最简燃烧模型的两类典型初值问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了最简燃烧模型的两类典型初值问题:最简Chapman-Jouguet燃烧模型的广义Riemann问题—初始束缚能的扰动、最简Zeldovich-von Neumann-D(?)ring燃烧模型的激波与化学反应区的相互作用问题。
     首先,应用特征分析法,考察了最简Chapman-Jouguet燃烧模型的广义Riemann问题—初始束缚能的扰动。对该问题的研究能够反应燃烧波由于初始束缚能的变化而引起的不稳定性。利用文[65,77]所给出的熵条件,在物理平面(x-t平面)原点附近(t充分小),对流函数f(u)为凸和非凸两种情况,本文分别构造出了该广义Riemann问题的唯一解。对比广义Riemann解和相应的Riemann解的结构,可以观察到:对于大多数情况,初始束缚能扰动之后,Riemann解的结构是稳定的;而对于一些典型的情况,初始束缚能的扰动会引起Riemann解的结构发生本质的变化。例如,不同类型的爆轰波之间的相互转化,不同类型的爆燃波之间的相互转化。更重要地,爆轰波到爆燃波的转化,该现象曾在数值模拟[44]中出现;爆燃波到爆轰波的转换,它是著名的物理现象-DDT现象。
     其次,应用细致的数学分析和特征分析,本文研究了最简Zeldovich-von Neumann-D(?)ring燃烧模型的激波和化学反应区的相互作用问题。对该问题的研究能够从内部机理了解激波对燃烧过程的影响。该工作分成两部分:第一部分,通过化学反应区中的特征分析,构造性地获得了激波和有限宽度爆轰区相互作用的全局解。分析全局解,可以发现在某些情况下,激波能加速反应阵面。同时,当反应速率趋于无穷大时,本文证明了该全局解的极限恰好是相应CJ燃烧模型激波和爆轰波相互作用的解。第二部分,同样通过化学反应区中的特征分析,构造性地获得了激波和有限宽度爆燃区相互作用的全局解,并且发现在某些条件下,反应区内部分正在燃烧的气体将在有限的时刻被熄灭。类似爆轰情形,本文证明了该全局解在反应速率趋于无穷大时的极限,恰好是相应CJ燃烧模型激波和爆燃波相互作用的解。
This dissertation is concerned with two kinds of initial value problems for the simplest combustion model. The first one is to consider the generalized Riemann problem for the simplest Chapman-Jouguet combustion model. The second one is to discuss the inteaction problem of shock and chemical reaction zone for the simplest Zeldovich-von Neumann-D(o|¨)ring combustion model.
     First of all, with the method of characteristic analysis, we consider the generalized Riemann problem for the simplest Chapman-Jouguet combustion model—the perturbation on initial binding energy. The problem is able to exhibit the instability for combustion wave due to the perturbation on initial binding energy. Under the entropy conditions given by [65] and [77], the solutions are obtained constructively in a neighborhood of the origin (t is small enough) on the physical plane(x-t plane). We accomplish the discussion according to the convexity and nonconvexity of flux function. Comparing the structure of the solutions to the generalized Riemann problem and the corresponding Riemann problem, we obtain the following results. Combustion waves in the corresponding Riemann solutions are able to retain their forms after perturbation on initial binding energy. However, the perturbation may bring essential changes to the combustion waves for some typical cases, such as the transition between different types of detonation and the transition between different types of deflagration. Furthermore, we can observe two important phenomena. The one is the transition from detonation to deflagration, which also appears in the numerical solutions in [44]. The other is the transition from deflagration to detonation (DDT), which has been one of the core problems in gas dynamic combustion.
