人肝癌细胞抑癌基因PTEN的表达及其启动子的调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PTEN是1997年克隆得到的第一个具有磷酸酶活性的抑癌基因,定位于人染色体10q23.3。它与许多肿瘤的发生或发展有着密切关系,目前已在很多肿瘤中发现有PTEN的缺失与突变;而且,PTEN在细胞信号转导和正常胚胎发育过程中均有重要作用。PTEN蛋白由403个氨基酸残基组成,含有双专一性磷酸酶结构域;这种蛋白不仅具有蛋白磷酸酶活性,而且具有脂质磷酸酶活性;它既能使磷酸化的丝氨酸/苏氨酸残基脱磷酸,也能使磷酸酪氨酸脱磷酸,还能使磷脂酰肌醇-3,4,5-三磷酸(phosphatidylinositol(3,4,5)-trisphosphate,PIP3) 的3位脱磷酸。通过对PI3-K/Akt、 MAPK、FAK等重要的细胞内信号转导通路的调节,PTEN可以调控细胞生长、增殖、粘附与迁移,并能促进细胞凋亡。
    PTEN的功能主要是通过其磷酸酶的活性来实现的,为了研究PTEN磷酸酶活性与BEL-7404肝癌细胞生物学行为之间的关系,我们将含野生型或特定酶活性缺失突变型的PTEN的表达质粒转染到BEL-7404肝癌细胞中。实验发现,PTEN可以抑制7404肝癌细胞的生长与增殖,还可以抑制细胞的克隆形成与细胞迁移,并且影响了7404肝癌细胞的周期。进一步分析显示,PTEN的这些功能主要是通过PTEN蛋白质的磷酸酶活性来实现的。此外,我们采用Northern blot和Western blot等方法,研究了7株人肝癌细胞(HHCC)与L02细胞(肝永生化细胞株)中PTEN的mRNA表达水平和蛋白质表达水平,实验发现,与L02细胞相比,7株人肝癌细胞中PTEN的mRNA表达水平与蛋白质表达水平均下降,其中HepG2细胞株中的PTEN蛋白质几乎检测不到,而且PTEN蛋白质的变化趋势与PTEN mRNA的变化趋势基本一致,两者之间存在相关关系(p<0.01)。我们利用RT-PCR的方法克隆了8株细胞PTEN的编码框,序列分析的结果显示,在8株细胞的PTEN编码框中均未发现片段缺失或点突变,说明7株肝癌细胞中PTEN表达的差异不是由突变所致,提示PTEN表达的转录水平调控占有重要地位。
    为了探讨肝癌细胞中PTEN的转录调控机制,我们克隆了PTEN的全长启动子区域,通过构建启动子系列缺失的报告质粒,通过瞬时转染并结合报告基因活性测定方法,我们确定PTEN的核心启动子区定位在-1118到-778区域的341bp的片段内,而-1389到-778这个612bp片段区域是PTEN启动子的最高活性区。我们将PTEN启动子的最高活性区片段转染到8株细胞中,结果发现,PTEN启动子在8株细胞中的活性高低不一,且各株细胞间活性变化趋势与PTEN mRNA水平的变化趋势相
    
    
    一致,而且存在相关关系,进一步提示,肝癌细胞中PTEN表达的转录水平调控可能处于很重要的地位。
    启动子转录活性的调控是基因表达调控的主要方式。通常通过反式作用因子与启动子上的顺式作用元件结合,启动或调节基因的转录。生物学软件分析发现,PTEN启动子的核心区有10个潜在的转录因子结合位点,我们分别用8核苷酸序列替代每一转录因子结合位点,得到10 个单一转录因子结合位点突变的报告质粒(△pGl3-612),将上述报告质粒分别转染到SMMC-7721和L02细胞中,结果发现,MAZ 1、MAZ 2、p53和Sp1结合位点对于PTEN启动子表现最佳活性是必需的。将Sp1或MAZ的表达质粒分别与上述突变型或野生型启动子报告质粒,共转染上述2株细胞,结果发现Sp1和MAZ可以明显上调PTEN启动子的活性,此上调作用主要依赖于MAZ 1、MAZ 2结合位点。EMSA结果显示,以Sp1为标记探针形成的条带可以被公认的高亲和力的Sp1非标记探针竞争性抑制,也能够被非标记的MAZ探针竞争性抑制;以MAZ为标记探针形成的条带,可以被非标记的MAZ探针竞争性抑制,也能够被公认的高亲和力的Sp1非标记探针竞争性抑制, 提示Sp1和MAZ可以结合在相同的序列上。以上结果表明MAZ 1、MAZ 2位点参与Sp1与MAZ对PTEN启动子活性的调节。综上所述,我们得出结论,Sp1和MAZ可以通过与-1035到-1016区域的序列结合,上调PTEN基因的表达。
PTEN was identified as a tumor suppressor gene in 1997 located on human chromosome 10q23.3, which was mutated or deleted in a variety of sporadic cancers. PTEN encodes a dual-specificity phosphatase, which is able to dephosphorylate either phospho-tyrosine or phospho-serine/threonine residues. PTEN, also acts as a lipid phosphatase, specifically cleaves the D3 phosphate of phosphatidylinositol (3,4,5)-triphosphate (PIP3), an important intracellular second messenger, produced by the activity of PI3-kinase. By blocking the activation of Akt, FAK or MAPK pathway, PTEN regulates cellular processes such as proliferation, adhesion, migration, cell cycling, and apoptosis. PTEN implicated not only in tumorigenesis and progression but also in normal embryogenesis development. So it is very important to study the PTEN transcriptional regulation in human hepatocellular carcinoma cells (HHCC).
