新型DNA折纸芯片系统的开发与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA纳米技术是一门新兴的交叉学科,是指利用DNA自组装构建各种一维、二维、或三维的结构,并开发其应用。DNA纳米技术从80年代中期Seeman开创至今,已经经历了长足发展。国内目前系统介绍该领域的论文或专著极少,所以本论文的目的之一就是对其研究进展做出最新最全的综述,希望能对国内的研究者有所帮助,推动该领域在国内的发展。因为是交叉学科,论文涉及到生物、化学、物理、数学、计算机、纳米技术等知识内容,相信任何相关领域的科研工作者都可以在此找到用武之地。
     DNA纳米技术包括tile自组装、DNA折纸术、及DNA纳米器件三个大的方向,本文受篇幅所限只涉及前两个分支。除此之外,本文还分析了DNA参与纳米技术领域的种种优势,并详述了DNA纳米技术的一项重要应用——DNA纳米排布。
     本课题的内容是开发一种新型的DNA折纸芯片,这其实也属于纳米排布的一种。所谓DNA折纸芯片,就是由DNA折纸术得到的图形改造为的芯片。2008年初,美国亚利桑那大学的Ke等研制出了第一张、也是此前唯一一张折纸芯片。他们把折纸图形上的订书钉链伸出V字型探针,然后与溶液中的目标RNA杂交,通过杂交前后AFM图像的亮度差实现检测。该芯片的优点是目标链不用标记,检测较灵敏,但缺点是存在位置效应(折纸图形各位置的探针杂交效率有明显差异),且可扩展性不强。我们的目的就是用新的策略制成折纸芯片,希望在尽量保持Ke等原有优点的同时,改善其不足。
     我们的核心思路是把V字型探针改为最常用的一字型探针,并引入biotin-STV反应来增强信号强度。具体的做法是在折纸图形特定位置的订书钉链末端伸出寡核苷酸探针,让它与末端修饰biotin的目标链一对一杂交,杂交后加入STV蛋白使得杂交位点在AFM下呈现明显亮点,从而实现检测。另外我们还把Ke等的折纸矩形换为折纸术中国地图,这是为了增加探针的可寻址性。
     我们先用预实验验证了biotin-STV反应的可行性,然后在正式试验中用8个探针对一个32-mer目标链检测,从AFM的图上可以看出,亮点非常特异,效率较高,与设计完全相同。实验的成功证明了方案的可行,接下来,我们就着手考察本折纸芯片的特性,特别是Ke等芯片中的不足之处。我们共分析了两种效应的影响:位置效应和biotin方向效应。我们先把上面使用过的8个探针分为两组,一组位于图形边界,一组位于中央,然后观察两组的检测效率。结果发现两组并无差异,这说明本芯片无位置效应。我们又把同样的8个探针分为另外两组,一组是订书钉链3’端延伸探针,此时杂交后biotin将朝下,另一组5’延伸,杂交后biotin朝上,也观察两组效率。结果发现3’组比5’组效率高,我们推测主要是3’的成像效果更好,于是以后都推荐用3’延伸。
     我们还进一步设计了两个更深入的实验。第一个是多重检测,即考察一张芯片同时对多个目标链检测的分辨能力。我们同时在地图的两个位置分别伸出一列32-mer和一列20-mer的探针,然后分别加入对应的目标链,观察图形是否在特异的位置产生亮点。结果显示特异性很好。第二个是夹心法实验,这是一种新的杂交策略,即用capture probe来固定目标链,用reporter probe来释放杂交信号。这种设计的好处要么是折纸芯片本身的通用性,要么是目标链的label-free性,取决于capture探针是否设计为通用。
     除此之外,我们还做了若干延伸实验。对纳米金和量子点的排布有一些好的结果,但仍需进一步验证;修饰i-motif的实验则没有很好的证据显示分子马达的工作状态。这里特别要说的是利用本折纸芯片对SNP的检测,我们又设计了一种杂交方式,引入了toehold的链竞争机制,目前已实现对两个连续碱基差异的检测。进一步的优化实验仍在进行中,本系统有望实现完全label-free、且可重用的折纸芯片。
     总之,本研究开发了一种新型的DNA折纸芯片,它与之前已有的折纸芯片相比,不用做索引标记、没有位置效应、具备很强的扩展潜力。本研究不仅对本折纸芯片的特性做了较系统的考察,还设计了另外两种非常有意义的杂交方式,大大推动了本折纸芯片向实用领域的发展。
     本文第三章对DNA纳米技术将来的几个发展方向做了展望,分别提出了自组装构图、功能化纳米排布、内在机制、实用性四个分支所可能取得突破的一些研究课题。
     本文最后还以附章的形式介绍了本人在研究生阶段所进行的另一项工作:关联分析。研究集中在G72与COMT两个基因与双相情感障碍(BP)疾病的关联上,最后分别在两个基因中各找到一个与BP呈阳性关联的SNP,rs778293和rs4680,暗示了两个基因对BP致病机理潜在的影响。
DNA nanotechnology, commencing in 1980s, seeks to create versatile controllable structures out of DNA and explore their applications. Although it has made great progress, until now there are few theses or monographs written in Chinese systematically introducing this field. So one of the important aims of this thesis is giving a comprehensive review to DNA nanotechnology, hopefully promoting its development in China. Since it's an interdiscipline, this thesis involves knowledge of biology, chemistry, physics, mathematics, computer, nanotechnology. We encourage any researchers in relevant field work on this emerging cross-field.
     DNA nanotechnology can be divided into three subdivisions, which are tile-based self-assembly, DNA origami, and DNA nanodevices. For lack of space, in the first chapter of this thesis we only focused the first two. Moreover, We also indicated the inherent advantages of DNA to serve as a construction material in nanosciences, and looked into an important application in structural DNA nanotechnology, DNA nanofabrication.
     The main subject of this thesis is about DNA origami chip, which actually belongs to nanofabrication. DNA origami chip means a chip based on DNA origami technique. In early 2008, Ke et al. at Arizonal University successfully constructed the first, and until now the only origami chip. They prolonged the staple strands by half-probes, two of which hybridize with one target and form a stiff V-shaped structure, and detected the height difference before and after hybridization by AFM. Although their system was target label-free and had good sensitivity, the fact that they displayed a strong position-dependent hybridization effect, which meant probes at different positions in the origami chip showed significantly different hybridization efficiency, really bothered. What’s more, Their chip didn’t seem to have direct extended applications. So our objective is to make origami chips using other strategy, hopefully improving the limitations in Ke et al.’s chip, as well as maintaining their advantages.
