TiO_(2-x)N_x/NiO双层薄膜的制备及光电化学特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以开发一种新型光电功能电极材料为目标,分别采用磁控溅射法、溶胶凝胶法先在导电玻璃(ITO)上制备N掺杂TiO_2薄膜,然后通过一种简便的化学沉积法(CBD)在TiO_(2-x)N_x薄膜上沉积一层多孔结构的NiO薄膜,构建出TiO_(2-x)N_x/NiO双层薄膜,采用XRD、SEM、XPS、紫外可见吸收光谱和电化学测试等对薄膜的微观结构、光电致色和光电化学储能等特性进行了研究。
     以金属钛为靶材、O_2/N_2/Ar混合气为溅射气体,在ITO玻璃表面磁控溅射一层薄膜,再经300-500℃退火处理制备了氮掺杂TiO_2薄膜。研究表明,400℃退火处理的氮掺杂TiO_2薄膜具有最高的光电流响应,TiO_(2-x)N_x/NiO双层薄膜具有明显的光电致色特性,经氙灯照射1h后,薄膜从无色变成棕色,500nm波长处光透过率从79.0%下降至12.6%。光充电后,电极在100nA下放电时间为11h。
     利用溶胶凝胶法在ITO表面制备一层薄膜,再经300-500℃退火处理制备了氮掺杂TiO_2薄膜。研究表明,所制备的ITO/TiO_(2-x)N_x/NiO双层薄膜具有明显的光电致色特性,500℃制备的氮掺杂TiO_2薄膜具有较高的光电流响应,经氙灯照射1h后,薄膜从无色变成棕色,400nm波长处光透过率从83.5%下降至32.9%。光充电后,电极在100nA下放电时间为4.2h。
     此外,先在导电玻璃(ITO)表面磁控溅射一层TiN薄膜,再经300-500℃空气氛中退火处理制备了氮掺杂TiO_2薄膜。在相同的光照下,其光电流为纯TiO_2薄膜的4倍,由其构成的ITO/TiO_(2-x)N_x/NiO双层薄膜具有明显的光电致色特性。经氙灯照射3h后,薄膜从无色变成棕色,400nm波长处光透过率从71.4%下降至26.5%,在100nA下放电时间为18h。光充电后,电极在100nA下放电时间为18h。
In order to develop a new kind of photo-electric function materials, N-dopedTiO_2 thin films were synthesized on indium-tin oxide (ITO) conducting glass substrateby DC reactive magnetron sputtering and sol-gel method, respectively. Then highporous NiO was deposited onto the N-doped TiO_2 layer by chemical bath deposition(CBD) to obtain TiO_(2-x)N_x/NiO bilayer thin films electrode. The microstructure, photoelectrochromicproperties and photoelectrochemical energy storage ability of theTiO_(2-x)N_x/NiO thin film were investigated by XRD、SEM、XPS、UV-vis adsorptionspectra and eletrochemial test technology.
     N-doping TiO_2 films were prepared on ITO conducting glass by dc-reactivemagnetron sputtering using Ti target in O2+N2/Ar gas mixture in combination with afollowing heat-treatment at 300-500℃. The results showed that the TiO_(2-x)N_x filmannealed at 400℃showed the highest photocurrent response under Xe lightirradiation. The bilayer films were irradiated with Xe lamps at a closed circuit for 1 h,the color of the TiO_(2-x)N_x/NiO electrode turned from colorless to brown, and thetransmittance varied from 79.0% to 12.6% at 500 nm. After photo-charging, thedischarge current was controlled at 100 nA and the duration time was about 11 h.And also, the N-doped TiO_2 film was synthesized on indium-tin oxide (ITO)conducting glass substrate by sol-gel method. As compared to the undoped TiO_2, thesynthesized N-doped TiO_2 had visible light photoresponse and exhibited a significantincrease in the photocurrent under Xe light irradiation. It was found that theTiO_(2-x)N_x/NiO electrode exhibited excellent photoelectrochromic properties. After 2 hirradiation, the color of the TiO_(2-x)N_x/NiO electrode changed from colorless to brown,and the transmittance varied from 83.5% to 32.9% at 400 nm. The discharge currentwas controlled at 100 nA and the duration time was about 4.2 h.
     Additionally, TiN thin films were prepared on ITO by dc reactive magnetronsputtering technique and then directly annealed in 300-500℃in air for thepreparation of TiO_(2-x)N_x thin film electrode. Under the same light irradiation, thephotocurrent of the TiO_(2-x)N_x electrode is four times larger than that of pure TiO_2 electrode. The as-fabricated TiO_(2-x)N_x/NiO electrode exhibited a noticeablephotoelectrochromism. After 3 h irradiation, the transmittance varies from 71.4% to26.5% at 400 nm. The discharge current was controlled at 100 nA and the durationtime was about 18 h.
