P. v. R. Angew. Chem. Int. Ed.2002, 41, 4309. (b) for a review of spherical aromaticity, see: Chen, Z. F.; King, R.B. Chem. Rev. 2005, 105, 3613.
    (10)Wannere, C. S.; Bansal, R. K.; Schleyer, P. v. R. J. Org. Chem. 2002, 67, 9162.
    (11) Bremer, M.; Schleyer, R. v. R.; Schoetz. K.; Kausch, M.; Schindler. M. Angew.Chem. Int. Ed. Engl. 1987, 26, 761.
    (12) Bremer, M.; Schleyer, R. v. R.; Schoetz. K.; Kausch, M.; Schindler. M. Angew.Chem. Int. Ed. Engl. 1987, 26, 761.
    (13) The silicon and germanium analogues of the spherical homoaromatic C10H122+have been theoretically predicted. See: Chen, Z. F.; Hirsch, A. Nagase, S. Thiel,W.;Schleyer,P.v.R.J.Am.Chem.Soc.2003,125,15507.
    (14)Zhang,Q.;LuX.;Huang,R.B.;Zheng,L.S. Inorg.Chem.2006,45,2457
    (15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.;Burant,J.C.;Dapprich,S.; Millam,J.M.; Daniels, A.D.; Kudin,K.N.; Strain,M.C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.;Pomelli,C.; Adamo,C.; Clifford,S.; Ochterski,J.; Petersson, G. A.; Ayala, P. Y.;Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko,A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.;Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.;Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.;Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98; Gaussian, Inc.:Pittsburgh,PA,1998.
    (16)(a) Becke,A.D.J.Chem.Phys. 1993,98,5648(b)Lee,C.;Yang,W.;Parr,R.G.;Phys. Rev.A1988, 37,785.
    (17) Glukhovtsev.M. N.; Pross,A.; McGrath,M. P.; Radom,L.J.Chem.Phys.1995,103,1878.
    (18) (a) Adamo, C.; Barone, V. Chem. Phys. Lett. 1997, 274, 242. (b) Adamo, C.;Barone,V.J.Chem.Phys.1998,108,664.
    (19)Perdew,J.P.;Wang,Y.Phys.Rev.1992,B45,13244.
    (20) (a)Bergner,A.;Dolg,M.;Kuechle,W.; Stoll,H.; Preuss,H. Mol.Phys.1993,80,1431.(b)MartinJ.M.L.;Sundermann, A.J.Chem.Phys.2001,114,3408.
    (21) (a) Fowler, P. W.; Rees, C. W.; Soncini, A.J. Am. Chem. Soc.2004, 126,11202.(b) Proft, F. D.; Fowler, P. W. Havenith, R. W. A.; Schleyer, P.v.R.; Lier, G. V.Geerlings,P. Chem.Eur.J.2004,10,940.
    (22)Messerschmidt,M.;Wagner,A.;Wong,M.W.;Luger,P.J.Am.Chem.Soc2002,124,732.
    (23)Gameron,T.S.;Deeth,R.J.;Dionne,I.;Du,H.B.;Jenkins,H.D.B.;KrossingI.;Passmore,J.;RoobottomH.K.Inorg.Chem. 2000,39,5614.
    (24)(a)Schleyer,P.v. R.;Maerker,C.;Dransfeld,A.;Jiao,H.J.;Hommes,N.J.r.V.E.J.Am.Chem.Soc.1996,118,6317.(b)Schleyer,P.v.R.;Jiao,H.;Hommes,N.J.R.v.E.;Malkin,V.G.;Malkina,O.L.J.Am.Chem.Soc.1997,119,12669.
    (25)Schleyer,P.v.R.;MaerkerC.;DransfeldA.;JiaoH.J.;HommesN.J.R.v.E.J.Am. Chem. Soc. 1996, 118,6317.