     In this work, we generated DNA origami chips using single probe instead of V-shaped probe, and introduced biotin-STV interaction in our system. We first demonstrated that biotin-STV could serve as an effective AFM label for protruding probes on DNA origami tiles, by doing a pilot experiment. Then eight staple strands forming a―II‖pattern serve as modified points by extending 32 nucleotides at one end, which are complementary probes for a biotinylated DNA target of 32 bases. After incubation with STV, bound proteins were found clearly and specifically at the predicted position. The result demonstrated our chip worked well, so next we explored its characteristics.
     We first splited the eight modified positions of II pattern into two groups. One was near the edge of the chip while the other was in the middle. AFM images showed that no significant differences between the two patterns, which revealed position-dependent hybridization effect was not shown in our system. Then we discussed the impact of protruding directions of probes. we divided the II pattern into two columns. One was elongating probe from 3’end of the staple strands, which resulted proximal biotin after hybridization. The other was 5’elongation and distal biotin. The result demonstrated that proximal biotin can assist fixing the streptavidin position as well as improving imaging quality.
     We also did two further experiments about our chip. We examined its ability of multiplex detection, and got good specificity. We also performed a test to use a sandwich probe strategy for target detection. This new design also worked well, which had the potential of coustructing universal origami chip or label-free detection, up to whether the capture probe were designed common.
     In addition, we tapped the latent extensibility of our chip system. We used it to fabricate AuNP and QD, whose result was OK in despite of needing further proof. However, the states of pH-driven nanomachines, called i-motif, were not seen on our chip. Remarkably, we employed the toehold reaction for SNP detection in our chip, and AFM images could separate different strands with two consecutive different bases now. Further experiment was still in process, and a reusable origami chip for totally label-free target detection can be expected.
     In summary, in this work we constructed a new DNA origami chip with single strand probes on asymmetric self-assembled tile incorporating biotin-streptavidin interaction. Such a system for DNA target detection is free of index, without positional effect, and having high efficiency and specificity. We also explored two additional hybridization manner, and both worked well. These results demonstrated the potential for using DNA origami to template components with nanometer-scale precision by oligo hybridization strategy.
     The third chapter of this thesis looks into the prospect of DNA nanotechnology. I discuss and foresee potential breakthrough in self-assembly construction, functional nanofabrication, thermodynamic mechanism, and practicability in DNA nanotechnology field. I also mention some related projects I take part in.
     In the last chapter of this thesis, I give a brief introduction of another work, which I did during my doctoral years. It’s an association study between two genes and bipolar disorder. Finally we found two SNPs, rs778293 in G72 and rs4680 in COMT, confered susceptibility to BP in the Chinese Han population. Both were first evidences.
引文
[1] Kallenbach NR, Ma R, Seeman NC An immobile nucleic acid junction constructed from oligonucleotides. Nature. 1983; 305(5937): 829-831.
    [2] Seeman NC, Kallenbach NR Design of immobile nucleic acid junctions. Biophys. J. 1983; 44(2): 201-209.
    [3] Labean TH Nanotechnology: Another dimension for DNA art. Nature. 2009; 459(7245): 331-332.
    [4] Gothelf KV, LaBean TH DNA-programmed assembly of nanostructures. Org. Biomol. Chem. 2005; 3(22): 4023-4037.
    [5] Lund K, Williams B, Ke Y, et al. DNA nanotechnology: A rapidly evolving field. Curr. Nanoscience. 2006; 2(2): 113-122.
    [6] Seeman NC DNA in a material world. Nature. 2003; 421(6921): 427-431.
    [7] Feldkamp U, Niemeyer CM Rational design of DNA nanoarchitectures. Angew. Chem., Int. Ed. 2006; 45(12): 1856-1876.
    [8] Lin C, Liu Y, Yan H Designer DNA Nanoarchitectures (dagger). Biochemistry. 2009.
    [9] Chworos A, Severcan I, Koyfman AY, et al. Building programmable jigsaw puzzles with RNA. Science. 2004; 306(5704): 2068-2072.
    [10] Ura Y, Beierle JM, Leman LJ, et al. Self-assembling sequence-adaptive peptide nucleic acids. Science. 2009; 325(5936): 73-77.
    [11] Lukeman PS, Mittal AC, Seeman NC Two dimensional PNA/DNA arrays: estimating the helicity of unusual nucleic acid polymers. Chem Commun (Camb). 2004; 15): 1694-1695.
    [12] Heddle J Protein cages, rings and tubes: useful components of future nanodevices? J. Nanotechnology, Sci. and Appl. 2008.
    [13] Lin C, Ke Y, Li Z, et al. Mirror image DNA nanostructures for chiral supramolecular assemblies. Nano. Lett. 2009; 9(1): 433-436.
    [14] Seeman NC Nanotechnology and the double helix. Sci. Am. 2004; 290(6): 64-75.
    [15] He Y, Mao C Balancing flexibility and stress in DNA nanostructures. Chem. Commun. 2006; 9): 968-969.
    [16] Hogberg B, Liedl T, Shih WM Folding DNA origami from a double-stranded source of scaffold. J. Am. Chem. Soc. 2009; 131(26): 9154-9155.
    [17] Niemeyer CM The developments of semisynthetic DNA-protein conjugates. Trends Biotechnol. 2002; 20(9): 395-401.
    [18] Kuzyk A, Laitinen KT, T枚rm盲P DNA origami as a nanoscale template for protein assembly. Nanotechnology. 2009; 20(23).
    [19] Rothemund PW, Papadakis N, Winfree E Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2004; 2(12): e424.
    [20] Williams BA, Lund K, Liu Y, et al. Self-assembled peptide nanoarrays: an approach to studying protein-protein interactions. Angew. Chem., Int. Ed. 2007; 46(17): 3051-3054.
    [21] Winfree E, Liu F, Wenzler LA, et al. Design and self-assembly of two-dimensional DNA crystals. Nature. 1998; 394(6693): 539-544.
    [22] Zheng J, Constantinou PE, Micheel C, et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano. Lett. 2006; 6(7): 1502-1504.