引文
[1] Akuto K, Sakurai Y A. Photochargeable metal hyfrede/air battery [J]. J.Electrochem.Soc.,2001, 148: A121-A125
    [2] Masayuki O Y, Koji N, Shoji K. Porous TiO_2 thin films synthesized by a spray pyrolysisdeposition (SPD) technique and their application to dye-sensitized solar cells [J], SolarEnergy Materials and Solar Cells, 2002, 70: 425-435
    [3] Park N G, Lagemaat Jvan de, Frank A J. Comparison of dye-sensitized rutile- andanatase-based TiO_2 solar cells [J]. J. Phys.Chem.B, 2000, 104: 8989-8994
    [4] Srivastava O N, Karn R K, Misra M. Semiconductor-spectrum photoelectronchemical solarcell for hydrogen production [J]. Inter.J.Hydrogen Energy, 2000, 25: 495-503
    [5] Shukla P K, Karn R K, Singh A K, et al. Studies on PV assisted PEC Solar cells forhydrogen production through photoelectrolysis of water[J]. Inter.J.Hydrogen Energy, 2002,27: 135-141
    [6] Ichikawa S, Doi R. Photoelectrocatalytic hydrogen production from water on transparentthin film titiania of different crystal structures and quantum efficiency characteristics [J].Thin solid films, 1997, 292: 130-134
    [7] Fujishima A, Honda K. Electrochemica roteolysis of water at a semiconductor [J]. Nature1972, 238: 37-38.
    [8] Fujishima A, Hashimoto K, Watanabe T. TiO_2 Photocata-lysis Fundamentals andApplications. BKC,Inc: Tokyo, 1999, 35(10), 1137-1138.
    [9] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductorphotocatalysis[J]. Chem. Rev, 1995, 95: 69-96.
    [10] Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO_2 surfaces:principles, mechanisms,and selected results [J]. Jr. Chem. Rev, 1995, 95(3): 735-758.
    [11] Hagfeldt A, Gra¨tzel M. Molecular photovoltaics [J]. Acc.Chem.Res, 2000, 33: 269-277.
    [12] Wang P, Zakeeruddin S M, Moser J E, et al. A stable quasi-solid-state dye-sensitized solarcell with an amphiphilic ruthenium sensitizer and a polymer gel electrolyte[J]. NatureMater. 2003, 2(7): 402-407.
    [13] Sarala Devi G, Hyodo T, Shimizu Y, Synthesis of mesoporous TiO_2-based powders andtheir gas-sensing properties[J]. Sens.Actuators B 2002, 87(1): 122-129.
    [14] Skryshevsky V A, Vikulov V A, Tretiak O V. et al. Electrical characterization of gassensing devices based on porous TiO_2[J]. Phys. Status Solidi, A. Appl. Res 2003, 197(2):534-538.
    [15] Ohko Y, Tatsuma T, Fujii T, et al. Multicolour photochromism of TiO_2 films loaded withsilver nanoparticles[J]. Nature Mater, 2002, 2: 29-31.
    [16] Rao K N. Influence of deposition parameters on optical properties of TiO_2 films[J]. Opt.Eng. 2002, 41 (9): 2357-2364.
    [17] Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen-DopedTitanium Oxides [J]. Science, 2001, 293(13): 269-273.
    [18] Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO_2 photocatalystunder visible light [J]. Chem. Lett. 2003, 32 (4) : 364-365.
    [19] Lindgren T, Mwabora J M, Avendan?o E, et al. Photoelectrochemical and optical propertiesof nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering [J].J. Phys. Chem. B, 2003, 107(24):5709-5716.
    [20] Irie H. Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxidefilms[J]. Royal Society of Chemistry, 2003, 24 :1298-1299
    [21] Sunada K, Watanabe T, Hashimoto K. Studies on photokilling of bacteria on TiO_2 thin film[J]. J. Photochem. Photobiol.,A: Chem. 2003, 156(1-3): 227-233.
    [22] Prabakar K, Takahashi T, Nezuka T, et al. Visible light-active nitrogen-doped TiO_2 thinfilms prepared by DC magnetron [J]. Renewable Energy, 2008. 33(2): 277-281.