    (26) (a)Wolinski,K.;Hilton,J.F.;Pulay,P.J.J. Am.Chem.Soc.1990,112, 8251andreferencestherein.(b)London,F. J.Phys.Radium1937,8,397.(c)Dditchfield,R.Mol. Phys.1974, 27,789.(d)Chesnut,D.B.; Foley,C.K.Chem. Phys. Lett. 1985,118, 316. (e) Chesnut, D. B.; Moore, K. D. J. Comput. Chem. 1989, 10, 648. (f)Kutzelnigg, W. Isr. J. Chem. 1980, 19,193. (g) Schindler, M.; Kutzelnigg, W. J.chem. Phys.1982, 76, 1919. (h) Schindler, M.; Kuzelnigg, W. J. Am. Chem. Soc.1983, 105,1360. (i) Schindler, M.; Kutzelnigg, W. Mol. Phys. 1983, 48, 781. (j)Hansen, A. E.; Bouman, T. D.J. Chem. Phys. 1985,82, 5035. (k) Hansen, A. E.;Bouman,T.D.J.Chem.Phys. 1989,91,3552.
    (27) (a)Nandana, W. A. S.; Passmore, J.; White, P. S.; Wong, C. M. J. Chem. Soc.,Chem. Commun. 1982, 1098. (b) Nandana, W. A. S.; Passmore, J.; White, P. S.;WongC.M.Inorg.Chem.1990,29,3529.
    (28) A nearly staggered structure with an O-S-S-O torsional angle ~56?was alsofound in Na2S2O4?2H2O. For the X-ray structures of S2O42-, see: (a) Dunitz, J. D.Acta Crystallogr. 1956, 60, 539. (b) Kiers, C. Th.; Vos, A. Acta Crystallogr.B1978, 34, 1499. (c) Magnusson, A.; Johansson, L.Acta Chem. Scand. 1982, A36.429(d)Weinrach,J.B.; Meyer, D.R.; Guy, J.T.; Michaelski,P.E.; Carter,K. L.;Grubisha, D. S.; Bennett, D. W. J. Crystallogr. Spectrosc. Res. 1992,22, 291. e)Inaddtion, a C2h symmetric staggered structure (Scheme 3c), a C2 symmetric gaugestructure (Scheme 3d), and two other isomers (Scheme 3e and f) were predicted,using quantum chemical calculations , to be candidates for the ground-statestructureofS2O42-. Fortheoretical studies See: f) Leszczynski,J.; Zerner,M. C.Chem. Phys. Lett. 1989, 159, 143.g)Carter,K.L.;Weinrach,J.B.;Bennett,D.W.J. Am. Chem. Soc. 1993, 115,10981.h)SteudelR.;Steiger,T. J. Mol. Struct.1993,284, 55.I)McKee,M.L. J. phys. Chem.1996, 100, 3473.
    (29) (a) Gillespie, R. J.; Kapoor, R.; Faggiani, R.; Lock, C. J. L.; Murchie, M. P.;Passmore,J.J.Chem.Soc.Chem.Commun.1983,8.(b)Faggiani,R.J.;Gillespie,R.J.;Kapoor,R.;Lock,C.J.L.;Vekris,J.E.Inorg.Chem.1988,27,4350.
    (30) Brownridge, S.; Krossing, I.; Passmore, J.; Jenkins, H. D. B.; Roobottom, H. K.Coord.Chem. Rev. 2000, 197,397.
    (31)Gillespie,R.J.;Morton,M.J.;Milne,J.B.Inorg.Chem. 1968,7,2221.
    (32) (a) Banister, A. J.; Clarke, H. G.; Tayment, I.; Shearer, H. M. M. Inorg. Nucl.Chem. Lett. 1974, 10, 647. (b) Krebs, B.; Henkel, G.; Pohl, S.; Roesky, H. W.Chem. Ber.1980, 113,226.
    (33) N2O2 is a intermediate of some important reactions. See:(a) Bartke, T. U.;Franchy,R.;Ibach,H.Surf.Sci.1992,272,299.(b)Brown,W.A.;Sharma,R.K.;King,D.A.;Haw,S.J.Chem.Phys.1996,100,12559.(c)Ludviksson,A.;Huang,C.;Jansch,J.;Martin,R.M.Surf.Sci.1993,284,328.(d)Ramprasad,R.;Hass,K.C.;Schneider,W.F.;Adams,J.B.J.Phys.Chem.1997,101,35.