    [23] Sharma J, Chhabra R, Liu Y, et al. DNA-templated self-assembly of two-dimensionaland periodical gold nanoparticle arrays. Angew. Chem., Int. Ed. 2006; 45(5): 730-735.
    [24] Lund K, Liu Y, Lindsay S, et al. Self-assembling a molecular pegboard. J. Am. Chem. Soc. 2005; 127(50): 17606-17607.
    [25] Liu Y, Ke Y, Yan H Self-assembly of symmetric finite-size DNA nanoarrays. J. Am. Chem. Soc. 2005; 127(49): 17140-17141.
    [26] Lin C, Liu Y, Yan H Self-assembled combinatorial encoding nanoarrays for multiplexed biosensing. Nano. Lett. 2007; 7(2): 507-512.
    [27] Park SH, Pistol C, Ahn SJ, et al. Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. Angew. Chem., Int. Ed. 2006; 45(5): 735-739.
    [28] Lund K, Liu Y, Yan H Combinatorial self-assembly of DNA nanostructures. Org. Biomol. Chem. 2006; 4(18): 3402-3403.
    [29] Cohen JD, Sadowski JP, Dervan PB Addressing single molecules on DNA nanostructures. Angew. Chem., Int. Ed. 2007; 46(42): 7956-7959.
    [30] Jungmann R, Liedl T, Sobey TL, et al. Isothermal assembly of DNA origami structures using denaturing agents. J. Am. Chem. Soc. 2008; 130(31): 10062-10063.
    [31] Goodman RP, Berry RM, Turberfield AJ The single-step synthesis of a DNA tetrahedron. Chem. Commun. 2004; 12): 1372-1373.
    [32] Li Z, Wei B, Nangreave J, et al. A replicable tetrahedral nanostructure self-assembled from a single DNA strand. J Am Chem Soc. 2009; 131(36): 13093-13098.
    [33] Goodman RP, Schaap IA, Tardin CF, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science. 2005; 310(5754): 1661-1665.
    [34] Yang X, Wenzler LA, Qi J, et al. Ligation of DNA triangles containing double crossover molecules. J Am Chem Soc. 1998; 120(38): 9779-9786.
    [35] O'Neill P, Rothemund PW, Kumar A, et al. Sturdier DNA nanotubes via ligation. Nano. Lett. 2006; 6(7): 1379-1383.
    [36] Pound E, Ashton JR, Becerril HA, et al. Polymerase Chain Reaction Based Scaffold Preparation for the Production of Thin, Branched DNA Origami Nanostructures of Arbitrary Sizes. Nano. Lett. 2009.
    [37] Deng Z, Tian Y, Lee SH, et al. DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angew. Chem., Int. Ed. 2005; 44(23): 3582-3585.
    [38] Beyer S, Nickels P, Simmel FC Periodic DNA nanotemplates synthesized by rolling circle amplification. Nano. Lett. 2005; 5(4): 719-722.
    [39] Lin C, Nangreave JK, Li Z, et al. Signal amplification on a DNA-tile-based biosensor with enhanced sensitivity. Nanomed. 2008; 3(4): 521-528.
    [40] Lin C, Xie M, Chen JJ, et al. Rolling-circle amplification of a DNA nanojunction. Angew Chem Int Ed Engl. 2006; 45(45): 7537-7539.
    [41] Lin C, Wang X, Liu Y, et al. Rolling circle enzymatic replication of a complex multi-crossover DNA nanostructure. J Am Chem Soc. 2007; 129(46): 14475-14481.
    [42] Lin C, Rinker S, Wang X, et al. In vivo cloning of artificial DNA nanostructures. Proc. Natl. Acad. Sci. 2008; 105(46): 17626-17631.
    [43] Zhang Y, Seeman NC Construction of a DNA-truncated octahedron. J. Am. Chem. Soc. 1994; 116(5): 1661-1669.
    [44] Li X, Yang X, Qi J, et al. Antiparallel DNA double crossover molecules as components for nanoconstruction. J. Am. Chem. Soc. 1996; 118(26): 6131-6140.
    [45] Sa-Ardyen P, Jonoska N, Seeman NC Self-assembling DNA graphs. Nat. Comput. 2003; 2(4): 427-438.
    [46] Liu D, Park SH, Reif JH, et al. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proc. Natl. Acad. Sci. 2004; 101(3): 717-722.
    [47] Deng Z, Mao C Molecular lithography with DNA nanostructures. Angew. Chem., Int. Ed. 2004; 43(31): 4068-4070.
    [48] He Y, Tian Y, Chen Y, et al. Sequence symmetry as a tool for designing DNA nanostructures. Angew. Chem., Int. Ed. 2005; 44(41): 6694-6696.
    [49] He Y, Ye T, Su M, et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature. 2008; 452(7184): 198-201.
    [50] Aldaye FA, Lo PK, Karam P, et al. Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character. Nat. Nanotechnol. 2009; 4(6): 349-352.
    [51] Shen W, Zhong H, Neff D, et al. NTA directed protein nanopatterning on DNA Origami nanoconstructs. J Am Chem Soc. 2009; 131(19): 6660-6661.
    [52] Liu H, He Y, Ribbe AE, et al. Two-dimensional (2D) DNA crystals assembled from two DNA strands. Biomacromolecules. 2005; 6(6): 2943-2945.
    [53] Liu H, Chen Y, He Y, et al. Approaching the limit: can one DNA oligonucleotide assemble into large nanostructures? Angew. Chem., Int. Ed. 2006; 45(12): 1942-1945.
    [54] He Y, Tian Y, Ribbe AE, et al. Antibody nanoarrays with a pitch of approximately 20 nanometers. J. Am. Chem. Soc. 2006; 128(39): 12664-12665.
    [55] Zhang C, He Y, Chen Y, et al. Aligning one-dimensional DNA duplexes into two-dimensional crystals. J. Am. Chem. Soc. 2007; 129(46): 14134-14135.
    [56] Li H, Park SH, Reif JH, et al. DNA-templated self-assembly of protein and nanoparticle linear arrays. J. Am. Chem. Soc. 2004; 126(2): 418-419.
    [57] He Y, Tian Y, Chen Y, et al. Cation-dependent switching of DNA nanostructures. Macromol. Biosci. 2007; 7(8): 1060-1064.
    [58] Sharma J, Chhabra R, Cheng A, et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science. 2009; 323(5910): 112-116.