    To investgate the phosphotase fouction of PTEN protein, we transfected the wild-type PTEN or mutant PTEN, which lost lipid phosphotase activity or lost both lipid phosphotase activity and protein phosphotase activity, expression plasmids into the BEL-7404 cells, It was found that PTEN can suppress the proliferation, migration, clony formation and cell cycle of BEL-7404 cells, and these effects were mainly attributed to its phosphatase activity. Northern blot and Western blot analysis showed that the PTEN protein level and PTEN mRNA level were decreased in human hepatocellular carcinoma (HHCC) cell lines compared with that in L02 cells. The profile of PTEN protein level in each of 8 cell lines closely parallelized with its PTEN mRNA, which means the variation of PTEN protein mostly dependent on change of PTEN mRNA. The DNA sequencing of PTEN ORF which obtained by RT-PCR showed that there was no any mutation in it. These results demonstrated that the decrease of PTEN expression in HHCC cell lines was not caused by PTEN mutation, and may be to due to the transcriptional or post- transcriptional regulation of PTEN gene.
    It is well known that the regulation of gene promoter activity plays an important role in gene transcription regualtion. In an attempt to analyze the activity of PTEN
    
    
    promoter in HHCC, we isolated a DNA fragment containing 5'-flanking region and the 5'-untranslated region(5'-UTR)from PTEN gene, and performed series promoter deletion. The deletion analysis of PTEN promoter showed that the fragment of 612bp (-1389/-778) can produce maximum promoter activity in 8 cell lines and the core region of PTEN promoter was resided within the 341bp (-1118/-778) fragment. After the transfection of pGL3-612bp (-1389/-778) into 8 cell lines, we found the profile of PTEN promoter activity was almost parallelized with the profiles of PTEN mRNA and PTEN protein in 8 cell lines. Taken together, we concluded that the downregulation of PTEN expression in 7 HCC cell lines probably does not owing to the mutation of PTEN but maybe mainly attributed to the activity lost of PTEN promoter.