    (34) Lipscomb,W.N.; Wang, F.E.; May,W.R.; Lippert,E. L.Acta.Cryst. 1961,14,1100.
    (35) Western, C. M.; Langridge-Smith, P. R. R.; Howard, B. J.; Novick, S. E. Mol.Phys.1981, 44,145.
    (36)Kukolich,S.G.J.Mol.Spectrosc.1983,98,80.
    (37)Dinerman,C.E.;Ewing,G.E.J.Chem.Phys. 1970,53,626.
    (38)McKellar,A.R.W.;Watson,J.K.G.;Howard,B.J.Mol.Phys.1995,86,273.
    (39) Benzel, M. A. B.; Dykstra, C. E.; Vincent, M. A. Chem. Phys. Lett. 1981, 78,139.
    (40)Stirling,A.;Papai,J.;Mink,J.;Salahub,D.R. J.Chem.Phys.1994,100,2910.
    (41)Ha,T.K.Theor.Chim.Acta 1981,58,125.
    (42)Lee,T.J.;Rice,J.E.;Scuseria,G.E.;SchaeferIII,H.F. Theor.Chim.Acta1989,75,81.
    (43)(a)Davies,C.G.;Gillespie,R.J.;Park,J.J.;Passmore,J.Inorg.Chem.1971,10,2781. (b) Gameron, T. S.; Deeth, R. J.; Dionne, I.; Du, H. B.; Jenkins, H. D. B.;KrossingI.;Passmore,J.;RoobottomH.K.Inorg.Chem. 2000,39,5614.
    (44)(a)McMullan,R.K.Rrince,D.J.;Corbett,J.D.Inorg.Chem. 1971,10,1749.(b)Brown, I. D.; Crump, D. B.; Gillespie, R. J. Inorg. Chem. 1971, 10, 2319. (c)Cardinal, G.; Gillespie, R. J.; Sawyer, J. F.; Vekris, J. E. J. Chem. Soc., DaltonTrans. 1982, 765. (d) Collins, M. J.; Gillespic, R. J.; Sawyer, J. F. ActaCrystallogr. C 1988, 44,405.
    (45) Gillespie, R. J.; Passmore, J.; Ummat, P. K.; Vaidya, O. C. Inorg. Chem. 1971,10,1327.
    (46) The isodensity surfaces were produced by the freeware MOLDEN: SchaftenaarG.; Noordik,J.H.J.Comput.-AidedMol.Design,2000,14,123.
    (47) (a) Prince, D. J.; Corbett, J. D.; Garbisch, B. Inorg. Chem. 1970, 9, 2731. (b)Beck, J.; Bock, G.; Z. Naturforsch. B 1996 B 51 119. (c) Beck, J.; Bock, G. Z.Anorg. Allg. Chem. 1996, 622,823.(d)Beck,J.Chem. Ber.1995, 128,23.
    (48) (a) DeLucia, M. L.; Coppens, P. Inorg. Chem.1978,17, 2336. (b) Sharma, B.D.;Donohue,J. ActaCrystallogr.1963,16,891.
    (49)B?rmighuasen,H.;Volkmann,T.v.;Jander,J. ActaCrystallogr.1966,21,751.
    (50) (a)Chung, G.; Lee, D. J. Mol. Struct. (THEOCHEM) 2002, 582, 85. (b)Suontamo, R. J.; Laitinen, R.S. J. Mol. Struct. (THEOCHEM) 1995, 358, 55. (c)Millefiori, S.; Millefiori, A. Inorg. Chim. Acta, 1980, 45, L19. (d) Millefiori, A.;Millefiori, S. J. Chem. Res. (S) 1980, 244. (e) Findlay, R. H.; Palmer, M.H.;Downs,A.J.;EgdellR.G.;Evans,R. Inorg.Chem. 1980,19,1307.(f)Tanaka,K.;Yamabe,T.;Tachibana, A.;Kato,H.; Fukui,K.J.Phys.Chem. 1978,82,2121.(g)Salahub,D.R.;Messmer,R.P.J.Chem.Phys.1976,64,2039.(h)Salaneck,W.R.;Lin, J. W.-P.; Paton, A.; Dukeand, C. B.; Ceasar, G. P. Phys. Rev. B 1976, 13,4517. (i) Gopinathan, M. S.; Whitehead, M. A. Can. J. Chem. 1975,53, 1343. (j)Gleiter, R. J. Chem. Soc. A 1970, 3174. (l) Turner, A. G.; Mortimer, F. S.Inorg.Chem. 1966, 5,906.