    [59] Dietz H, Douglas SM, Shih WM Folding DNA into twisted and curved nanoscale shapes. Science. 2009; 325(5941): 725-730.
    [60] Mitchell JC, Harris JR, Malo J, et al. Self-assembly of chiral DNA nanotubes. J. Am. Chem. Soc. 2004; 126(50): 16342-16343.
    [61] Yan H, Park SH, Finkelstein G, et al. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science. 2003; 301(5641): 1882-1884.
    [62] Shih WM, Quispe JD, Joyce GF A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature. 2004; 427(6975): 618-621.
    [63] Andersen ES, Dong M, Nielsen MM, et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature. 2009; 459(7243): 73-76.
    [64] Andersen FF, Knudsen B, Oliveira CL, et al. Assembly and structural analysis of a covalently closed nano-scale DNA cage. Nucleic Acids Res. 2008; 36(4): 1113-1119.
    [65] Zheng J, Birktoft JJ, Chen Y, et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature. 2009; 461(7260): 74-77.
    [66] Goodman RP, Heilemann M, Doose S, et al. Reconfigurable, braced, three-dimensional DNA nanostructures. Nat. Nanotechnol. 2008; 3(2): 93-96.
    [67] Wilner OI, Weizmann Y, Gill R, et al. Enzyme cascades activated on topologically programmed DNA scaffolds. Nat Nanotechnol. 2009; 4(4): 249-254.
    [68] LaBean TH, Winfree E, Reif JH Experimental progress in computation by self-assembly of DNA tilings. DNA Based Computers V. DIMACS Workshop (Series in Discrete Mathematics and Theoretical Computer Science Vol.54). 2000; 123-140|xiii+249.
    [69] Lin C, Katilius E, Liu Y, et al. Self-assembled signaling aptamer DNA arrays for protein detection. Angew. Chem., Int. Ed. 2006; 45(32): 5296-5301.
    [70] He Y, Chen Y, Liu H, et al. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 2005; 127(35): 12202-12203.
    [71] Lin C, Ke Y, Liu Y, et al. Functional DNA nanotube arrays: bottom-up meets top-down. Angew. Chem., Int. Ed. 2007; 46(32): 6089-6092.
    [72] Rothemund PW, Ekani-Nkodo A, Papadakis N, et al. Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 2004; 126(50): 16344-16352.
    [73] Rothemund PW Folding DNA to create nanoscale shapes and patterns. Nature. 2006; 440(7082): 297-302.
    [74] Lin C, Liu Y, Rinker S, et al. DNA tile based self-assembly: building complex nanoarchitectures. Chemphyschem. 2006; 7(8): 1641-1647.
    [75] Kallenbach NR, Ma RI, Seeman NC An immobile nucleic acid junction constructed from oligonucleotides. Nature. 1983; 305(5937): 829-831.
    [76] Seeman NC Nucleic acid junctions and lattices. J. Theor. Biol. 1982; 99(2): 237-247.
    [77] Ma RI, Kallenbach NR, Sheardy RD, et al. Three-arm nucleic acid junctions are flexible. Nucleic Acids Res. 1986; 14(24): 9745-9753.
    [78] Wang YL, Mueller JE, Kemper B, et al. Assembly and characterization of five-arm and six-arm DNA branched junctions. Biochemistry. 1991; 30(23): 5667-5674.
    [79] Wang X, Seeman NC Assembly and characterization of 8-arm and 12-arm DNA branched junctions. J. Am. Chem. Soc. 2007; 129(26): 8169-8176.
    [80] Li Y, Tseng YD, Kwon SY, et al. Controlled assembly of dendrimer-like DNA. Nat Mater. 2004; 3(1): 38-42.
    [81] Mizuno R, Haruta H, Morii T, et al. Synthesis and AFM visualization of DNA nanostructures. Thin Solid Films. 2004; 464-465(459-463.
    [82] Lee JB, Roh YH, Um SH, et al. Multifunctional nanoarchitectures from DNA-based ABC monomers. Nat Nanotechnol. 2009; 4(7): 430-436.
    [83] Petrillo ML, Newton CJ, Cunningham RP, et al. The ligation and flexibility of four-arm DNA junctions. Biopolymers. 1988; 27(9): 1337-1352.
    [84] Yang M, Millar DP Conformational flexibility of three-way DNA junctions containing unpaired nucleotides. Biochemistry. 1996; 35(24): 7959-7967.
    [85] Lilley DM, Clegg RM The structure of the four-way junction in DNA. Annu. Rev. Biophys. Biomol. Struct. 1993; 22(299-328.
    [86] Churchill ME, Tullius TD, Kallenbach NR, et al. A Holliday recombination intermediate is twofold symmetric. Proc. Natl. Acad. Sci. 1988; 85(13): 4653-4656.
    [87] Malo J, Mitchell JC, Venien-Bryan C, et al. Engineering a 2D protein-DNA crystal. Angew. Chem., Int. Ed. 2005; 44(20): 3057-3061.
    [88] Fu TJ, Seeman NC DNA double-crossover molecules. Biochemistry. 1993; 32(13): 3211-3220.
    [89] Lu M, Guo Q, Seeman NC, et al. Parallel and antiparallel Holliday junctions differ in structure and stability. J. Mol. Biol. 1991; 221(4): 1419-1432.
    [90] Kumara MT, Nykypanchuk D, Sherman WB Assembly pathway analysis of DNA nanostructures and the construction of parallel motifs. Nano. Lett. 2008; 8(7): 1971-1977.
    [91] Ke Y, Liu Y, Zhang J, et al. A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures. J. Am. Chem. Soc. 2006; 128(13): 4414-4421.
    [92] Sa-Ardyen P, Vologodskii AV, Seeman NC The flexibility of DNA double crossover molecules. Biophys. J. 2003; 84(6): 3829-3837.
    [93] LaBean TH, Yan H, Kopatsch J, et al. Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 2000; 122(9): 1848-1860.
    [94] Seeman NC DNA Nicks and Nodes and Nanotechnology. Nano. Lett. 2001; 1(1): 22-26.
    [95] Shen Z, Yan H, Wang T, et al. Paranemic crossover DNA: a generalized Holliday structure with applications in nanotechnology. J. Am. Chem. Soc. 2004; 126(6): 1666-1674.
    [96] Liu W, Wang X, Wang T, et al. PX DNA triangle oligomerized using a novelthree-domain motif. Nano. Lett. 2008; 8(1): 317-322.