     Second, with the refined mathematical analysis and characteristic analysis, we consider the interaction problem of shock and chemical reaction zone for the simplest Zeldovich-von Neumann-D(o|¨)ring combustion model. The problem helps us understand the influence of the shock on reaction processes on the basis of internal mechanism. Our work consists of two parts. In partⅠ, by analyzing the characteristics in chemical reaction zone, we obtain the global solutions of the interactions of shock and detonation zone of finite width constructively and find that the shock speeds up the reaction front in some cases. Moreover, we prove that the limits of the global solutions as reactive rate k tends to infinity are just the solutions of interactions of shock and detonation for the simplest Chapman-Jouguet combustion model. In partⅡ, the interactions of shock and deflagration zone of finite width are considered. The global solutions of the problem arc constructed by analyzing characteristics in the chemical reaction zone. We observe some burning gas in the reaction zone will be extinguished at a finite time in some cases. By studying the limits of the solutions as the reactive rate goes to infinity, we obtain that the limits are the solutions of the corresponding initial value problem for the simplest Chapman-Jouguet combustion model.
引文
[1]蔡瑞娇,火工品设计原理,北京理工大学出版社,北京,2002.
    [2]陈贵强,陆云光,补偿列紧理论应用途径的研究,科学通报,33(9)(1988),641-644.
    [3]丁敬,爆轰,中国大百科全书,中国大百科全书出版社,1978.
    [4]范宝春,江强,董刚,叶经方,激波与火焰的相互作用过程,爆炸与冲击,23(6)(2003),488-492.
    [5]冯·卡门,H.W.埃蒙斯等,徐华舫译,燃烧和爆轰的气体动力学(G编),科学出版社,北京,1988.
    [6]经福谦,陈俊祥,动高压原理与技术,国防工业出版社,北京,2006.
    [7]赖耕,气体动力学燃烧模型的研究[硕士学位论文],上海大学,2007.
    [8]朗道,流体力学,高等教育出版社,北京,1990.
    [9]李大潜,秦铁虎,物理学与偏微分方程,高等教育出版社,北京,2005.
    [10]李维新,一维不定常流与冲击波,国防工业出版社,2003.
    [11]刘妍,强健的一维守恒型间断跟踪法[博士学位论文],上海大学,2005.
    [12]水鸿寿,一维流体力学差分方法,国防工业出版社,北京,1998.
    [13]孙承纬,卫玉章,周之奎,应用爆轰物理,国防工业出版社,北京,2000.
    [14]孙梅娜,最简Chapman-Jouguet燃烧模型的初值问题[博士学位论文],上海大学,2007.
    [15]孙文华,非线性双曲守恒律方程组的初值问题[博士学位论文],上海大学,2007.
    [16]滕振寰,应隆安,双曲型燃烧模型方程组的Riemann问题,数学年刊,6A(1)(1985),13-22.
    [17]王乐乐,双曲守恒律方程的弱解研究[硕士学位论文].合肥工业大学,2007.
    [18]王继海,二维非定常流和激波,科学出版社,北京,1994.
    [19]王树山,爆轰波非常规传播现象及其应用研究[博士学位论文],北京理工大学,1995.
    [20]威廉斯著,李荫庭、贾文奎译,燃烧理论,科学出版社,北京,1976.
    [21]严传俊,燃烧学,西北工业大学出版社,2005.
    [22]杨彤,激波理论简介,数学传播,24(3)(1989).
    [23]应隆安,腾振寰,双曲守恒律方程及其差分方法,科学出版社,北京,1991.
    [24]应隆安,腾振寰,含爆轰波的间断解的渐近性,数学学报,28(6)(1985).
    [25]Я.Б.泽尔道维奇、А.С.康巴涅耶茨著,徐华舫译,爆震原理,高等教育出版社,北京,1958.
    [26]赵坚行,燃烧的数值模拟,科学出版社,北京,2002.
    [27]周毓麟,一维非定常流体力学,科学出版社,北京,1993.
    [28]W.Bao and S.Jin,The random projection method for hyperbolic conservation laws with stiff reaction terms,J.Comput.Phys.,163(2000),216-248.
    [29]A.M.Ben,The generalized Riemann problem for reacting flows,J.Comput.Phys.,81(1989),70-101.
    [30]A.M.Ben and A.Birman,Computation of reactive duet flows in external fields,J.Comput.Phys.,86(1990),225-255.