    (51)ThestructureofS4N5- wascharacterizedexperimentally.See:Flues,W.;Scherer,O.J.;Weiss,J.;Wolmersh?user,G. Angew.Chem.Int.Ed.Engl.1976,15,379.
    (52)Tothebestofourknowledge,experimentalevidenceontheboatisomerofSe4N4is not available. Boat conformation of S4N4 was only found as ligand in somecoordination complexes. See: Chivers, T.; Hilts, R. W. Coord. Chem. Rev. 1994,137,201andreferencestherein.
    (53) Burns, R. C.; Gillespie, R. J.; Luk, W. C., Slim, D. R. Inorg. Chem. 1979, 18,3086.
    (54) Burford, N.; Passmore, J.; Sanders, J. C. P. in: Liebman, J. F.; Greenberg, A.(eds.), From Atoms to Polymers, Isoelectronic Analogies, 1989, p. 53 andreferencestherein.
    (55) Lyne; P. D.; Mingos, D. M. P.; Ziegler, T. J. Chem. Soc. Dalton Trans. 1992,2743.
    (1) Lagow, R. J.; Kampa, J. J.;Wei, H. C.; Battle, S. L.; Genge, J.W.; Laude, D. A.;Harper, C. J.; Bau, R.; Stevens, R. C.; Haw, J. F.; Munson, E. Science 1995, 267,362.
    (2) Weltner,W.; Van Zee, R. J. Chem. Rev. 1989, 89, 1713.
    (3) Arnold, D.W.; Bradforth, S. E. J. Chem. Phys. 1991, 95, 8735.
    (4) Handchuh, H.; Gantefor, G.; Kessler, B. Phys. Rev. Lett. 1995, 74, 1095.
    (5) Ragavachari, K.; Binkley, J. S. J. Chem.. Phys. 1987, 87, 2191.
    (6) Van Orden, A; Huang, H. J.; Kuo, E.W.; Saykally, R. J. J. Chem. Phys. 1993, 98,6678.
    (7) Von Helden, G.; Hsu, M. T.; Goth, N. G.; Bovwes, M. T. J. Phys. Chem. 1993, 97,8182.
    (8) McElvaney, S.W.; Dunlop, B. I.; O’Keefe, A. J. Chem. Phys. 1987,86,715.
    (9) Guo, t.; Diener, M. D.; Chai, Y.; Alford, M. J.; Haufler, R. E.; McClure, S. M.;Ohno, T.;Weaver, J. H.; Scuseria, G. E.; Smalley, R. E. Science, 1992, 257, 1661.
    (10) (a) Satio, S.; Kawaguchi, K.; Yamamoto, S.; Ohishi, M.; Suzuki, H.; Kaifu, N.Astrophys. J. 1987, 317, L115. (b) Yamamoto, S.; Saito, S.; Kawaguchi, K.;Chikada, Y.; Suzuki, H.; Kaifu, N.; Ishikawa, S.; Ohishi, M. Astrophys. J. 1990,361,318.
    (11) (a) Muramki, Astrophys. J. 1990, 357, 288. (b) Seeger, S.; Botschwina, P.; Flugge,J.; Reisenauer, H. P.; Maier, G.; J. Molec. Struct. (Theochem) 1994, 303, 123. (c)Bell, M. B.; Avery, L.W.; Feldman, P. A. Astrophys. J. 1993, 417, L37. (d)Yamamoto, S.; Saito, S.; Kawaguchi, K.; Kaifu, N.; Suzuki, H.; Ohishi, M.Astrophys. J. 1987, 317, L119.