    [97] Koyfman AY, Magonov SN, Reich NO Self-assembly of DNA arrays into multilayer stacks. Langmuir. 2009; 25(2): 1091-1096.
    [98] He Y, Ko SH, Tian Y, et al. Complexity emerges from lattice overlapping: implications for nanopatterning. Small. 2008; 4(9): 1329-1331.
    [99] He Y, Tian Y, Ribbe AE, et al. Highly connected two-dimensional crystals of DNA six-point-stars. J. Am. Chem. Soc. 2006; 128(50): 15978-15979.
    [100] Zhang C, Su M, He Y, et al. Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proc. Natl. Acad. Sci. 2008; 105(31): 10665-10669.
    [101] Zhang C, Ko SH, Su M, et al. Symmetry controls the face geometry of DNA polyhedra. J. Am. Chem. Soc. 2009; 131(4): 1413-1415.
    [102] Yin P, Hariadi RF, Sahu S, et al. Programming DNA tube circumferences. Science. 2008; 321(5890): 824-826.
    [103] Brun Y, Gopalkrishnan M, Reishus D, et al. Building blocks for DNA self-assembly. Preliminary Proc. Conf. on Foundations of Nanoscience. 2004; 2-15.
    [104] Chelyapov N, Brun Y, Gopalkrishnan M, et al. DNA triangles and self-assembled hexagonal tilings. J. Am. Chem. Soc. 2004; 126(43): 13924-13925.
    [105] Reishus D, Shaw B, Brun Y, et al. Self-assembly of DNA double-double crossover complexes into high-density, doubly connected, planar structures. J. Am. Chem. Soc. 2005; 127(50): 17590-17591.
    [106] Mathieu F, Liao S, Kopatsch J, et al. Six-helix bundles designed from DNA. Nano. Lett. 2005; 5(4): 661-665.
    [107] Park SH, Barish R, Li H, et al. Three-helix bundle DNA tiles self-assemble into 2D lattice or 1D templates for silver nanowires. Nano. Lett. 2005; 5(4): 693-696.
    [108] Wei B, Mi Y A new triple crossover triangle (TXT) motif for DNA self-assembly. Biomacromolecules. 2005; 6(5): 2528-2532.
    [109] Wang R, Liu W, Seeman NC Prototyping nanorod control: A DNA double helix sheathed within a DNA six-helix bundle. Chem. Biol. 2009; 16(8): 862-867.
    [110] Liu D, Wang M, Deng Z, et al. Tensegrity: construction of rigid DNA triangles with flexible four-arm DNA junctions. J. Am. Chem. Soc. 2004; 126(8): 2324-2325.
    [111] Constantinou PE, Wang T, Kopatsch J, et al. Double cohesion in structural DNA nanotechnology. Org. Biomol. Chem. 2006; 4(18): 3414-3419.
    [112] Zheng J, Lukeman PS, Sherman WB, et al. Metallic nanoparticles used to estimate the structural integrity of DNA motifs. Biophys J. 2008; 95(7): 3340-3348.
    [113] Ding B, Sha R, Seeman NC Pseudohexagonal 2D DNA crystals from double crossover cohesion. J. Am. Chem. Soc. 2004; 126(33): 10230-10231.
    [114] Mao C, Sun W, Seeman NC Designed two-dimensional DNA holliday junction arrays visualized by atomic force microscopy. J. Am. Chem. Soc. 1999; 121(23): 5437-5443.
    [115] Sha R, Liu F, Millar DP, et al. Atomic force microscopy of parallel DNA branched junction arrays. Chem. Biol. 2000; 7(9): 743-751.
    [116] Feng L, Park SH, Reif JH, et al. A two-state DNA lattice switched by DNA nanoactuator. Angew. Chem., Int. Ed. 2003; 42(36): 4342-4346.
    [117] Liu Y, Yan H Modular self-assembly of DNA lattices with tunable periodicity. Small. 2005; 1(3): 327-330.
    [118] Nangreave J, Yan H, Liu Y Studies of thermal stability of multivalent DNA hybridization in a nanostructured system. Biophys J. 2009; 97(2): 563-571.
    [119] Brucale M, Zuccheri G, Rossi L, et al. Characterization and modulation of the hierarchical self-assembly of nanostructured DNA tiles into supramolecular polymers. Org Biomol Chem. 2006; 4(18): 3427-3434.
    [120] Douglas SM, Dietz H, Liedl T, et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature. 2009; 459(7245): 414-418.
    [121] Ekani-Nkodo A, Kumar A, Fygenson DK Joining and scission in the self-assembly of nanotubes from DNA tiles. Phys. Rev. Lett. 2004; 93(26 Pt 1): 268301.
    [122] Pistol C, Dwyer C Scalable, low-cost, hierarchical assembly of programmable DNA nanostructures. Nanotechnology. 2007; 18(12).
    [123] Sun X, Hyeon Ko S, Zhang C, et al. Surface-mediated DNA self-assembly. J. Am. Chem. Soc. 2009; 131(37): 13248-13249.
    [124] Hamada S, Murata S Substrate-assisted assembly of interconnected single-duplex DNA nanostructures. Angewandte Chemie - International Edition. 2009; 48(37).
    [125] Li Z, Ke Y, Lin C, et al. Subtractive assembly of DNA nanoarchitectures driven by fuel strand displacement. Chem. Commun. 2008; 36): 4318-4320.
    [126] Sung HP, Finkelstein G, LaBean TH Stepwise self-assembly of DNA tile lattices using dsDNA bridges. J Am Chem Soc. 2008; 130(1): 40-41.
    [127] Adleman LM Molecular computation of solutions to combinatorial problems. Science. 1994; 266(5187): 1021-1024.
    [128] Stojanovic MN, Stefanovic D A deoxyribozyme-based molecular automaton. Nat. Biotechnol. 2003; 21(9): 1069-1074.
    [129] Benenson Y, Gil B, Ben-Dor U, et al. An autonomous molecular computer for logical control of gene expression. Nature. 2004; 429(6990): 423-429.
    [130] Winfree E Algorithmic self-assembly of DNA. Algorithmic Self-assembly of DNA. 1998.
    [131] Rothemund PW Theory and experiments in algorithmic self-assembly. Rothemund, Theory and experiments in algorithmic self-assembly. 2001.