    [23] Somasundaram S, Chenthamarakshan C R N, Tacconi N R, et al. Photocatalytic productionof hydrogen from electrodeposited p-Cu2O film and sacrificial electron donors [J]. Int. J.Hydrogen Energy, 2007, 32: 4661-4669
    [24] Lou X D, Han J, Chu W F, et al., Synthesis and photocatalytic property of Co3O4 nanorods[J]. Mat. Sci. Eng. B, 2007, 137: 268-271
    [25] Mathur S, Sivakov V, Shen H, et al. Nanostructured films of iron, tin and titanium oxidesby chemical vapor deposition, Thin Solid Films, 2006, 502: 88-93
    [26] Torres-Martinez C T, Kho R, Mian O I, et al. Efficient photocatalytic degradation ofenvironmental pollutants with mass-produced ZnS nanocrystals[J]. J. Colloid Interface Sci.,2001, 240: 525-532
    [27] Lunawat P S, Senapati S, Kumar R, et al. Visible light induced splitting of water using CdSnanocrystallites immobilized over water-repellant polymeric surface[J]. Int. J. HydrogenEnergy., 2007, 32: 2784-2790
    [28] Hara K, Sayama K, Arakawa H, photocatalytic hydrogen and oxygen formation overSiO2-supported RuS2 in the presence of sacrificial donor and acceptor[J]. Appl. Catal. A:Gen., 1999, 189: 127-137
    [29]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002: 23-52
    [30] Sortinp I, Schwarz K. Chemical bonding in futile-type compounds[J]. Inorg.Chem., 1992,31: 567-576
    [31] Umebayashi T, Yamaki T, Itoh H, et al. Analysiso fel ectronics tructures of 3d transitionmetal-doped TiO_2 based in band calculations[J]. J. Phys.Chem.Solids, 2002, 63: 1909-1920
    [32] Masumoto Y, Kurimoto J, Shimizu T et al. Photoelectrochemical properties ofpolycrystalline TiO_2 doped with 3d transition metals. J. Electrochem. Soc, 1981, 128:1040-1044
    [33] Sambrano J R, Andres J, Beltran A, et al. An abinito study of oxygen vacancies and dopingprocess of Nb and Cr atoms on TiO_2(110) surface models [J]. Int.J.Quantum Chem., 1997,65: 625-631
    [34] Casarin M, Maccato C, Vitadini A, Elecrtonic structures of Nb impuritiesin and on TiO_2[J].J.Phys.Chem.Phys., 1999, 1: 3793-3799
    [35] Hagfeldt A, Gr?tzel M. Light-induced Redox Reactions in Nanocrystalline Systems [J].Chem. Rev., 1995, 95: 49-68
    [36] Andrew M, Stephen L H. An overview of semiconductor photocatalysis [J].J.Photochemistry and Photobiology.A: Chemistry, 1997, 108: 1-35
    [37] Tryk D A, Fujishima A, Honda K, Recent topics in photoelectrchemistry: achievements andfuture prospects[J]. Electrochim. Acta, 2000, 45: 2363-2367
    [38] Tsai S J, Cheng S F. Effect of TiO_2 crystalline structure on photocatalytic degradation ofphenolic contaminants[J]. Catalysis Today, 1997, 33: 223–227
    [39]沈伟韧,赵文宽,贺飞,等. TiO_2光催化反应及其在废水处理中的应用[J].化学进展,1998, 10 (4) : 349-361.
    [40]李开翻,浙江大学硕士论文[D],杭州: 2008
    [41]符小荣,张校刚,宋世庚,等. TiO_2 /Pt/glass纳米薄膜的制备及对可溶性燃料的光催化降解[J].应用化学, 1997, 14(4): 77.
    [42]席北斗,孔欣,刘纯新,等.加铂修饰型催化剂光催化氧化五氯酚[J].环境化学, 2001,20: 27.
    [43]程沧沧,李太友.载银TiO_2光催化降解2,4-二氯苯酚水溶液的研究[J].环境科学研究,1998, 11: 27-29
    [44]姚晓斌,马颖,姚建年. Ag和Pd及其离子对TiO_2光催化分解CH3CHO的影响[J]. 1999,17: 12-16
    [45] Elmasides C, Kondarides D I, Grünert W, Verykios X E. XPS and FTIR study of Ru/Al2O3and Ru/TiO_2 catalysts: reduction characteristics and interaction with a methane-oxygenmixture [J]. J. Phys. Chem. 1999, 103: 5227-5239
    [46] BerkóA, BíróT, Solymosi F. Effects of different gases on the morphology of Irnanoparticles supported on the TiO_2(110)-(1x2) surface [J]. Journal of Physical ChemistryB, 2000, 104: 10215-10221
    [47] Schottenfeld J A, Benesi A J, Stephens P W, et al. Structural analysis and characterizationof 1ayer perovskite oxyllitrides made from Dion—Jacobson oxide precursors[J]. J.SolidState Chem, 2005, 178: 2313-2321.
    [48] Dhanalakshmi K B, Latha S, Anandan S, et al. Dye sensitized hydrogen evolution fromwater [J]. Inter. J. Hydrogen Energy, 2001, 26: 669-674
    [49] Ellingson R J, Asbury J B, et al. Sub-picosecond injection of electrons from excited [Ru(2,2'-bipy-4,4 '-dicarboxy)(2)(SCN)(2)] into TiO_2 using transient mid-infrared spectroscopy [J].Journal of Research in Physical Chemistry & Chemical Physics.1999, 212: 77-84
    [50] Chen C C, Zhao W, Li J Y, et al. Formation and identification of intermediatesvisible-light-assisted photodegradation sulforhodamine-B dye in aqueous TiO_2dispersion[J]. Environmental Science & Technology, 2002, 36: 3604-3611
    [51] Horikoshi S, Hidaka H, Serpone N. Environmental remediation by an integratedmicrowave/UV-illumination method. 1. Microwave-assisted degradation of rhodamine-Bdye in aqueous TiO_2 dispersions [J]. Environmental Science & Technology, 2002, 36:1357-1366
    [52] Liu G M, Li X Z, Zhao J C, et al., Photooxidation pathway of sulforhodamine-B.Dependence on the adsorption mode on TiO_2 exposed to visible light radiation [J].Environmental Science & Technology, 2002, 34: 3982-3990
    [53] Clifford J N, Palomares E, Nazeeruddin M K, et al. Dye dependent regeneration dynamicsin dye sensitized nanocrystalline solar cells: Evidence for the formation of a rutheniumbipyridyl cation/iodide intermediate [J]. Journal of Physical Chemistry. C. 2007, 111:6561-6567
    [54] Wang P, Zakeeruddin S M, Moser E, et al. A stable quasi-solid-state dye-sensitized solarcell with an ampbiphilic ruthenium sensitizer and polymer gel electrolyte [J]. NatureMater,2003,2(6) :402-407.