    [31]A.Bourgeade,Ph.Le Floch and P.A.Raviart,Approximate solution of the generalized Riemann problem and applications,in Nonlinear Hyperbolic problems.Proceedings St.Etienne 1986,C.Carasso,P.A.Raviart,D.Serre(Eds),Lecture Notes in mathematics 1270,Springer-Verlag,1-9.
    [32]A.Bressan,Hyperbolic Systems of Conservation Laws:The One Dimensional Cauehy Problem,80-85,2000.
    [33]T.Chang and G.Q,Chert,Some fundamental concepts about system of two spatial dimensional conservation laws,Acta Math.Sci.,6(1986),463-474.
    [34]D.L.Chapman,Philos.Mag.,47(1899),90-104.
    [35]A.J.Chorin,Random choice methods with applications to reacting gas flow,J.Comp.Phys.,25(1977),253.
    [36]A.J.Chorin and J.E.Marsden,A Mathematical Introduction to Fluid Mechanics,Springer Verlag,New York,Heidelberg,Berlin,1993.
    [37]P.Colella,A.Majda and V.Roytburd,Theoretical and numerical structure for reacting shock waves,SIAM J.Sci.Stat.Comput,7(1986),1059-1080.
    [38]R.Courant and D.Hilbert,Methods of Mathematical Physics,Vol.2,Wiley-Interscience,New York.
    [39]R.Courant and K.O.Friedrichs,Supersonic Flow and Shock Waves,Interscience,New York,1948.
    [40]C.M.Dafermos,Generalized characteristics and the structure of solutions of hyperbolic conservation laws,Indiana Univ.Math.J.,26(1977),1097-1119.
    [41]W.Fickett,Detonation in miniature,Amer.J.Phys.,47(1979),1050-1059.
    [42]W.Fickett and W.C.Davis,Detonation,Univ.of California Press,Berkeley,Los,Angeles and London,1979.
    [43]Ph.Le Floch and P.A.Raviart,An asymptotic expansion for the solution of the generalized Riemann problem,Part 1:General theory,Ann.Inst.H.Poincare,Nonlinear analysis,5(1988),179-207.
    [44]T.Geβner,Dynamic Mesh Adaption for Supersonic Combustion Waves,Modeled with Detailed Reaction Mechanisms,Fakultat fur Mathematik,Albert-Ludwigs-Universitat Preiburg,2000,Dissertation.
    [45]E.Godlewski and P.A.Raviart,Numerical approximation of hyperbolic systems of conservation laws,Appl.Math.Science,118,Springer,New York,1996.
    [46]J.H.Gucken,Shocks and rarefactions in two space dimensions,Arch.Rat.Mech.Anal.,59(1988),281-291.
    [47]B.T.Hayes and P.G.Lefloeh,Nonclassical shock waves and Kinetic Relation:Scalar Conservation laws,Rational Meehnies and Analysis,193(1997),1-56.
    [48]C.H.Hsu and S.S.Lin,Some qualitative properties of the Riemann problem in gas dynamical combustion,J.Differential Equations,140(1997),10-43.
    [49]W.Jager,H.M.Yang and T.Zhang,Multisolution phenomena in combustion,unpublished,1988.
    [50]A.K.Kapila,B.J.Matkowsky and A.van Harten,An asymptotic theory,of deflagrations and detonations.I.The steady solutions,SIAM Journal on Applied Mathematics,43(3)1983,491-519.
    [51]K.and T.P.Liu,Shock Waves and Entropy,Contributions to Nonlinear Functional Analysis,ed.E.A.Azrantonello,Academic Press,New York,1971:603-634.
    [52]P.D.Lax,Hyperbolic system of conservation laws Ⅱ,Comm.Pure Appl.Math.10(1957),537-566.
    [53]P.D.Lax,Hyperblic systems of conservation laws and the mathematical theory of shock waves,SIAM,Philadelphia,1973.
    [54]A.Levy,On Majda's model for dynamic combustion.Comm.Partial Differential Equations,17(1992),657-698.
    [55]Leveque,Numerical Methods for conservation laws,Birkhauser,1990.