    [132] Winfree E Algorithmic self-assembly of DNA: Theoretical motivations and 2D assembly experiments. J. Biomol. Struct. Dyn. 2000; 11(2): 263-270.
    [133] Mao C, LaBean TH, Relf JH, et al. Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature. 2000; 407(6803): 493-496.
    [134] Barish RD, Rothemund PW, Winfree E Two computational primitives for algorithmic self-assembly: copying and counting. Nano. Lett. 2005; 5(12): 2586-2592.
    [135] Barish RD, Schulman R, Rothemund PW, et al. An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl. Acad. Sci. 2009; 106(15): 6054-6059.
    [136] Mao V, Dwyer C, Chakrabarty K (2008) Fabrication defects and fault models for DNA self-assembled nanoelectronics. In Proceedings - International Test ConferenceSanta Clara, CA.
    [137] Seeman NC De novo design of sequences for nucleic acid structural engineering. J. Biomol. Struct. Dyn. 1990; 8(3): 573-581.
    [138] Birac JJ, Sherman WB, Kopatsch J, et al. Architecture with GIDEON, a program for design in structural DNA nanotechnology. J. Mol. Graph. Model. 2006; 25(4): 470-480.
    [139] Yin P, Guo B, Belmore C, et al. TileSoft: Sequence optimization software for designing DNA secondary structures. Tech. Rep. 2004; CS-2004-09(
    [140] Zhu J, Wei B, Yuan Y, et al. UNIQUIMER 3D, a software system for structural DNA nanotechnology design, analysis and evaluation. Nucleic Acids Res. 2009; 37(7): 2164-2175.
    [141] Schulman R, Lee S, Papadakis N, et al. (2004) One Dimensional Boundaries for DNA Tile Self-Assembly. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 2943, pp. 108-125.
    [142] Schulman R, Winfree E Synthesis of crystals with a programmable kinetic barrier to nucleation. Proc. Natl. Acad. Sci. 2007; 104(39): 15236-15241.
    [143] Chen HL, Schulman R, Goel A, et al. Reducing facet nucleation during algorithmicself-assembly. Nano. Lett. 2007; 7(9): 2913-2919.
    [144] Fujibayashi K, Hariadi R, Park SH, et al. Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. Nano. Lett. 2008; 8(7): 1791-1797.
    [145] Kuzuya A, Wang R, Sha R, et al. Six-helix and eight-helix DNA nanotubes assembled from half-tubes. Nano. Lett. 2007; 7(6): 1757-1763.
    [146] Simmel FC Three-dimensional nanoconstruction with DNA. Angew. Chem., Int. Ed. 2008; 47(32): 5884-5887.
    [147] Zimmermann J, Cebulla MP, Monninghoff S, et al. Self-assembly of a DNA dodecahedron from 20 trisoligonucleotides with C(3h) linkers. Angew. Chem., Int. Ed. 2008; 47(19): 3626-3630.
    [148] Chen JH, Seeman NC Synthesis from DNA of a molecule with the connectivity of a cube. Nature. 1991; 350(6319): 631-633.
    [149] Erben CM, Goodman RP, Turberfield AJ A self-assembled DNA bipyramid. J. Am. Chem. Soc. 2007; 129(22): 6992-6993.
    [150] Ozhalici-Unal H, Armitage BA Fluorescent DNA nanotags based on a self-assembled DNA tetrahedron. ACS Nano. 2009; 3(2): 425-433.
    [151] Falconi M, Oteri F, Chillemi G, et al. Deciphering the Structural Properties That Confer Stability to a DNA Nanocage. ACS Nano. 2009.
    [152] Aldaye FA, Sleiman HF Modular access to structurally switchable 3D discrete DNA assemblies. J. Am. Chem. Soc. 2007; 129(44): 13376-13377.
    [153] Zhang C, He Y, Su M, et al. DNA self-assembly: From 2D to 3D. Faraday Discussions. 2009; 143(221-233.
    [154] Yan H, LaBean TH, Feng L, et al. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc. Natl. Acad. Sci. 2003; 100(14): 8103-8108.
    [155] Sharma J, Chhabra R, Andersen CS, et al. Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. J. Am. Chem. Soc. 2008; 130(25): 7820-7821.
    [156] Chhabra R, Sharma J, Ke Y, et al. Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. J. Am. Chem. Soc. 2007; 129(34): 10304-10305.
    [157] Rothemund PWK (2005) Design of DNA origami. In IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD, Vol. 2005 San Jose, CA, pp. 470-477.
    [158] Yurke B, Turberfield AJ, Mills Jr AP, et al. A DNA-fuelled molecular machine made of DNA. Nature. 2000; 406(6796): 605-608.
    [159] Eisenstein M A new twist for DNA. Nat. Methods. 2006; 3(5): 333.
    [160] Qian L, Wang Y, Zhang Z, et al. Analogic China map constructed by DNA. Chin. Sci. Bull. 2006; 51(24): 2973-2976.
    [161] Andersen ES, Dong M, Nielsen MM, et al. DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano. 2008; 2(6): 1213-1218.
    [162] Ke Y, Sharma J, Liu M, et al. Scaffolded DNA Origami of a DNA Tetrahedron Molecular Container. Nano. Lett. 2009.
    [163] Kuzuya A, Komiyama M Design and construction of a box-shaped 3D-DNA origami. Chem Commun (Camb). 2009; 28): 4182-4184.
    [164] Douglas SM, Chou JJ, Shih WM DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl. Acad. Sci. 2007; 104(16): 6644-6648.
    [165] Rothemund P Scaffolded DNA origami: From generalized multicrossovers to polygonal networks. Nanotechnology: Science and Computation. 2006; 3-21.
    [166] Douglas SM, Marblestone AH, Teerapittayanon S, et al. Rapid prototyping of 3DDNA-origami shapes with caDNAno. Nucleic Acids Res. 2009.
    [167] Rinker S, Ke Y, Liu Y, et al. Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat. Nanotechnol. 2008; 3(7): 418-422.
    [168] Ke Y, Lindsay S, Chang Y, et al. Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science. 2008; 319(5860): 180-183.
    [169] Ke Y, Nangreave J, Yan H, et al. Developing DNA tiles for oligonucleotide hybridization assay with higher accuracy and efficiency. Chem. Commun. 2008; 43): 5622-5624.
    [170] LaBean TH, Li H Constructing novel materials with DNA. Nano Today. 2007; 2(2): 26-35.