    [55] Deng H, Zhang H, Lu Z. Dye-sensitized anatase titanium dioxide nanocrystalline with (001)preferred orientation induced by Langmuir-Blodget monolayer [J]. Chem Phys Lett ,2002 , 363 :509-514.
    [56] Sauve G, Cass M E, Coia G, et al. Lewis, Dye sensitization of nanocrystalline titaniumdioxide with osmium and ruthenium polypyridyl complexes [J]. J. Phys Chem B , 2000 ,104 : 6821-6836.
    [57] Bae E, Choi W. Highly enhanced photoreductive degradation of perchlorinated compoundson dye-sensitized metal/TiO_2 under visible light [J]. Environ Sci Technol , 2003 , 37 :147-152.
    [58] Blackburn J L, Selmarten D C, Nozik A J. Electron transfer dynamics in quantumdot/titanium dioxide composites formed by in situ chemical bath deposition [J]. Journal ofPhysical Chemistry B, 2003, 107(51): 14154-14157
    [59] Butterfield I M, Christensen P A, Curtis T P, et al. Water Disinfection Using an ImmobilisedTitanium Dioxide Film in a Photochemical Reactor with Electric Film Enhancement[J].Water Res, 1997, 31(3): 675.
    [60] Zhang Q, Li X J, Li F B, et al. Effect of different preparation process of WO3/TiO_2 films onphotocatalytic activity under visible light [J]. The Chinese Journal of Nonferrous Metals,2002, 12(6): 1299-1303.
    [61] Pal B, Sharon M, Nogami G. Preparation and characterization of TiO_2/Fe2O3 binary mixedoxides and its photocatalytic properties [J]. Materials Chemistry and Physics, 1999, 59(3):254-261
    [62]谷学谦,董秀芹.光催化氧化降解有机废物研究进展北学工业与工程[J],2004,21(2):142-145
    [63]魏子栋,谭君,Walter Z T,等.第十届全国电化学会议论文集[C],G012,杭州,1999年10月
    [64] Choi W K, Termin A, Hoffmann M R. The role of metalion dopants in quantum sized TiO_2:correlation between photo reactivity charge carrier recombination dynamics [J]. J. Phys.Chem., 1994, 98(51): 13669- 13679
    [65] Zhu J, Chen F, Zhang J, et al. Fe3 +- TiO_2 photocatalysts prepared by combining sol-gelmethod with hydrothermal treatment and their characterization [J]. Journal ofPhotochemistry and Photobiology A: Chemistry, 2005, 175 (3) : 270– 279
    [66] Park H S, Kim D H, Kim S J, et al. The photocatalytic activity of 2.5 wt% Cu-doped TiO_2nano powders synthesized by mechanical alloying [J]. Journal of Alloys and Compounds,2005, 400 (12) : 100– 105
    [67] Xie Y, Yuan C. Photocatalysis of neodymium ion modified TiO_2 sol under visible lightirradiation [J]. App lied Surface Science, 2004, 221 (1-4) : 17–24
    [68] Zhu J, Chem F, Zhang J, et al. Fe3+- TiO_2 photocatalysts p repared by combining sol-gelmethod with hydrothermal treatment and their characterization [J]. Journal ofPhotochemistry and Photobiology A: Chemistry, 2005, 175 (3) : 270 -279
    [69] Rodriguez Torres C E, Golmar F, Cabrera A F, et al. Magnetic and structural study ofCu-doped TiO_2 thin films[J]. Applied Surface Science, 2007, 254(1): 365-367
    [70] Nagaveni K, Hegde M S, Madras G. Structure and photocatalytic activity of Ti1-xMxO2+/-delta (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method,Journal of Physical Chemistry B, 200, 108 (52): 20204-20212
    [71] Mardare D, Nica V, Teodorescu C M, et al. Fe-doped TiO_2 thin films[J]. Surface Science,2007, 60 (18): 4479-4483
    [72] Alexandrescu R, Morjan I, Scarisoreanu M, et al. Structural investigations on TiO_2 andFe-doped TiO_2 nanoparticles synthesized by laser pyrolysis[J]. Thin Solid Films, 2007,515(24): 8438-8445
    [73] Saponjic Zoran V, Dimitrijevic Nada M, Poluektov Oleg G, et al. Charge separation andsurface reconstruction: A Mn2+ doping study[J]. Journal of Physical Chemistry B, 2006, 110(50): 25441-25450
    [74] Zhang W J, Zhu S L, Li Y, et al. Photocatalytic Zn-doped TiO_2 films prepared by DCreactive magnetron sputtering[J]. Vacuum 2007, 82(3): 328-335
    [75] Irie H, Watanabe Y. Nitrogen concentration dependence on photocatalytic activity ofpowders [J]. Journal of Physical Chemistry B, 2003, 107(23): 5483-5486
    [76] Yang K S, Dai Y, Huang B B, et al. Theoretical study of N-doped TiO_2 rutile crystals[J].Journal of Physical Chemistry B, 2006, 110(47): 24011-24014
    [77] Tachikawa T, Tojo S, Kawai K, et al. Photocatalytic oxidation reactivity of holes in thesulfur- and carbon-doped TiO_2 powders studied by time-resolved diffuse reflectancespectroscopy[J]. J Phys Chem B, 2004, 108(50): 19299-306
    [78] Kamisaka H, Adachi T, Yamashita K. Theoretical study of the structure and opticalproperties of carbon-doped rutile and anatase titanium oxides[J]. J Chem Phys, 2005,123(8): 084704.