    [56]J.Q.Li and P.Zhang,The transition from Zeldovich-von Neumann-Doring to Chapman-Jouget theories for a nonconvex scalar combustion model.SIAM J.Math.Anal.,34(2003),675-699.
    [57]T.Li,On the initiation problem for a combustion model.J.Differential Equations.,112(1994),351-373.
    [58]T.Li,On the Riemann problem for a combustion model.SIAM J.Math.Anal.,24(1993),59-75.
    [59]T.Li,Time asymptotic limit of solutions of a combustion problem,J.Dynarn.Differential Equations,10(1998),577-604.
    [60]T.Li,Rigorous asymptotic stability of a Chapmann-Jouguet detonation wave in the limit of small resolved heat release,Combust.Theory Model,1(1997),259-270.
    [61]T.Li,Weakly nonlinear detonation waves,SIAM J.Math.Anal.,41(1981),70-93.
    [62]J.Li,S.Yang and T.Zhang,The two-dimensional Riemann problem in gas dynamics,Longman Scientific and Technical,(1998).
    [63]T.T.Li and W.C.Yu,Boundary Value Problem for Quasilinear Hyperbolic Systems,Duke University Mathematics Series V,1985.
    [64]T.P.Liu and S.H.Yu,Nonlinear stability of strong detonations for a viscous combustion model,Comm.Math.Phys.,204(1999),551-586.
    [65]T.P.Liu and T.Zhang,A scalar combustion model.Arch.Ration.Mech.Anal,114(1991),297-312.
    [66]T.P.Liu and L.A.Ying,Nonlinear stability of strong detonation for a viscous combustion model,SIAM J.Math.Anal.,26(1996),519-528.
    [67]A.G.Mackie,Two-dimensional quasi-stationary flows in gas dynamics,Proc.Cambridge Philos.Soc.,68(1968),1099-1108.
    [68]C.L.Mader,Numerical Modeling of Detonations.Univ.of California Press,Berkley,Los Angeles and London,1979.
    [69]A.Majda,A qualitative model for dynamic combustion,SIAM J.Appl.Math.,41(1981),70-93.
    [70]G.H.Markstein,Nonsteady Flame Propagation.New York,Macmillian,1964.
    [71]K.Nishihara,Stability of traveling waves with degenerate shock for system of one-dimensional viscoelastic model J.Diff.Equation,120(1995),304-318.
    [72]L.J.Pan and W.C.Sheng,The scalar Zeldovich-Von Neumann-Doring combustion model(Ⅰ)interactions of shock and detonation,Nonlinear Analysis:Real World Applications,online doi:10.1016/j.nonrwa.2007.10.008.
    [73]B.Riemann,Gesammdltte Werke,149(1896).
    [74]W.C.Sheng,Weak deflagration solutions to the simplest combustion model,J.Diff.Equations,107(1994),207-230.
    [75]W.C.Sheng,Two-Dimensional Riemann Problem for Scalar Conservation Laws,J.Differential Equations.183(2002),239-261.
    [76]W.C.Sheng,M.N.Sun and T.Zhang,The generalized Riemann problem for a scalar nonconvex Chapman-Jouguet combustion model,to appear in SLAM J.Appl.Math.
    [77]W.C.Sheng and T.Zhang,Structural stability of the Riemann problem for a scalar nonconvex CJ combustion model,2006,submitted.
    [78]R.Smith,The Riemann problem in gas dynamics,Trans.Amer.Math.Soc,249(1979).
    [79]W.C.Sheng and T.Zhang,The Riemann problem for transportation equation in gas dynamics,Mem.Amer.Math.Soc,137(654)(1999).
    [80]J.Smoller,Shock waves and Reaction-Diffusion Equation,Springer-Verlag,New York,1982.
    [81]M.N.Sun and W.C.Sheng,The generalized Riemann problem for a scalar Chapman-Jouguet combustion model,Z.angew.Math.Phys.,online doi:10.1007/s00033-007-6130-y.
    [82]M.N.Sun and W.C.Sheng,The ignition problem for a scalar nonconvex combustion model,J.Differential Equations,231(2006),673-692.
