基于ECR-PEMOCVD技术的GaN和InN薄膜的生长及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以氮化镓(GaN)为代表的Ⅲ族氮化物半导体材料,由于其在光电子和微电子器件上的应用前景,受到了人们极大的关注。2002年的研究表明,氮化铟(InN)的禁带宽度为0.7eV,而不是之前报道的1.89eV,这就意味着通过调节InxGa1_xN三元合金的In组分,可使其禁带宽度从3.39eV(GaN)到0.7eV(InN)连续可调,其对应的吸收光谱的波长从紫外部分(366nm)可以一直延伸到近红外部分(1771nm),几乎完整覆盖了整个太阳光谱。理论上预测,如果用InxGa1-xN做成叠层太阳能电池,其效率可达72%。
     然而,要想获得高效率的InGaN太阳电池,制备In组分连续可调的InGaN薄膜是关键,这就要求首先制备高质量的GaN和InN薄膜。
     本实验是在自行研制的配有反射式高能电子衍射(RHEED)装置的电子回旋共振-等离子体增强金属有机物化学气相沉积(ECR-PEMOCVD)装置上进行的。实验分为两部分:1.采用高纯氮气(N2)为氮源,利用三甲基镓(TMGa)为镓源,在掺铝氧化锌(ZnO:Al)透明导电柔性衬底上生长GaN薄膜;2.采用高纯氮气(N2)为氮源,利用三甲基铟(TMIn)为铟源,在α-Al2O3衬底上生长InN薄膜。
     利用RHEED、X射线衍射(XRD)和原子力显微镜(AFM)表征薄膜的晶体结构和表面形貌,利用室温光透射谱表征薄膜的光学性质,室温霍尔效应表征薄膜的电学性质,利用拉曼光谱表征薄膜的晶格振动。
     ZnO:Al衬底上生长的GaN薄膜,在200~500℃温度范围内,具有c轴择优取向的钎锌矿结构,结晶性较好;薄膜表面形貌较为平整;在最佳温度下(450℃)生长的GaN薄膜的光谱透过率为85~90%,禁带宽度为3.45eV。
     a-Al203衬底上生长的InN薄膜,在350~550℃温度范围,0.4~1.0sccm的TMIn流量范围内,具有良好的(0002)择优取向,且薄膜为单一晶相;拉曼光谱中有显著的A1(LO)和E2 (High)模式;室温载流子迁移率为10~40cm2/v.s,背景方块载流子浓度为1016左右。
Due to their great potential use in optoelectronic and microelectronic devices, GaN-based III nitrides semiconductor materials have been widely investigated. In 2002, it has been reported that the optical band gap of InN is 0.7eV, not the commonly quoted value 1.89 eV. This means that the band gap of InxGa1-xN ternary alloy can be continuously tuned from 3.4eV (GaN) to 0.7eV (InN). by adjusting the In fractions. The corresponding absorption spectrum can be stretched from the ultraviolet part (366nm) to nearly infrared part (1771nm), covering almost the whole solar absorption spectrum. It is predicted that the efficiency of the InGaN tandem solar cell can be up to 72%. Therefore, study on the InGaN solar cell will be of great value.
     In order to obtain high efficiency InGaN solar cell, it is essential to prepare high-quality InGaN films in which the In fractions can be tuned. However, it requires the preparation of high-quality GaN and InN films at the first step.
     The experiments were carried out on the Electron Cyclotron Resonance-Plasma Enhanced Metal Organic Chemistry Vapor Deposition (ECR-PEMOCVD) system equipped with in-situ Reflection High Energy Electron Diffraction (RHEED). The experiments were classified into two parts:1. Using trimethyl-gallium(TMGa) as Ga source, high purity N2 as N source, GaN films were deposited on ZnO:Al layer; 2. Using trimethyl-indium(TMIn) as In source, high purity N2 as N source, InN films were deposited onα-Al2O3 substrate.
     The crystal structure and surface topography of the films were characterized by RHEED, x-ray diffraction (XRD) and atomic force microscope (AFM). The electrical properties of the films were investigated by Hall measurements. The lattice vibration was characterized by Raman spectra.
     GaN films deposited at 200~500℃are of high c-axis preferred orientation and have good crystalline characteristic. The surface morphology of GaN films is smooth. The optical transmittance and band gap at the optimal growth temperature is 85~90% and 3.45 eV, respectively.