    [79] Wang X X, Meng S, Zhang X L, et al. Multi-type carbon doping of TiO_2 photocatalyst[J].Chemical Physics Letters, 2007, 444(4-6): 292-296
    [80] Nakahira A, Yokota K, Kubo T, et al. Synthesis and characterization of S-doped TiO_2 madeby anodic oxidation of titanium in sulfuric acid[J]. Chemistry Letters, 2007, 36 (11):1318-1319
    [81] Huang D G, Liao S J, Dang Z. Preparation, characterization and photocatalytic performanceof anatase F doped TiO_2 sol[J]. Acta Chimica Sinica, 2006, 64(17): 1805-1811
    [82] Luo H M, Takata T, Lee Y G, et al. Photocatalytic activity enhancing for titanium dioxideby co-doping with bromine and chlorine[J]. Chemistry Of Materials, 2004, 16(5): 846-849
    [83] Huang D G, Liao S J, Quan S Q, et al. Preparation of anatase F doped TiO_2 sol and itsperformance for photodegradation of formaldehyde[J]. Journal Of Materials Science, 2007,42(19): 8193-8202
    [84] Sato S. Photocatalytic activity of N-doped TiO_2 in the visible light region[J]. Chem. Phys.Lett., 1986, 123(1/ 2): 126-128
    [85] Mwabora J M, Lindgren L T, Avendano E, et al. Structure, composition, and morphologyof photoelectrochemically active TiO_(2-x)N_x thin films deposited by reactive DC magnetronsputtering [J], J. Phys. Chem. B, 2003, 107(24): 5709 -5716
    [86] Prabakar K, Takahashi T, Nezuka T. Effect of nitrogen on the photocatalytic activity ofTiOxNy thin films[J]. J Vacuum Sci Techn , 2006 , 24 (4) : 1156
    [87] Zhao Ming. A study on the preparation of TiO_2–xNx films by reactive deposition and theirabsorption properties in visible region[D], fifth pacific rim international conference onadvanced materials and processing PRICM- 5. Beijing China , 2004 (11) : 2-5
    [88] Irie H. Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxidefilms[J]. Royal Society of Chemistry ,2003 , 24 :1298-1299
    [89]赵明,方玲,庄大明等.反应溅射TiO_(2-x)N_x膜的可见光吸收性能[J].材料研究学报,2004,18(1):108-112.
    [90]侯亚奇,庄大明.退火温度对TiO_2薄膜光学性能的影响[J].清华大学学报(自然科学版),2003,43(11):1441-1443.
    [91] Liu Y, Chen X. Photocatalytic degradation of azo dyes by nitrogen - doped TiO_2nanocatalysts[J]. Chemosphere, 2005, 61: 11-18
    [92] Stefano L, Annamaria V, Maria Cristina Paganini, Elio Giamello. Chem. Commun., 2005:498-500
    [93] Clement B , Lou Y B , Chen X B , et al. Enhanced nitrogen doping in TiO_2 nanoparticles[J].Nano Lett , 2003 , 3 (8) : 1049-1051
    [94] Sathish M, Viswanathan B, Viswanath R P, et al. Synthesis, characterization, electronicstructure, and photocatalytic activity of nitrogen-doped TiO_2 nanocatalyst[J]. Chem Mater,2005, 17: 6349-6353
    [95] Granqvist C G. Solar Energy Material [J]. Adv. Mater, 2003, 15: 1789-1803.
    [96] Avendano E, Berggren L, Niklasson G A, et al. Electrochromic materials and devices: Briefsurvey and new data on optical absorption in tungsten oxide and nickel oxide films[J]. ThinSolid Films, 2006, 496: 30-36.
    [97] Lampert C M. Chromogenic Smart Materials[J]. Mater. Today, 2004, 7:28-35
    [98] Zhao S, Ribbing C G, W?ckelg?rd E. New method to optimize a solar absorber graded filmprofile[J]. Sol. Energy, 2005, 78: 125-130.
    [99] Nuli Y N, Zhao S L, Qin Q Z. Nanocrystalline tin oxides and nickel oxide film anodes forLi-ion batteries[J]. J. Power Sources, 2003, 114(1): 113-120
    [100] Kostecki R, Richardson T, McLarnon D. Photochemical and photoelectrochemical behaviorof a novel TiO_2/Ni(OH)2 electrode [J]. Journal of the Electrochemical Society, 1998. 145(7):2380-2385.