    (12) Kasai, Y.; Oshima, K.; Endo, Y.; Kawaguchi, K.; Murakami, A. Astrophys. J.1993, 410, L45.
    (13) Van Orden, A.; Saykally, R. J. Chem. Rev. 1998, 98, 2313.
    (14) Cherchneff, I. M.; Glassgold, A. E.; Mamon, G. A. Astrohys. J. 1993, 410, 188.
    (15) Cherchneff, I. M. Astrohys. J. Suppl. Ser. 1995, 224, 379.
    (16) Jones, E.R.H.; Lee, H. H.; Whiting, M. C.; J. Chem. Soc. 1960, 3483.
    (17) Eastmond, R.; Johnston, T. R.; Walton, D. R. M.; Tetrahedron 1972, 28, 4601
    (18) Dembinski, R.; Bartik, T.; Bartik, B.; Jaeger, M.; Gladysz, J. A. J. Am. Chem.Soc. 2000, 122, 810.
    (19) Kappe, T.; Ziegler, E. Angew. Chem. Int. Ed. Engl. 1974, 13, 491.
    (20) Grosser, T.; Hirsch, A. Angew. Chem. Int. Ed. Engl. 1993, 32, 1340
    (21) Leleyter, M. Z. Phys. D 1995, 33, 49
    (22) Huang, R. B.;Wang, C. R.; Liu, Z. Y.; Zheng, L. S.; Qi, F.; Sheng, L. S.; Yu, S.Q.; Zhang, Y.W. Z. Phys. D 1995, 33, 49.
    (23) Vandenbosch, R.;Will, D. I. J. Chem. Phys. 1996, 104,5600
    (24) Wang, H. Y.; Huang, R. B.; Chen. H.; Lin, M. H.; Zheng, L. S. J. Phys. Chem. A.2001, 105, 4653.
    (25) Leleyter, M.; Joyes, P. Surf. Sci. 1985, 156, 800.
    (26) Zhan, C. G.; Iwata, C. G. J. Chem. Phys. 1996, 104, 9508.
    (27) Pascoli, G.; Lavendy H. Chem. Phys. Lett. 1999, 312, 333.
    (28) Zhan, C. G.; Iwata, S. J. Chem. Phys. 1997, 107, 7323.
    (29) Pascoli, G.; Lavendy H. J. Phys. Chem. A. 1999, 103, 3518.
    (30) Liu, J.W.; Chen, M. D.; Zheng, L. S.; Zhang, Q. E.; Au, C. T. J. Phys. Chem. A.2004, 108, 5704.
    (31) Zhan, C. G,; Iwata, S. J. Phys. Chem. A 1997, 101, 591.
    (32) Pan, L.; Rao, B. K.; Gupta, A. K.; Das, G. P.; Ayyub, P. J. Chem. Phys. 2003, 119,7705.
    (33) Largo A.; Redondo P.; Barrientos C. J. Phys. Chem. A. 2004,108, 6421.
    (34) Redondo, P.; Barrientos, C.; Largo, A. J. Phys. Chem. A. 2004, 108, 11132.
    (35) Redondo, P.; Barrientos, C.; Cimas, A.; Largo A. J. Phys. Chem. A 2003, 107,4676.
    (36) Redondo, P.; Barrientos, C.; Cimas, A.; Largo A. J. Phys. Chem. A 2003, 107,6317.
    (37) Largo, A.; Redondo, P.; Barrientos, C. J. Phys. Chem. A 2002, 106, 4217.
    (38) Hunsicker, S.; Jones, R. O. J. Chem. Phys. 1996, 105,5048.
    (39) Gomei, M.; Kishi, r.; Nakajima, A.; Iwata, S.; Kaya, K. J. Chem. Phys. 1996, 107,10051.
    (40) Pascoli, G.; Lavendy, H. Int. J. Mass Spectrom. 1998, 177, 31.
    (41) Pascoli, G.; Lavendy, H. Int. J. Mass Spectrom. Ion Proc. 1998, 173, 41.
    (42) Pascoli, G.; Lavendy, H. Int. J. Mass Spectrom. 1998, 181, 11.