     InN films deposited at the temperature range of 350~550℃and a TMIn flux range of 0.4~1.0 sccm exhibited high (0002) preferred orientation and good wurtzite-type structure. Raman studied showed that there are significant A1 (LO) and E2 (High) models. The room temperature carrier mobility rate is 10~40cm2/v·s, and sheet concentration is about 1016 obtained by Hall measurement.
引文
[]] S. Strite, H. MorKoq, GaN, AlN and InN:A review, [J].J. Vac. Sci. Technol. B,1992, 10(4):1237-1266.
    [2]S. Nakamura, M. Senoh, S. Nagahama, High powder InGaN single quantum well structure blue and violet light-emitting diodes, [J].Appl. Phys. Lett,1995,67:1868-1870.
    [3]Junqiao Wu, When group-III nitrides go infrared:New properties and perspectives, [J].J. Appl. Phys,2009,106:011101.
    [4]I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, Band parameters for III - V compound semiconductors and their alloys, [J].J.Appl. Phys,2001,89:5815-5875.
    [5]H. Morko(?), S. Strite, G. B. Gao, et al. Large-band-gap SiC, III-V nitride, and Ⅱ-VI ZnSe-based semiconductor device technologies,[J].J. Appl. Phys,1994,76,1363-1398.
    [6]Deborah A. Neumayer, John G. Ekerdt, Growth of group iii nitrides. A review of precursors and techniques, [J].Chem. Mater,1996,8(1):9-25.
    [7]W. C. Johnson, J. B. Parsons, M. C. Crew, Nitrogen compounds of gallium III. gallic nitride, [J].J. Phys. Chem,1932,36:2561-2654.
    [8]H. P. Maruska, J. J. Tietjen, The Preparation and properties of vapor-deposition single-crystal-line GaN, [J]. Appl. Phys. Lett,1969,15:327-329.
    [9]H. Amano, I. Akasaki, K. Hiramatsu, et al. Effects of the buffer layer in metalorganic vapor phase epitaxy of GaN on sapphire substrate, [J]. Thin solid Films,1988,163:415-420.
    [10]H. Amano, M. Kito, K, Hiramatsu, et al. P-type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation(LEEBI),[J]. Jpn. J. Appl. Phys,1989, 28:2112-2114.
    [11]S. Nakamura, T. Mukai, M. Senoh, et al. Thermal Annealing Effects on P-Type Mg-Doped GaN Films, [J]. Jpn. J. Appl. Phys,1992,31:139-142.
    [12]袁明文.氮化物在光电子和微电子器件中的应用,[J].半导体技术,2001,26(6):16-19.
    [13]马洪磊,杨莺歌等.GaN薄膜的研究进展,[J].功能材料,2004,35(5):537-540.
    [14]秦福文,顾彪,徐茵等.Ga N缓冲层上低温生长A1 N单晶薄膜,[J].材料、结构及工艺,2002,24(1):32-361.
    [15]Q. Guo,0. Kato, A. Yoshida, Thermal stability of indium nitride single crystal films, [J]. J. Appl. Phys.1993,73:7969-7971.
    [16]0. Ambacher, M.S. Brandt, R. Dimitrov, et al. Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition, [J]. J. Vac. Sci. Technol. B,1996,14(6):3532-3542.
    [17]谢自力,张荣,毕朝霞等.InN材料及其应用,[J].微纳电子技术,2004,12:26-31.
    [18]J. Wu, W. Walukiewicz, K. M. Yu, et al. Unusual properties of the fundamental band gap of InN, [J]. Appl. Phys. Lett,2002,80:3967-3969.
    [19]T. Matsuoka, H. Okamoto, M. Nakao, et al. Optical bandgap energy of wurtzite InN, [J]. Appl. Phys. Lett.2002,81:1246-1248.
    [20]Guosheng, Cheng, Eric, et al. Electronic properties of InN nanowires, [J]. Appl. Phys. Lett.2005,87:253103.
    [21]K. Mitamura, T. Honke, A. Kobayashi, Characteristics of InN grown directly on A1203 (0 001) substrates by pulsed laser deposition, [J]. Journal of Crystal Growth 2009, 311:1316-1320.
    [22]Foutz B E, Oleary S K, Shur M S, et. al. Transient electron transport in wurtzite GaN, InN and AlN, [J]. J. Appl. Phys.1999,85:7727-7734.