    [101] Takahashi Y, Tatsuma T. Oxidative energy storage ability of a TiO_2-Ni(OH)2 bilayerphotocatalyst[J]. Langmuir, 2005, 21(26): 12357-12361.
    [102] Takahashi Y, Tatsuma T. Remote energy storage in Ni(OH)_2 with TiO_2 photocatalyst [J].Physical Chemistry Chemical Physics, 2006, 8(23): 2716-2719.
    [103] Takahashi Y, Tatsuma T. Visible light-induced photocatalysts with reductive energystorage abilities [J]. Electrochemistry Communications, 2008, 10(9): 1404-1407.
    [1] Weller H, Eychmullern A, Photochemistry and photoelectrochemistry of quantizedproperties of semiconductor nanoparticles in solution and thin film electrodes [J]. Anvancesin photochemistry, 1995,20: 215-223
    [2] Leeor K, Yoram S, Surface Photovoltage spectroscopy of semiconductor structures: thecorsrsoads of Physics, chemlstry and electrical engineering [J]. Surf lnterface Anal, 2001,31: 954-965.
    [3] Castaldi A, Cavalcolid D, et al. Surface photovoltage analysis of crystalline silicon forphotovoltaic applications [J]. Ene.Mat.&Sol.Cel, 2002, 72: 559-569.
    [4] Wang B H, Jun E D, Acomparative study of transition states of porous silicno by sufacephovlatge spectroscopy [J]. J.Phys.Chem.Solid, 1997, 58(1): 25-31
    [1] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-dopedtitanium oxides [J] . Science, 2001, 293 (5528):269 -271.
    [2] Gemma Romualdo Torres, Lindgren T L, Jun L, et al. J.Phys. Chem. B.,2004, 108:5995-6003
    [3] Sato S. Photocatalytic activity of N-doped TiO_2 in the visible light region[J]. Chem. Phys.Lett., 1986, 123(1/ 2) :126-128
    [4] Irie H , Watanabe Y, Hashimoto K. Nitrogen-Concentration Dependence on PhotocatalyticActivity of TiO_(2-x)N_x Powders[J]. J . Phys. Chem. B , 2003 ,107 : 5483-5486
    [5] Chen X B, Lou Y B, Anna C S. et al., Adv. Funct. Mater.,2005, 15: 41- 49
    [6] Kameoka S, Kuriyama T, Kuroda M, et al. The chemical interaction betweenplasma-excited nitrogen and the surface of titanium dioxide [J]. Applied Surface Science,1995, 89: 411- 415
    [7]王德高,袁春伟,TiO_2薄膜厚度及其光学常数的测量[J],东南大学学报,1999,29(5):105-108
    [8]沈杰,沃松涛,崔晓莉,射频磁控溅射制备纳米TiO_2薄膜及其光电特性研究[J],真空科学与技术学报,2004,24(2):81-86
    [9] Fang J, Wang F, Qian K, et al. Bifunctional N-Doped Mesoporous TiO_2 Photocatalysts.Journal of Physical Chemistry C, 2008. 112(46): 18150-18156.
    [10] Diwald O, Thompson T L, Zubkov T, et al. Photochemical Activity of Nitrogen-DopedRutile TiO_2(110) in Visible Light [J]. J. Phys. Chem. B 2004, 108, 6004-6008
    [11] Rodriguez J A, Jirsak T, Liu G, et al. Chemistry of NO2 on oxide surfaces: Formation ofNO3 on TiO_2(110) and NO2 <-> O vacancy interactions[J]. J. Am. Chem. Soc. 2001, 123,9597-9605
    [12] Lu F H, Chen H Y, XPS analyses of TiN films on Cu substrates after annealing in thecontrolled atmosphere [J]. Thin Solid Films. 1999, 355-356: 374-379.
    [13] Kovac J, Scarel G, Sancrotti M, et al. Time-dependent evolution of thin TiN films preparedby ion beam assisted deposition[J]. J. Appl. Phys. 1999, 86 5566-5572
    [14] Perkin-Elmer Corporation[M], PHI 5300 Instrument Manual, USA, 1992.
    [15] Du X Y, Wang Y, Mu Y Y, et al. A New Highly Selective H2 Sensor Based onTiO_2/PtO?Pt Dual-Layer Films[J]. Chem. Mater. 2002, 14: 3953-3957.
    [16] Saha N C, Tompkins H G, Titanium nitride oxidation chemistry: An x-ray photoelectronspectroscopy study[J]. J. Appl. Phys. 1992, 72: 3072-3079
    [17] Halbritter J, Leiste H, Mathes H J, et al. ARXPS—Studies of nucleation and make-up ofsputtered TiN-layers[J]. J. Anal. Chem. 1991, 341: 320-324
    [18] Kovac J, Scarel G, Sancrotti M, et al, Time-dependent evolution of thin TiN films preparedby ion beam assisted deposition[J]. J. Appl. Phys. 1999, 86: 5566-5572.