    To identify the functional cis-elements in the core region of PTEN promoter, 10 potential elements (binding sites) were examined by using 8 bp substitutive mutation respectively in SMMC-7721 cells and L02 cells. It was suggested that two MAZ binding sites, located at the region from -1035 to -1016, are very important for the optimal PTEN promoter activity. Electrophoretic mobility shift assays (EMSA) showed that the MAZ and Sp1 could cross bind to MAZ and Sp1 binding sites. The results of co-transfection of either Sp1 or MAZ expression plasmids with luciferase reporter plasmids contain wild-type or mutated PTEN promoters revealed that both Sp1 and MAZ can induce the activation of PTEN promoter through -1035 to -1016 bases containing MAZ binding sites, but not through the sequence from -937 to -923 containing Sp1 binding site. The results in this study suggested that the zinc-finger proteins Sp1 and MAZ could up-regulate the PTEN expression via binding to the sequence from -1035 to -1016 in SMMC-7721 cells and L02 cells.
引文
1. Knudson AG. Antioncogenes and cancer. Proc Natl Acad Sci USA. 1993, 90, 10914-10921
    2. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997, 275:1943-1947
    3. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997, 15, 356-362
    4. Li DM, Sun H. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res. 1997, 57:2124-2129.
    5. Cairns P, Evron E, Okami K, Halachmi N, Esteller M, Herman JG, Bose S, Wang SI, Parsons R, Sidransky D. Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladdercancers. Oncogene. 1998, 16:3215-3218.
    6. Aveyard JS, Skilleter A, Habuchi T, Knowles MA. Somatic mutation of PTEN in bladder carcinoma. Br J Cancer. 1999, 80:904-908.
    7. Alimov A, Li C, Gizatullin R, Fredriksson V, Sundelin B, Klein G, Zabarovsky E, Bergerheim U. Somatic mutation and homozygous deletion of PTEN/MMAC1 gene of 10q23 in renal cell carcinoma. Anticancer Res. 1999, 19:3841-3846.
    8. Salvesen HB, Stefansson I, Kalvenes MB, Das S, Akslen LA. Loss of PTEN expression is associated with metastatic disease in patients with endometrial carcinoma.Cancer.2002, 94:2185-2191.
    9. Tsuchiya KD, Wiesner G, Cassidy SB, Limwongse C, Boyle JT, Schwartz S. Deletion 10q23.2-q23.33 in a patient with gastrointestinal juvenile polyposis and other features of a Cowden-like syndrome. Genes Chromosomes Cancer. 1998, 21:113-118.
    10. Lynch ED, Ostermeyer EA, Lee MK, Arena JF, Ji H, Dann J, Swisshelm K, Suchard D, MacLeod PM, Kvinnsland S, Gjertsen BT, Heimdal K, Lubs H, Moller P, King MC. Inherited mutations in PTEN that are associated with breast cancer, cowden disease, and juvenile polyposis. Am J Hum Genet. 1997, 61:1254-1260.
    11. Wirtzfeld DA, Petrelli NJ, Rodriguez-Bigas MA. Hamartomatous polyposis
    
    
    syndromes: molecular genetics, neoplastic risk, and surveillance recommendations. Ann Surg Oncol. 2001, 8:319-327.
    12. Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P, Pavletich NP. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell. 1999, 99:323-334.
    13. Georgescu MM, Kirsch KH, Akagi T, Shishido T, Hanafusa H. The tumor-suppressor activity of PTEN is regulated by its carboxyl-terminal region. Proc Natl Acad Sci U S A. 1999, 96:10182-10187.
    14. Vazquez F, Ramaswamy S, Nakamura N, Sellers WR. Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol. 2000, 20:5010-5018.
    15. Lu Y, Lin YZ, LaPushin R, Cuevas B, Fang X, Yu SX, Davies MA, Khan H, Furui T, Mao M, Zinner R, Hung MC, Steck P, Siminovitch K, Mills GB. The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells. Oncogene. 1999, 18:7034-7045.
    16. Weng LP, Brown JL, Eng C. PTEN coordinates G(1) arrest by down-regulating cyclin D1 via its protein phosphatase activity and up-regulating p27 via its lipid phosphatase activity in a breast cancer model. Hum Mol Genet. 2001, 10:599-604.