    [23]Ashrafu] Ghani Bhuiyan, Akihiro Hashimoto, Akio Yamamoto, Indium nitride (InN):A review on growth, characterization and properties, [J].J.App. Phys.2003,94:2779-2802.
    [24]lgashiwaki M, Matsui T, High quality InN film growth on a low temperature grown GaN intermediate layer by plama assisted molecular beam xpitaxy, [J]. Jpn. J. Appl. Phys, 2002,41:1540-1542.
    [25]R. Juza, H. Hahn, Metal Amides and Metal Nitrides. V. Crystal Structures of Cu3N, GaN, and InN, [J]. Chem.,1938,239:282-287.
    [26]Karpinski J, Porowski S. High Pressure Thermodynamics of GaN, [J]. J. Cryst Growth, 1984,66:11-20.
    [27]Pankove J I, Berkeyheiser J E, Maruska H P, et al. Luminescent properties of GaN, [J]. Solid State Commun,1971,8(13):1051-1053.
    [28]Dingle R, Ilegems M, Donor-acceptor pair recombination in GaN,[J]. Solid State Commun,1971,9(3):175-180.
    [29]Monemar B, Fundamental energy gap of GaN from photoluminescence excitation spectra [J].Phys Rev B,1974,10(2):676-681.
    [30]Nakamura S, Mukai T, Senoh M, et al. Si-and Ge-doped GaN films grown with GaN buffers layers [J].Jpn.J. Appl. Phys,1992,31:2883.
    [31]Amano H, Kito M, Hiramatsuk, et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation [J].Jpn. J. Appl. Phys.,1989,28:L2112-2114.
    [32]Nakamura S, Characteristics of InGaN multi-quantum-well-structure laser diodes [J]. Appl. Phys. Lett,1996,68(23):3269-3271.
    [33]Briot 0, Maleyer B, Ruffenach S, Absorption and Raman scattering processes in InN films and dots, [J]. J Cryst Growth,2004,269:22-28.
    [34]Uesaka Y, Yamamoto A, Hashimoto, Band gap widening of MBE grown InN layers by impurity incorporation, [J]. J Cryst Growth,2005,278:402-405.
    [35]Alevli M, Durkaya G, Weerasekara A, Characterization of InN layers grown by high-pressure chemical vapor deposition, [J]. Appl Phys Lett,2006,89:112119.
    [36]Walukiewicz W, Li S X, Wu J, Optical properties and electronic structure of InN and In-rich group Ⅲ-nitride alloys,[J]. J. Cryst Growth,2004,269:119-127.
    [37]Muhammad Jamil, Hongping Zhao, JohnB. Higgins, Influence of growth temperature and V/Ⅲ ratio on the optical characteristics of narrow band gap (0.77 eV) InN grown on GaN/sapphire using pulsed MOVPE, [J]. J. Cryst Growth,2008,310:4947-4953.
    [38]W Walukiewicz, JW Ager III, K M Yu, et al. Structure and electronic properties of InN and In-rich group Ⅲ-nitride alloys, [J]. J. Phys. D:Appl. Phys.2008,39:83-99.
    [39]Yan-Hsin Wang, Wei-LiChen, The influence of the LT-InN buffer growth conditions on the quality of InN films grown on Si(111) substrate by MBE,[J]. Physica E 2009,41: 848-851.
    [40]Chen P P, Makino H, Li T X, Optical properties of InN films grown by molecular beam epitaxy at different conditions, [J].Thin Solid Films,2006,513:166-169.
    [41]Li S X,Yu K M, Wu J, et al. Fermi-level stabilization energy in group III nitrides, [J]. Phys Rev B,2005,71:161201 (R).
    [42]Piper L F J, Veal T D, McConville C F, Origin of the n-type conductivity of InN:The role of positively charged dislocations [J]. Appl Phys Lett,2006,88:252109.
    [43]Walukiewicz W, Intrinsic limitations to the doping of wide-gap semiconductors [J]. Phys B,2001,3022303:123.
    [44]Obloh H, et al. Self-compensation in Mg doped p-type GaN grown by MOCVD, [J].J Cryst Growth,1998,195:270.
    [45]Jones R E, Yu K M, Li S X. Evidence for p-type doping of InN [J]. Phys Rev Lett,2006, 96:125505.