    [19] Lu F H, Chen H Y, Characterization of titanium nitride films deposited by cathodic areplasma technique on copper substrates[J]. Surf. Coat. Technol. 2000, 130: 290-296.
    [20] Leeor K, Yoram S, Surface Photovoltage spectroscopy of semiconductor structures: thecorsrsoads of Physics, chemlstry and electrical engineering [J]. Surf lnterface Anal, 2001,31: 954-965.
    [21] Castaldi A, Cavalcolid D, et al. Surface photovoltage analysis of crystalline silicon forphotovoltaic applications[J]. Ene.Mat.&Sol.Cel, 2002, 72:559-569.
    [22] Wang Bao-Hui, EangDe-Jun,. Acomparative study of transition states of porous silicno bysuface phovlatge spectroscopy[J]. J.Phys.Chem.Solid, 1997, 58(1): 25-31
    [23] Han S Y, Lee D H, Chang Y J, et al, The growth mechanism of nickel oxide thin films byroom-temperature chemical bath deposition[J]. J. Electrochem. Soc. 2006, 153: 382-386
    [24] Fantini M, Groenstein A, Electrochromic nickel hydroxide films on transparent/conductingsubstrates[J]. Sol. Energy Mater. 1987, 16: 487-500
    [1] Tryk D A, Fujishima A, Honda K, Recent topics in photoelectrchemistry: achievements andfuture prospects[J]. Electrochim. Acta, 200, 45: 2363-2367
    [2] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-dopedtitanium oxides [J] . Science, 2001, 293 (5528):269 -271
    [3] Meng L J, Andritschky M., Dos Santos M P, The effect of substrate temperature onproperties of dc reactive magnetron sputtered titanium oxide films[J], Thin Solid films,1993, 223: 242-24
    [4] Herˇman D, ?′cha J Sˇ, Musil J., Magnetron sputtering of TiOxNy films[J]. Vacuum , 2006,81:285-290
    [5] Sato S. Photocatalytic activity of nitrogen oxide (NOx-doped titanium dioxide in the visibleregion[J]. Chem Phys lett, 1986, 123:126-128
    [6] Gole J L, Stout J D, Burda C, et al. Highly efficient formation of visible light tunableTiO_(2-x)N_x photocatalysts and their transformation at the nanoscale[J]. J.Phys.Chem.B, 2004,108:1230-1240
    [7] Rodriguez J A, Jirsak T, Dvorak J, et al. Hydration at 0.6 GPa in a synthetic GallosilicateZeolite[J]. J.Phys.Chem.B, 2000,104:319-328
    [8] Fang J, Wang F, Qian K, et al., Bifunctional N-Doped Mesoporous TiO_2 Photocatalysts[J].Journal of Physical Chemistry C, 2008. 112(46): p. 18150-18156
    [1] Xu A W, Gao Y, Liu H Q. The preparation, characterization, and their photocatalyticactivities of rare earth doped TiO_2 nanoparticles[J]. J . Catal . , 2002 , 207 : 151-157
    [2] Wilke K, Breuer H D. Influence of transition metaldoping on the physical andphotocatalytic properties of titania[J]. J . Photochem. Photobio. A: Chem. ,1999 , 121 :49-53
    [3] Asahi R, Morikawa T , Ohwaki T , et al . Visible-light photocatalysis in Nitrogen-dopedTitanium Oxides[J]. Science , 2001 , 293 : 269 -271
    [4] Lindgren T, Mwabora J M, Avendan?o E, et al. Photoelectrochemical and OpticalProperties of Nitrogen Doped Titanium Dioxide films prepared by reactive DC magnetronsputtering [J]. J. Phys. Chem. B, 2003, 107, 5709-5716.
    [5] Diwald O, Thompson T L, Goralski E G, et al. The Effect of Nitrogen Ion Implantation onthe Photoactivity of TiO_2 Rutile Single Crystals[J]. J. Phys. Chem. B, 2004, 108: 52-57.
    [6] Burda C, Lou Y, Chen X, et al. Enhanced nitrogen doping in TiO_2 nanoparticles[J]. NanoLett. 2003, 3: 1049-1051.
    [7] Cheng P, Deng, C S, Gu M Y, et al. Effect of urea on the photoactivity of titania powderprepared by sol-gel method[J]. Materials Chemistry and Physics, 2008. 107(1): p. 77-81.
    [8] Yuan J, Chen, M X, Shi J W, et al. Preparations and photocatalytic hydrogen evolution ofN-doped TiO_2 from urea and titanium tetrachloride[J]. International Journal of HydrogenEnergy, 2006. 31(10): p. 1326-1331.
    [9] Gamboa J A, Pasquevich D M. Effect of chlorine atmosphereon the anatase-rutileTransformation[J]. J.Am.Ceram.Soc, 1992, 75 ( 11): 2934--2938
    [10] Gai Y Q, Li J B, Li S S, et al. Design of Narrow-Gap TiO_2: A Passivated CodopingApproach for Enhanced Photoelectrochemical Activity[J]. Physical Review Letters, 2009.102(3).