    [171] Aldaye FA, Palmer AL, Sleiman HF Assembling materials with DNA as the guide. Science. 2008; 321(5897): 1795-1799.
    [172] Weiss PS A conversation with Prof. Ned Seeman: Founder of DNA nanotechnology. ACS Nano. 2008; 2(6): 1089-1096.
    [173] Kaganman I An origami chip of DNA. Nat. Methods. 2008; 5(3): 222.
    [174] Liu F, Sha R, Seeman NC Modifying the surface features of two-dimensional DNA crystals. J Am Chem Soc. 1999; 121(5): 917-922.
    [175] Garibotti AV, Knudsen SM, Ellington AD, et al. Functional DNAzymes organized into two-dimensional arrays. Nano. Lett. 2006; 6(7): 1505-1507.
    [176] Gu H, Chao J, Xiao SJ, et al. Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nat. Nanotechnol. 2009; 4(4): 245-248.
    [177] Park SH, Yin P, Liu Y, et al. Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. Nano. Lett. 2005; 5(4): 729-733.
    [178] Cohen JD, Sadowski JP, Dervan PB Programming multiple protein patterns on a single DNA nanostructure. J. Am. Chem. Soc. 2008; 130(2): 402-403.
    [179] Sharma J, Ke Y, Lin C, et al. DNA-tile-directed self-assembly of quantum dots into two-dimensional nanopatterns. Angew. Chem., Int. Ed. 2008; 47(28): 5157-5159.
    [180] Koyfman AY, Braun GB, Reich NO Cell-targeted self-assembled DNA nanostructures. J Am Chem Soc. 2009; 131(40): 14237-14239.
    [181] Liu Y, Lin C, Li H, et al. Aptamer-directed self-assembly of protein arrays on a DNA nanostructure. Angew. Chem., Int. Ed. 2005; 44(28): 4333-4338.
    [182] Li H, LaBean TH, Kenan DJ Single-chain antibodies against DNA aptamers for use as adapter molecules on DNA tile arrays in nanoscale materials organization. Org. Biomol. Chem. 2006; 4(18): 3420-3426.
    [183] Le JD, Pinto Y, Seeman NC, et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano. Lett. 2004; 4(12): 2343-2347.
    [184] Duckworth BP, Chen Y, Wollack JW, et al. A universal method for the preparation of covalent protein-DNA conjugates for use in creating protein nanostructures. Angew. Chem., Int. Ed. 2007; 46(46): 8819-8822.
    [185] Erben CM, Goodman RP, Turberfield AJ Single-molecule protein encapsulation in a rigid DNA cage. Angew. Chem., Int. Ed. 2006; 45(44): 7414-7417.
    [186] Chao J, Huang WY, Wang J, et al. Click-chemistry-conjugated oligo-angiomax in the two-dimensional DNA lattice and its interaction with thrombin. Biomacromolecules. 2009; 10(4): 877-883.
    [187] Pinto YY, Le JD, Seeman NC, et al. Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano. Lett. 2005; 5(12): 2399-2402.
    [188] Zhang J, Liu Y, Ke Y, et al. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA Nanogrids on a surface. Nano. Lett. 2006; 6(2): 248-251.
    [189] Xiao S, Liu F, Rosen AE, et al. Selfassembly of metallic nanoparticle arrays by DNAscaffolding. J. Nanopart. Res. 2002; 4(4): 313-317.
    [190] Ding B, Cabrini S, Zuckermann RN, et al. DNA directed assembly of nanoparticle linear structure for nanophotonics. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures. 2009; 27(1): 184-187.
    [191] Mitchell N, Schlapak R, Kastner M, et al. A DNA nanostructure for the functional assembly of chemical groups with tunable stoichiometry and defined nanoscale geometry. Angew. Chem., Int. Ed. 2009; 48(3): 525-527.
    [192] Stearns LA, Chhabra R, Sharma J, et al. Template-directed nucleation and growth of inorganic nanoparticles on DNA scaffolds. Angew Chem Int Ed Engl. 2009; 48(45): 8494-8496.
    [193] Demers LM, Mirkin CA, Mucic RC, et al. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal. Chem. 2000; 72(22): 5535-5541.
    [194] Parak WJ, Pellegrino T, Micheel CM, et al. Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis. Nano. Lett. 2003; 3(1): 33-36.
    [195] Sundquist WI, Klug A Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature. 1989; 342(6251): 825-829.
    [196] Gehring K, Leroy JL, Gueron M A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature. 1993; 363(6429): 561-565.
    [197] Liu D, Balasubramanian S A proton-fuelled DNA nanomachine. Angew. Chem., Int. Ed. 2003; 42(46): 5734-5736.
    [198] Liu D, Bruckbauer A, Abell C, et al. A reversible pH-driven DNA nanoswitch array. J. Am. Chem. Soc. 2006; 128(6): 2067-2071.
    [199] Sharma J, Chhabra R, Yan H, et al. pH-driven conformational switch of "i-motif" DNA for the reversible assembly of gold nanoparticles. Chem. Commun. 2007; 5): 477-479.
    [200] Wang W, Liu H, Liu D, et al. Use of the interparticle i-motif for the controlled assembly of gold nanoparticles. Langmuir. 2007; 23(24): 11956-11959.
    [201] Liu H, Xu Y, Li F, et al. Light-driven conformational switch of i-motif DNA. Angew. Chem., Int. Ed. 2007; 46(14): 2515-2517.
    [202] Liedl T, Simmel FC Switching the conformation of a DNA molecule with a chemical oscillator. Nano. Lett. 2005; 5(10): 1894-1898.
    [203] Ding B, Seeman NC Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science. 2006; 314(5805): 1583-1585.
    [204] Yan H, Zhang X, Shen Z, et al. A robust DNA mechanical device controlled by hybridization topology. Nature. 2002; 415(6867): 62-65.
    [205] Simmel FC, Dittmer WU DNA nanodevices. Small. 2005; 1(3): 284-299.
    [206] Yurke B, Mills Jr AP Using DNA to power nanostructures. Genetic Programming and Evolvable Machines. 2003; 4(2): 111-122.
    [207] Giljohann DA, Mirkin CA Tiny tiles, tiny targets. Nat. Biotechnol. 2008; 26(3): 299-300.
    [208] Fu Y, Zhang Z, et al Scaffolded DNA origami to create polygon network structure and hollow three-dimensional structure. in draft. 2009.