    [46]Anderson P A, Swartz C H, Carder D, et al. Buried p-type layers in Mg-doped InN, [J] Appl Phys Lett,2006,89:184104.
    [47]丁少锋,范广涵,李述体.InN材料及器件的最新研究进展.[J].材料导报,2007,21(6):16—20.
    [48]吕学鹏。InN纳米线反常输运性质研究[D].山东:山东大学凝聚态物理,2009
    [49]N. Grandjean, M. Leroux, M. Laugt, Gas source molecular beam epitaxy of wurtzite GaN on sapphire substrates using GaN buffer layers, [J]. Appl. Phys. Lett.1997,71:240-243.
    [50]R. D. Vispute, V. Talyansky, Z. Trajanovic, High quality crystalline ZnO buffer layers on sapphire (001) by pulsed laser deposition for III-V nitrides, [J]. Appl. Phys. Lett. 1997,70:2735-2737.
    [51]D. Walker, X. Zhang, P. Kung, A. Saxler, et al. AlGaN ultraviolet photoconductors grown on sapphire, [J]. Appl. Phys. Lett.1996,68:2100-2101.
    [52]John T. Torvik, Moeljanto Leksono, Jacques I. Pankove, et al. Electrical characterization of GaN/SiC n-p heterojunction diodes, [J]. Appl. Phys. Lett.1998, 72:1371-1373.
    [53]Shang Yuan Ren, John D. Dow, Lattice-matching SiC substrates with GaN, [J]. Appl. Phys. Lett.1996,69:251-253.
    [54]F. Hamdani, A. E. Botchkarev, H. Tang, Effect of buffer layer and substrate surface polarity on the growth by molecular beam epitaxy of GaN on ZnO, [J]. Appl. Phys. Lett. 1997,71:3111-3113.
    [55]B. Y. Man, C. Yang, H. Z. Zhuang, Effects of ZnO buffer layers on the fabrication of GaN films using pulsed laser deposition, [J]. J. APPL. PHYS,2007,101:093519.
    [56]Yohjiro Kawai, Shinya Ohsuka, Motoaki Iwaya, InGaN growth with various InN mole fractions on m-plane ZnO substrate by metal organic vapor phase epitaxy,[J]. J. Cryst Growth 2009,311:2929-2932.
    [57]V. K. Lazarov*, J. Zimmerman, S. H. Cheung, Selected Growth of Cubic and Hexagonal GaN Epitaxial Films on Polar MgO(111), [J]. Phys. Rev. Lett.2005,94:216101-216104.
    [58]N.Shuji, S. Masayuki, N. Shin-ichi, I.Naruhito. Continuous-wave operation of InGaN/GaN/AIGaN-based laser diodes grown on GaN substrates. Appl. Phys. Lett.,1998, 72(16):2014-2016.
    [59]A. Osinsky, S. Gangopadhyay, J. W. Yang, et al. Visible-blind GaN Schottky barrier detectors grown on Si (111),[J]. Appl. Phys. Lett.1998,72:551-553.
    [60]A. Dadgar, J. Christen, T. Riemann, et al. Bright blue electroluminescence from an InGaN/GaN multiquantum-well diode on Si (111):Impact of an AlGaN/GaN multilayer, [J]. Appl. Phys. Lett.2001,78:2211-2213.
    [61]冯玉春胡加辉张建宝等,过渡层结构和生长工艺条件对Si基GaN的影响,[J].人工晶体学报,2005,34:907-910.
    [62]Kim S. T, Lee Y. J, Moon D. C, Preparation and properties of free-standing HVPE grown GaN substrates, [J]. J. Cryst Growth,1998,194:37-42.
    [63]Akinori Koukitu, Jun Kikuchi, Yoshihiro Kangawa, Thermodynamic analysis of AlGaN HVPE growth, [J]. J. Cryst Growth,2005,281:47-54.
    [64]T. D. Moustakas, T. Lei, R. J. Molnar, Growth of GaN by ECR-assisted MBE, [J].Physica B,1993,185:36-49.
    [65]Asahi H, Iwata K, Tampo, et al. Very strong photoluminescence emission from GaN grown on amorphous silica substrate by gas source MBE, [J].J Cryst Growth,1999,201/202 (3):371-375.
    [66]Iwata K, Asahi H, Asami K, et al. Promising characteristics of GaN layers grown on amorphous silica substrates by gas-source MBE, [J]. J Cryst Growth,1998,189/190(880): 218-222.