    (43) Pascoli, G.; Lavendy, H. Int. J. Mass Spectrom. 1998, 181, 135.
    (44) Largo, A.; Cimas, A.; Redondo, P.; Barrientos, C. Int. J. Quantum. Chem. 2001,84, 127.
    (45) Middleton, R. Nucl. Instrum. Methods B 1977, 58, 161.
    (46) Li, G. L.; Xing, X. P.; Tang, Z. C. J. Chem. Phys. 2003, 118, 6884.
    (47) Balasubramnian,K. Relativistic Effects in Chemistry,Wiley: New York, 1997.
    (48) Pepper, M.; Bursten, B. E. Chem. Rev. 1991, 91, 719.
    (49) (a) Sakai, Y.; Huzinaga, S. J. Chem. Phys. 1982, 76, 2537. (b) Klobukowski, M. J.Comp. Chem. 1983, 4, 350. (c) Barandiaran, Z.; Seijo. L. Can. J. Chem. 1992, 70,409. (c) Huzinaga, S.; Seijo, L.; Barandiaran, Z.; Klobukowski, M. J. Chem. Phys.1987, 86, 2132.
    (50) (a)Hellman, H. J. Chem. Phys. 1935, 3, 61. (b)Phillips, J. C.; Kleinman, L. Phys.Rev. 1959, 116, 287.
    (51) (a) Hay, P. J.;Wadt,W. R. J. Chem. Phys. 1985, 82, 270; 1985, 82, 284; 1985, 82,299. (b) Cundari, T. R.; Stevens,W. J. J. Chem. Phys. 1993, 98, 5555. (c) Hurley,M. M.; Pacios, L. F.; Christiansen, P. A.; Ross, R. B.; Ermler, W. C. J. Chem. Phys.1986, 84, 6840. (d) Lajohn, L.; Christiansen, P. A.; Ross, R. B.; Atashroo, T.;Ermler,W. C.; Lajohn, L.; Christiansen, P. A. J. Chem. Phys. 1990, 93, 6654. (e)Ermler,W. C.; Ross, R. B.; Christiansen, P. A. Int. J. Quant. Chem. 1991, 40, 829.(f) Ross, R. B.; Gayen, S.; Ermler,W. C. J. Chem. Phys. 1994, 100, 8145.
    (52) (a)Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang,W.; Parr, R. G.;Phys. Rev. A 1988, 37, 785.
    (53) Cao, Z. X.; Zhang Q. E. Chem. Eur. J. 2004, 10, 1920.
    (54) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;Cheeseman, J. R., Zakrzewski, V. G.; J. A.Montgomery, Jr. R. E. Stratmann, J. C.Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O.Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C.Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K.Morokuma, D.K. alick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J.Cioslowski, J.V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A.Al-Laham, C. Y.Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M.W. Gill, B. G.Johnson,W. Chen, M. W.Wong, J. L.Andres, M. Head-Gordon, E. S. Replogle,and J.A. Pople Gaussian98. [rev. A.10]. Pittsburgh, PA, Gaussian, Inc. 1998.
    (55) (a)Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Perdew, J. P.;Wang, Y. Phys.Rev. B 1991, 45, 13244.
    (56) Perdew, J. P.; Phys. Rev. B 1986, 33, 8822.
    (57) Lee, C.; Yang,W.; Parr, R. G.; Phys. Rev. A 1988, 37, 785.(b) Becke, A. D. J.Chem. Phys. 1992, 96, 2155.
    (58) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
    (59) Li, G. L.; Tang, Z.C. J. Phys. Chem. A 2003, 107, 5317.
    (60) Albright, T. A.; Burdett, J. K.;Whangbo, M. H. Orbital Interactions in chemistry,Wiley, New York, 1985.
    (61) Hay, P. J.;Wadt,W. R.; Kahn, L. R.; Bobrowicz, F.W.; J. Chem. Phys. 1978, 69,984.
    (62) Luher, J.W.;Wald, K.; J. Am. Chem. Soc. 1981, 103, 7648.