    [11] Saha N C, Tompkins H G. Titanium Nitride Oxidation Chemistry an X-ray PhotoelectronSpectroscopy Study[J]. J. Appl. Phys. 1992, 72: 3072-3079.
    [12] Liu G, Wang L Z, Sun C H, et al, Nitrogen-doped titania nanosheets towards visible lightresponse[J]. Chemical Communications, 2009(11): p. 1383-1385.
    [13] Fang J, Wang F, Qian K, et al., Bifunctional N-Doped Mesoporous TiO_2 Photocatalysts[J].Journal of Physical Chemistry C, 2008. 112(46): p. 18150-18156.
    [14] Chen X, Burda C, Photoelectron Spectroscopic Investigation of Nitrogen-Doped TitaniaNanoparticles[J]. J. Phys. Chem. B 2004, 108, 15446-15449.
    [15] Rodriguez J A, Jirsak T, Hrbek J, et al. Hydration at 0.6 GPa in a synthetic GallosilicateZeolite[J]. J. Am.Chem. Soc. 2001, 123, 9597-9605.
    [16] Moulder J F, Stickle W F, Sobol P E, Bomben K D. Handbook of X-ray PhotoelectronSpectroscopy[M]; Perkin-Elmer Corporation: Eden Prairie, MN, 1992.
    [17] Tafalla D, Salvador E, Benito R M. Kinetic Approach to The Photocurrent Transients inWater Photoelectrolysis at N-TiO_2 Electrodes 2. Analysis of The Photacurrent-TimeDependence[J].Journal of Eleetroehemied Society, 1990,VoI.137(6):1810-1815
    [18] Hagfeldt A, Lindstrom H, Sodergren S, et al. Photoelectrochemical Studies of colloidalTiO_2 Films-the Effeet of Oxygen Studied by photocurrent Transients[J]. Journal ofEiectroanalytical Chemistry, 1995, 381(1-2): 39--46
    [1] Fujishima A, Hashimato K, Watanabe T. TiO_2 Photocatalysis Fundamentals andApplications[J]. BKC, Tokyo, 1999, 3:46-64
    [2] Herrmann J M, Heterogeneous photocatalysis: fundamentals and applications to the removalof various types of aqueous pollutants[J]. Catalysis Today, 1999, 53:115-129
    [3] O’regan B, Gratzel M, A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO_2 films[J]. Nature, 1991, 353:737-740
    [4] Tatsuma T, Ohko Y, Saitoch S, et al., TiO_2-WO3 photoelectrochemical anticorrosion systemwith an energy storage ability[J]. Chemistry and Material, 2001, 13:2838-2842.
    [5] Ngaotrakanwiwat P, Tatsuma T, Saitoh S, et al, Charge–discharge behavior of TiO_2–WO3photocatalysis systems with energy storage ability[J]. Physis and Chemistry, 2003,5:3234-3237
    [6] Takahashi Y, Ngaotrakanwiwat P, Tatsuma T, Energy storage TiO_2–MoO3 photocatalysts[J].Electrochimica Acta, 2004, 49:2025-2029
    [7] Zhang W K, Wang L, Huang H, et al., Light energy storage and photoelectrochemicalbehavior of the titanate nanotube array/Ni(OH)2 electrode[J]. Electrochimica Acta, 2009,54:4760-4763
    [8] Farkas B, Budai J, Kabalci I, et al., Optical characterization of PLD grown nitrogen-dopedTiO_2 thin films[J]. Applied Surface Scicence, 2008 245:3484-3488
    [9] Oh S M, Li J G, Ishigaki T, Nanocrystalline TiO_2 powders synthesized by in-flight oxidationof TiN in thermal plasma: Mechanisms of phase selection and particle morphologyevolution[J]. J. Mater. Res. 2005, 20:529-537
    [10] Cui X L, Ma M, Zhang W, et al. Nitrogen-Doped TiO_2 from TiN and its Visible LightPhotoelectrochemical properties[J]. Electrochemistry Communications, 2008, 10: 367-371
    [11] Wan L, Li J F, Feng J Y, et al. Improved optical response and photocatalysis for N-dopedtitanium oxide (TiO_2) films prepared by oxidation of TiN[J]. Applied Surface Science, 2007,253: 4764-4767
    [12] Diwald O, Thompson T L, Zubkov T, et al. Photochemical activity of nitrogen-doped rutileTiO_2(110) in visible light[J]. Phys. Chem. B, 2004, 108: 6004-6008.
    [13] Rodriguez J A, Jirsak T, Hrbek J, et al. Chemistry of NO_2 on oxide surfaces: Formation ofNO3 on TiO_2(110) and NO_2:O vacancy interactions[J]. J. Am. Chem. Soc. 2002, 123:9597-9605.
    [14] Lu F H, Chen H Y, XPS analyses of TiN films on Cu substrates after annealing in thecontrolled atmosphere[J]. Thin Solid Films, 1999, 355: 374-379.
    [15] Kovac J, Scarel G, Sancrotti M, et al. Time-dependent evolution of thin TiN films preparedby ion beam assisted deposition[J]. J. Appl. Phys. 1999, 86:5566-5572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700