    17. Haas-Kogan D, Shalev N, Wong M, Mills G, Yount G, Stokoe D. Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr Biol. 1998, 8:1195-1198.
    18. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998, 273:13375-13378.
    19. Li DM, Sun H. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci U S A. 1998, 95:15406-15411.
    20. Weng LP, Smith WM, Dahia PL, Ziebold U, Gil E, Lees JA, Eng C. PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death. Cancer Res. 1999, 59:5808-5814.
    21. Gu J, Tamura M, Yamada KM. Tumor suppressor PTEN inhibits integrin- and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. J Cell Biol. 1998, 143:1375-1383.
    22. Weng LP, Smith WM, Brown JL, Eng C. PTEN inhibits insulin-stimulated MEK/MAPK activation and cell growth by blocking IRS-1 phosphorylation and
    
    
    IRS-1/Grb-2/Sos complex formation in a breast cancer model. Hum Mol Genet. 2001, 10:605-616.
    23. Tamura M, Gu J, Takino T, Yamada KM. Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: differential involvement of focal adhesion kinase and p130Cas. Cancer Res. 1999, 59:442-449.
    24 Gu J, Tamura M, Pankov R, Danen EH, Takino T, Matsumoto K, Yamada KM. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol. 1999, 146:389-403.
    25. Georgescu MM, Kirsch KH, Kaloudis P, Yang H, Pavletich NP, Hanafusa H. Stabilization and productive positioning roles of the C2 domain of PTEN tumor suppressor. Cancer Res. 2000, 60:7033-7038
    26 Leslie NR, Gray A, Pass I, Orchiston EA, Downes CP. Analysis of the cellular functions of PTEN using catalytic domain and Cterminal mutations, differential effects of C-terminal deletion on signaling pathways downstream of phosphoinositide 3-kinase. Biochem J. 2000, 346, 827-833
    27. Torres J, Pulido R. The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem. 2001, 276,993-998
    28. Stambolic V, MacPherson D, Sas D. Regulation of PTEN transcription by p53. Mol Cell. 2001, 8:317-325.
    29. Virolle T, Adamson ED, Baron V, Birle D, Mercola D, Mustelin T, de Belle I. The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol. 2001, 3:1124-1128.
    30. Kang YH, Lee HS, Kim WH. Promoter methylation and silencing of PTEN in gastric carcinoma. Lab Invest. 2002, 82:285-291.
    31. Salvesen HB, MacDonald N, Ryan A, Jacobs IJ, Lynch ED, Akslen LA, Das S. PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int J Cancer. 2001, 91:22-26
    32. Myers MP, Stolarov JP, Eng C, Li J, Wang SI, Wigler MH, Parsons R, Tonks NK. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci U S A. 1997, 94:9052-9057
    33. Yamada KM, Araki M. Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci. 2001, 114:2375-2382
    34. Haier J, Nicolson GL. PTEN regulates tumor cell adhesion of colon carcinoma cells under dynamic conditions of fluid flow. Oncogene. 2002, 21:1450-1460.
    
    35. Jones RJ, Brunton VG, Frame MC. Adhesion-linked kinases in cancer; emphasis on src, focal adhesion kinase and PI 3-kinase. Eur. J Cancer. 2000,36:1595-1606.
    36. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP. Pten is essential for embryonic development and tumour suppression. Nat Genet. 1998, 19:348-355.
    37. Suzuki A, de la Pompa JL, Stambolic V, Elia AJ, Sasaki T, del Barco Barrantes I, Ho A, Wakeham A, Itie A, Khoo W, Fukumoto M, Mak TW. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol. 1998, 8:1169-1178.
    38. Bose S, Crane A, Hibshoosh H, Mansukhani M, Sandweis L, Parsons R. Reduced expression of PTEN correlates with breast cancer progression. Hum Pathol. 2002, 33:405-409.
    39. Yuan ZQ, Sun M, Feldman RI, Wang G, Ma X, Jiang C, Coppola D, Nicosia SV, Cheng JQ. Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene. 2000, 19:2324-2330.