    (63) (a)Churchill, M. R.; Lashewycz, R. A.; Inorg. Chem. 1979, 18, 1926. (b)Churchill, M. R.; Lashewycz, R. A.; Inorg. Chem. 1979, 18, 3261.(c) Bradford, C.W.; Van Bronswijk,W.; Clark, R. J. H.; Nyholm, R. S.; J. Chem. Soc. A 1970,2889.
    (64) (a) Li, J.; Pyykko, P. Inorg. Chem. 1993, 32, 2630. (b) Schmidbur, H.;Steigelmann, O. Z. Naturforsch. B 1992, 47, 1721. (c) Schmidbaur H.; Gabbai, F.P.; Schier, A. Organometallics 1995, 14, 4969.
    (65) Kiran, B.; Li, X.; Zhai, H. J.; Cui, L. F.;Wang, L. S. Angew. Chem. Int. Ed. Engl.2004, 43,2125.
    (66) 周异男,陈宏,唐紫超,张强,黄荣彬,郑兰荪。高等化学学校化学学报,1999,20(2) ,294.
    (1) (a) Sulzle, D.; Schwarz, H. Angew. Chem. Int. Ed. Engl. 1988, 27, 1337. (b) Sulzle,D, Schwarz, H. J. Am. Chem. Soc. 1991, 113, 48. (c) Bohn, R. B.; Hannachi, Y.;Andrews, L. J. Am. Chem. Soc. 1992, 114, 6452. (d)Wentrup, C.; Kambouris, P.;Evans, R. A.; Owen, D.; Macfarlane, G.; Chuche, J.; Pommelet, J. C.; Cheikh, A.B.; Plisnier, M.; Flammang, R. J. Am. Chem. Soc. 1991, 113, 3130. (e) Maier, G.;Rosenauer, H. P.; Schrot, J.; Janoschek, R. Angew. Chem. Int. Ed. Engl. 1990, 29,1464.
    (2) Beck, M. T.; Kauffman, G. B. Polyhedron 1985, 5, 775.
    (3) Schumaker,R.R.; Engler, E. M. J. Am. Chem. Soc. 1977, 99,5521. (b) Poleschner,H.; John, W.; Hoppe, F.; Fanghanel, E. J. Prakt. Chem. 1983, 325, 957. (c) Richter,A. M.; Fanghanel, E. Tetrahedron Lett. 1983, 24, 3577.
    (4) Hansen, L. K.; Hordvik, A. J. Chem. Soc., Chem. Commun. 1974,800. Brown, J.P.; and Gay, T. B.; J. Chem. Soc., Perkin Trans. 1974, 1, 866 .
    (5) Doxsee, D. D.; Galloway, C. P.; Rauchfuss, T. B.;Wilson, S. R.; Yang, X. G. Inorg.Chem. 1993, 32, 5467.
    (6) Galloway, C. P.; Doxsee, D. D.; Fenske, D.; Rauchfuss, T. B.;Wilson, S. R.; andYang, X. G. Inorg. Chem. 1994, 33, 4537.
    (7) Yang, X. G.; Rauchfuss, T. B.; and Wilson,S. R. J. Am. Chem. Soc. 1989, 111,3465.
    (8) Coucouvanis, D.; Draganjac, M. J. Am. Chem. Soc. 1982, 104, 6820.
    (9) (a) Harris, H. A.; Kanis, D. R.; Dahl, L. F. J. Am. Chem. Soc. 1991, 113, 8602. (b)Jeroschewski, P. Z. Chem. 1981, 21, 412.
    (10) Allmann, R.; Debaerdemaeker, T.; Mann, K.; Matusch, R.; Schmiedel, R.; Seitz,G. Chem. Ber. 1976, 109,2208. (b) Seitz, G. Phosphorus, Sulfur Silicon Relat Elem.1989, 43, 311.
    (11) Richter, A. M.; Engels, V.; Beye, N.; Fanghanel, E. Z. Chem. 1989, 29, 444.
    (12) (a) Gotzfried, F.; Beck,W.; Lerf, A.; Sebald, A. Angew. Chem. Int. Ed. Engl.1979, 18, 463. Gotzfried, F.; Grenz, R.; Urban, G.; Beck,W. Chem. Ber. 1985, 118,4179. Grenz, R.; Gotfried, F.; Urban, G.; Beck,W. Chem. Ber. 1986, 119, 1217.