    [209] Fu Y, Zhang Z, et al Combination of DNA origami shape (temporary name). in draft. 2009.
    [210] Robinson BH, Seeman NC The design of a biochip: a self-assembling molecular-scale memory device. Protein Eng. 1987; 1(4): 295-300.
    [211] Kershner RJ, Bozano LD, Micheel CM, et al. Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat Nanotechnol. 2009; 4(9): 557-561.
    [212] Nanotechnology: Origami bridge. Nature. 2009; 460(7259): 1060-1061.
    [213] Pini S, de Queiroz V, Pagnin D, et al. Prevalence and burden of bipolar disorders in European countries. Eur Neuropsychopharmacol. 2005; 15(4): 425-434.
    [214] Holden C Bipolar disorder. Poles apart. Science. 2008; 321(5886): 193-195.
    [215] Sajatovic M Bipolar disorder: disease burden. Am J Manag Care. 2005; 11(3 Suppl): S80-84.
    [216] Cardon LR, Bell JI Association study designs for complex diseases. Nat Rev Genet. 2001; 2(2): 91-99.
    [217] Frazer KA, Ballinger DG, Cox DR, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007; 449(7164): 851-861.
    [218] Smoller JW, Finn CT Family, twin, and adoption studies of bipolar disorder. Am J Med Genet C Semin Med Genet. 2003; 123C(1): 48-58.
    [219] Fallin MD, Lasseter VK, Avramopoulos D, et al. Bipolar I disorder and schizophrenia: A 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. American Journal of Human Genetics. 2005; 77(6): 918-936.
    [220] Badner JA, Gershon ES Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry. 2002; 7(4): 405-411.
    [221] Craddock N, O'Donovan MC, Owen MJ The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J Med Genet. 2005; 42(3): 193-204.
    [222] Craddock N, O'Donovan MC, Owen MJ Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophr Bull. 2006; 32(1): 9-16.
    [223] Maier W, Hofgen B, Zobel A, et al. Genetic models of schizophrenia and bipolar disorder: overlapping inheritance or discrete genotypes? Eur Arch Psychiatry Clin Neurosci. 2005; 255(3): 159-166.
    [224] Chumakov I, Blumenfeld M, Guerassimenko O, et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A. 2002; 99(21): 13675-13680.
    [225] Hattori E, Liu C, Badner JA, et al. Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. Am J Hum Genet. 2003; 72(5): 1131-1140.
    [226] Britten RJ Coding sequences of functioning human genes derived entirely from mobile element sequences. Proc Natl Acad Sci U S A. 2004; 101(48): 16825-16830.
    [227] Kato T Molecular genetics of bipolar disorder and depression. Psychiatry Clin Neurosci. 2007; 61(1): 3-19.
    [228] Detera-Wadleigh SD, McMahon FJ G72/G30 in schizophrenia and bipolar disorder: review and meta-analysis. Biol Psychiatry. 2006; 60(2): 106-114.
    [229] Ma J, Qin W, Wang XY, et al. Further evidence for the association between G72/G30 genes and schizophrenia in two ethnically distinct populations. Mol Psychiatry. 2006; 11(5): 479-487.
    [230] Abou Jamra R, Schmael C, Cichon S, et al. The G72/G30 gene locus in psychiatric disorders: a challenge to diagnostic boundaries? Schizophr Bull. 2006; 32(4): 599-608.
    [231] Tenhunen J, Salminen M, Lundstrom K, et al. Genomic organization of the human catechol O-methyltransferase gene and its expression from two distinct promoters. Eur J Biochem. 1994; 223(3): 1049-1059.
    [232] Lachman HM, Papolos DF, Saito T, et al. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics. 1996; 6(3): 243-250.
    [233] Shprintzen RJ Velo-cardio-facial syndrome: 30 Years of study. Dev Disabil Res Rev. 2008; 14(1): 3-10.
    [234] Craddock N, Dave S, Greening J Association studies of bipolar disorder. BipolarDisord. 2001; 3(6): 284-298.
    [235] Li T, Vallada H, Curtis D, et al. Catechol-O-methyltransferase Val158Met polymorphism: frequency analysis in Han Chinese subjects and allelic association of the low activity allele with bipolar affective disorder. Pharmacogenetics. 1997; 7(5): 349-353.
    [236] Ohara K, Nagai M, Suzuki Y, et al. Low activity allele of catechol-o-methyltransferase gene and Japanese unipolar depression. Neuroreport. 1998; 9(7): 1305-1308.
    [237] Shi YY, He L SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005; 15(2): 97-98.
    [238] Bax L, Yu LM, Ikeda N, et al. Development and validation of MIX: comprehensive free software for meta-analysis of causal research data. BMC Med Res Methodol. 2006; 6(50.
    [239] DePaulo Jr JR Genetics of Bipolar Disorder: Where Do We Stand? American Journal of Psychiatry. 2004; 161(4): 595-597.
    [240] Craddock N, Owen MJ The beginning of the end for the Kraepelinian dichotomy. Br J Psychiatry. 2005; 186(364-366.
    [241] Yu W, Gwinn M, Clyne M, et al. A navigator for human genome epidemiology. Nat Genet. 2008; 40(2): 124-125.
    [242] Lohmueller KE, Pearce CL, Pike M, et al. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet. 2003; 33(2): 177-182.
    [243] Shifman S, Bronstein M, Sternfeld M, et al. COMT: a common susceptibility gene in bipolar disorder and schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2004; 128B(1): 61-64.
    [244] Fan JB, Zhang CS, Gu NF, et al. Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis. Biol Psychiatry. 2005; 57(2): 139-144.
    [245] Burton PR, Clayton DG, Cardon LR, et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007; 447(7145): 661-678.
    [246] Ferreira MA, O'Donovan MC, Meng YA, et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet. 2008; 40(9): 1056-1058.
    [247] Moore JH, Ritchie MD STUDENTJAMA. The challenges of whole-genome approaches to common diseases. Jama. 2004; 291(13): 1642-1643.
    [248] Sullivan P, Cichon S, Craddock N, et al. A framework for interpreting genome-wide association studies of psychiatric disorders. Mol Psychiatry. 2009; 14(1): 10-17.
    [249] Stranger BE, Forrest MS, Dunning M, et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science. 2007; 315(5813): 848-853.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700