    40. Poetsch M, Lorenz G, Bankau A, Kleist B. Basaloid in contrast to nonbasaloid head and neck squamous cell carcinomas display aberrations especially in cell cycle control genes. Head Neck. 2003, 25:904-910.
    41. Wu H, Goel V, Haluska FG. PTEN signaling pathways in melanoma. Oncogene. 2003, 22:3113-3122.
    42. Hanby AM, Kelsell DP, Potts HW, Gillett CE, Bishop DT, Spurr NK, Barnes DM. Association between loss of heterozygosity of BRCA1 and BRCA2 and morphological attributes of sporadic breast cancer. Int. J Cancer. 2000, 88:204-208.
    43. Yokomizo A, Tindall DJ, Drabkin H, Gemmill R, Franklin W, Yang P, Sugio K, Smith DI, Liu W. PTEN/MMAC1 mutations identified in small cell, but not in non-small cell lung cancers. Oncogene. 1998, 17:475-479.
    44. Hu TH, Huang CC, Lin PR, Chang HW, Ger LP, Lin YW, Changchien CS, Lee CM, Tai MH. Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer. 2003, 97:1929-1940
    45. Dong-Dong L, Xi-Ran Z, Xiang-Rong C. Expression and significance of new tumor suppressor gene PTEN in primary liver cancer. J Cell Mol. Med. 2003, 7:67-71.
    46. Wan XW, Jiang M, Cao HF, He YQ, Liu SQ, Qiu XH, Wu MC, Wang HY. The alteration of PTEN tumor suppressor expression and its association with the histopathological features of human primary hepatocellular carcinoma. J Cancer Res. Clin. Oncol. 2003, 129:100-106.
    
    47. Yeh KT, Chang JG, Chen YJ, Chen ST, Yu SY, Shih MC, Perng LI, Wang JC, Tsai M, Chang CP. Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in hepatocellular carcinoma. Cancer Invest. 2000, 18:123-129.
    48. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. (3rd ed) Cold Spring Harbor Laboratory Press. New York, 2001.
    49. Wu RC, Blumenthal M, Li X, Schonthal, AH. Loss of cellular adhesion to matrix induces p53-independent expression of PTEN tumor suppressor. BMC Mol Biol. 2002, 3:11.
    50. Fujii GH, Morimoto AM, Berson AE, Bolen JB. Transcriptional analysis of the PTEN/MMAC1 pseudogene, psiPTEN. Oncogene. 1999,18:1765-1769.
    51. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science. 1998, 280:1614-1617.
    52. Han B, Dong Z, Liu Y, Chen Q, Hashimoto K, Zhang JT. Regulation of constitutive expression of mouse PTEN by the 5'-untranslated region. Oncogene. 2003, 22:5325-5337.
    53. Quandt K, Frech K, Karas H, Wingender E and Werner T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 1995, 23:4878-4884.
    54. Ghozi MC, Bernstein Y, Negreanu V, Levanon D, Groner Y. Expression of the human acute myeloid leukemia gene AML1 is regulated by two promoter regions. Proc Natl Acad Sci U S A. 1996, 93:1935-1940.
    55. Huez I, Creancier L, Audigier S, Gensac MC, Prats AC, Prats H. Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol. 1998, 18:6178-6190.
    56. Willis AE. Translational control of growth factor and proto-oncogene expression. Int. J Biochem Cell Biol. 1999, 31:73-86.
    57. Moustakas A, Kardassis D. Regulation of the human p21/WAF1/Cip1 promoter in hepatic cells by functional interactions between Sp1 and Smad family members. Proc Natl Acad Sci U S A. 1998, 95: 6733-6738
    58. Noe V, Alemany C, Chasin LA, Ciudad CJ. Retinoblastoma protein associates with SP1 and activates the hamster dihydrofolate reductase promoter. Oncogene 1998, 16: 1931-1938
    59. Opitz OG, Rustgi AK. Interaction between Sp1 and cell cycle regulatory proteins is important in transactivation of a differentiation-related gene. Cancer Res. 2000, 60:
    
    
    2825-2830.