    [83]D.Tan and A.Tesei,Nonlinear stability of strong detonation waves in gas dynamical combustion,Nonlinearity,10(1997),355-376.
    [84]D.Tan and T.Zhang,The weak detonation solutions to the simplest combustion model,Mathematical Acta Scientia,13(3)(1993),282-292.
    [85]D.Tan and T.Zhang,Riemann problem for the selfsimilar ZND model in gas dynamical combustion,J.Differential Equations,95(1992),331-369.
    [86]D.Tan,T.Zhang and Y.Zheng,Delta-shock waves as limits of vanishing viscosity for hyperbolic system of conservation laws,J.Differential Equations,112(1994),1-32.
    [87]Z.H.Teng,A.J.Chorin and T.P.Liu,Riemann problems for reacting gas with application to transition,SIAM J.Appl.Math.,42(1982),964.
    [88]V.Neumann,Theory of detonation waves,in John Von Neumann's Collected Works:Vol.6,Ed.Taub A J.New York:Macmillan,1956.
    [89]G.B.Whitham,Linear and Nonlinear Waves,New York,Wiley,1974.
    [90]H.Yang,it Riemann problems for a class of coupled hyperbolic systems of conservation laws,J.Differential Equations.159(1999).447-484.
    [91]L.A.Ying,Finite difference method for a combustion model,Math.Comp.73(246)(2004),595-611.
    [92]L.A.Ying,Convergence of a finite difference method for combustion model problems,Sci.China Ser.A 47(2004),121-135.
    [93]L.A.Ying and J.X.Hu,Existence of generalized solutions to a hyperbolic model of combustion,Mathematical Acta Scientia,13(2)(1993),195-201.
    [94]L.A.Ying and X.T.Zhang,Finite difference method for detonation waves,Proceedings of the 6th Japan-China Joint Seminar on Numerical Mathematics(Tsukuba,2002).J.Comput.Appl.Math.159(1)(2003),185-193.
    [95]L.A.Ying and Z.Teng,A hyperbolic model of combustion,Nonlinear Partial Differential Equations in Applied Science,Kinokuniva North-Holland,(1983).409-434.
    [96]L.A.Ying and Z.Teng,Riemann problem,for a reaction and convection hyperbolic,system,Approx.Theory Appl,1(1984),95-122.
    [97]L.A.Ying and Z.Teng,The Riemann problem for a hyperbolic combustion model system,Chinese Annals Math.,6A(1)(1985),13-22.
    [98]L.A.Ying and Z.Teng,Asymptotic behavior of discontinuous solutions involving detonation waves,Advances In Mathematics,14(1)(1985),84-87.
    [99]X.T.Zhang and L.Ying,Dependence of qualitative behavior of the numerical solutions on the ignition temperature for a combustion model,Journal of Computational Mathematics,23(2005),337-350.
    [100]P.Zhang and T.Zhang,The Riemann problem for scalar CJ-combustion model without convexity,Discrete Contin.Dynam.Systems,1(1995),195-206.
    [101]P.Zhang and T.Zhang,The Riemann problem for nonconvex combustion model from ZND to CJ theory,in Advances in Nonlinear Partial Differential Equations and Related Areas(Beijing 1997),World Scientific,River Edge,NJ,1998,379-398.
    [102]T.Zhang,The Riemann problem for combustion,Contemp.Math.,100(1989),111-124.
    [103]T.Zhang and L.Xiao,The Riemann problem and interaction of waves in gas dynamics,Longman Scientific and Technical,1989.
    [104]T.Zhang and Y.Zheng,Two dimensional Riemann problem for a single conservation laws,Trans.Amer.Math.Soc,312(1989),589-619.
    [105]T.Zhang and Y.X.Zheng,Riemann problem for gas dynamic combustion,J.Differential Equations,77(1989),203-230.
    [106]T.Zhang and Y.Zheng,Conjecture on structure of solution of Riemann problem for 2-D gas dynamic systems,SIAM.J.Math.Anal,3(1990),493-630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700