    [67]Park S E, Kimd D J, Woo S G, et al. Growth parameters for polycrystalline GaN on silica substrates by metalorganic chemical vapor deposition [J].J Cryst Growth,2002,242 (3-4):383-388.
    [68]Park S E, Kimd D J, Woo S G, et al. Characterization of polycrystalline GaN grown on silica glass substrates [J].J Cryst Growth,2003,250(3-4):349-353.
    [69]Xing Yanhui, Han Jun, Deng Jun, Investigation of GaN layer grown on different low misoriented sapphire by MOCVD, [J]. Applied Surface Science,2009,255:6121-6124.
    [70]R. P. Wang, Y. Yamada, T. Kusumori, Effect of ZnO buffer layer on the quality of GaN films deposited by pulsed laser ablation, [J]. Thin Solid Films,2002,411:69-75.
    [71]I. Akasaki, H, Amano, M. Kito, Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN p-n junction LED, [J]. J. Lumin,1991,48/49:666-670.
    [72]S. Nakamura, M. Senoh, and T. Mukai, Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers, [J]. Jpn. J. Appl.Phys.1991,30:1708-1711.
    [73]NAKAMURA S. Presents and high performance of InGaN/GaN light emiting diodes, [J]. Jpn J Opt,1994,23:701.
    [74]Nakamura S, Senoh M, Nagahama S et al. InGaN-based multi-quantum-structure laser diodes., [J].Jpn. J. Appl. Phys.,1996,35:74-76.
    [75]Yang H, Chen L H, Zhang S M, et al.Material growth and device fabrication of GaN-base blue-violet laser diodes, [J]. Chinese Journal of Semiconductor,2005,26(2):416-417.
    [76]Rennie J, Nunoue S, Yamamoto M et al, Room temperature pulsed operation of nitride based multi-quantum-well laser diodes with cleaved facets on conventional C-face sapphires substrates, [J]. Jpn. J. Appl. Phys.,1996,35:1315-1317.
    [77]Khan A, Chen M, Sun Q, et al. Two-dimensional Electron Gas in GaN-AlGaN Heterostructure Deposited Using Trimethylamine-alane as the Aluminum Source in Low Pressure Metalorganic Chemical Vapor Deposition, [J].Appl Phys Lett,1995,67(10):1429-1431.
    [78]Omakar J, Christiana H, Ali A, et al. Characterization and analysis of InGaN photovoltaic devices[C].Florida:31st IEEE photovoltaic specialists conference and exhibition,2005.
    [79]Yin Xu, Biao Gu, Fu-Wen Qin, Electron cyclotron resonance plasma enhanced metalorganic chemical vapor deposition system with monitoring in situ for epitaxial growth of group-Ⅲ nitrides,[J]. J. Vac. Sci. Technol. A,2004.22(2):302-308.
    [80]秦福文.RHEED原位监测的PEMOCVD方法及GaN基薄膜低温生长[D].大连:大连理工大学材料学,2004.
    [81]徐茵,顾彪,秦福文等.G8N薄膜低温外延的ECR-PAMOCVD技术[J].半导体技术.1998,23(1):37-39.
    [82]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2003.
    [83]宋世巍.蓝宝石和石英衬底上(Ga, Mn) N薄膜的生长和特性研究[D].大连:大连理工大学微电子与固体电子学,2009.
    [84]张进城,郝跃,李培咸,等.基于透射谱的GaN薄膜厚度测量[J].物理学报,2004,53(4):1243-1246.
    [85]X. H. Ji, S. P. Lau, H. Y. Yang, Q. Y. Zhang, Structural and optical properties of wurtzite InN grown on Si (111), [J]. Thin Solid Films,2007,515:4619-4623.
    [86]A. Dixit, C. Sudakar, J. S. Thakur, Strong plasmon absorption in InN thin films, J. App. Phys.2009,105:053104.
    [87]J. S. Thakur, D. Haddad, V. M. Naik, R. Naik, G. W. Auner, H. Lu, W. J. Schaff, [J]. Phys. Rev. B,2005,71:115203.
    [88]Kurimoto E, Harima H, Hashimoto A, et al. Growth of high-quality InN films and Raman characterization of residual stress effects, [J]. Phys Stat Sol (b),2001,228(1):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700