    (13) Olk, R. M.; Olk, B.; Dietzsch, W.; Kirmse, R.; Hoyer, E. Coord. Chem. Rev. 1992,117, 99.
    (14) Szczepura, L. F.; Galloway, C. P.; Zheng Y.; Han P.; Rheingold, A. L.;Wilson, S.R.; Rauchfuss, T. B. Angew. Chem. Int. Ed. Engl. 1995, 34, 1890.
    (15) (a) Lee, S. Phys.Lett.1997, 268, 69 . (b) Pascoli, G.; Lavendy, H. InternationalJournal of Mass Spectrometry 1998, 181, 11.
    (16) Pascoli, G.; Lavendy, H. International Journal of Mass Spectrometry 1998, 181,135.
    (17) Kim, K.H.; Lee, B.; Lee, S. Chem. Phys. Lett 1998, 297, 65.
    (18) Sanov, A.; Lineberger,W. C.; Jordan, K. D. J. Phys. Chem. A 1998, 102, 2509.
    (19) Tsukuda, T.; Hirose, T.; Nagata, T. Chem. Phys. Lett. 1997, 279, 179.
    (20) Zhang,S.W.; Zhang, C. G.; Yu, Y. T.; Mao, B. Z.; He, F. C. Chem. Phys. Lett1999, 304, 265.
    (21) Yu, L.; Zeng, A. H.; Xu, Q.; Zhou, M. F. J. Phys.Chem. A 2004, 108, 8264.
    (22) Chen, H.; Huang, R. B.; Xie, Z. X.; Chen, L. H.; Zheng, L. S. J. Chem. Phys.2001, 114, 812.
    (23) Chen, H.; Huang, R. B.; Xie, Z. X.; Chen, L. H.; Zheng, L. S. J. Chem. Phys.2001, 114, 812.
    (24) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Becke, A. D. J. Chem. Phys.1993, 98,1372 . (c) Lee, C.; Yang, E.; Parr, R. G. Phys. Rev. B, 1988, 37, 785.
    (25) Brown,A. S. Jr. Smith, V. H; J. Chem. Phys. 1993, 99, 1837.
    (26) Mclean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639. (b) Krishnan, R.;Binkley, J. S.; Seeger, R. Pople, J. A. J. Chem. Phys. 1980, 72, 650.
    (27) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.;Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M.C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.;Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.;Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko,A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.;Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.;Gill, P. M.W.; Johnson, B. G.; Chen,W.;Wong, M.W.; Andres, J. L.;Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98; Gaussian, Inc.:Pittsburgh, PA, 1998.
    (28) Steudel, R. Angew. Chem. Int. Ed. Engl. 1975, 14, 655.
    (29) Steudel, R. Chem. Rev. 2002, 102, 3905.
    (30) (a) Morita, K.; Kobayashi, S. Chem. Pharm. Bull. 1967, 15, 988. (b) Morita, K.;Kobayashi, S. Tetrahedron Lett. 1966, 573. (c) Still, I.W. J.; Kutney, G.W.Tetrahedron Lett. 1981, 1219.
    (31) Konstantinova, L. S.; Rakitin, O. A.; Rees, C.W.; Souvorova, L. I.; Golovanov,D. G.; Lyssenko, A. Org. Lett. 2003, 5, 1939.
    (32) Steudel, R.;Westphal, U. J. Org. Chem. 1990, 388, 89.
    (33) Jeroschewski, P.; Strubing, B.; Berge, H. Z. Chem. 1980, 20, 102.
    (34) Iwaoka, M.; Takemoto, S.; Okada, M.; Tomoda, S. Bull. Chem. Soc. Japan.2002,75, 1611.
    (35) Chenard, B. L.; Harlow, R. L.; Johnson, A. L.; Vladuchick, S. A. J. Am. Chem.Soc. 1985, 107, 3871.
    (36) Leste-Lasserre, P.; Harpp, D. N. Tetrahedron Lett. 1999, 40, 7961.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700