    60. Kim SJ, Onwuta US, Lee YI, Li R, Botchan MR, Robbins PD. The retinoblastoma gene product regulates Sp1-mediated transcription. Mol. Cell Biol. 1992, 12: 2455-2463
    61. Bossone SA, Asselin C, Patel AJ and Marcu KB: MAZ, a zinc finger protein, binds to c-MYC and C2 gene sequences regulating transcriptional initiation and termination. Proc Natl Acad Sci USA. 1992, 89: 7452-7456
    62. Song J, Murakami H, Tsutsui H, Tang X, Matsumura M, Itakura K, Kanazawa I, Sun K and Yokoyama KK: Genomic organization and expression of a human gene for Myc-associated zinc finger protein (MAZ). J Biol Chem. 1998, 273: 20603-20614
    63. Komatsu M, Li HO, Tsutsui H, Itakura K, Matsumura M and Yokoyama KK: MAZ, a Myc-associated zinc finger protein, is essential for the ME1a1-mediated expression of the c-myc gene during neuroectodermal differentiation of P19 cells. Oncogene. 1997, 15: 1123-1131
    64. Izzo MW, Strachan GD, Stubbs MC and Hall DJ. Transcriptional repression from the c-myc P2 promoter by the zinc finger protein ZF87/MAZ. J Biol Chem. 1999, 274: 19498-19506
    65. Pyrc JJ, Moberg KH and Hall DJ. Isolation of a novel Cdna encoding a zinc-finger protein that binds to two sites within the c-myc promoter. Biochemistry. 1992, 31: 4102-4110
    66. Kennedy GC and Rutter WJ. Pur-1, a zinc-finger protein that binds to purine-rich sequences, transactivates an insulin promoter in heterologous cells. Proc Natl Acad Sci USA. 1992, 89: 11498-11502
    67. Duncan DD, Stupakoff A, Hedrick SM, Marcu KB and Siu G: A Myc-associated zinc finger protein-binding site is one of four important functional regions in the CD4 promoter. Mol Cell Biol. 1995, 15: 3179-3186
    68. Parks CL and Shenk T. The serotonin 1a receptor gene contains a TATA-less promoter that esponds to MAZ and Sp1. J Biol Chem. 1996, 271: 4417-4430
    69. Karantzoulis-Fegaras F, Antoniou H, Lai SL, Kulkarni G, D'Abreo C, Wong GK, Miller TL, Chan Y, Atkins J, Wang Y and Marsden PA: Characterization of the human endothelial nitric-oxide synthase promoter. J Biol Chem. 1999, 274: 3076-3093
    70. Wadman IA, Osada H, Grutz GG, Agulnick AD, Westphal H, Forster A, Rabbitts TH. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI
    
    
    proteins. EMBO J. 1997, 16:3145-3157.
    71. Abdelrahim M, Samudio I, Smith R 3rd, Burghardt R, Safe S. Small inhibitory RNA duplexes for Sp1 mRNA block basal and estrogen-induced gene expression and cell cycle progression in MCF-7 breast cancer cells. J Biol Chem. 2002, 277:28815-28822.
    72. Kadonaga JT, Carner KR, Masiarz FR, Tjian R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell. 1987, 51: 1079-1090.
    73. Giglioni B, Comi P, Ronchi A, Mantovani R 1240: Ottolenghi S. The same nuclear proteins bind the proximal CACCC box of the human beta-globin promoter and a similar sequence in the enhancer. Biochem Biophys Res Commun.1989, 164: 149-155.
    74 Imataka H, Sogawa K, Yasumoto K, Kikuchi Y, Sasano K, Kobayashi A, Hayami M, Fujii-Kuriyama Y. Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P-4501A1 gene. EMBO J. 1992, 11: 3663-3671.
    75. Pugh BF, Tjian R. Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev. 1991, 5: 1935-1945.
    76. Zenzie-Gregory B, Khachi A, Garraway IP, Smale ST. Mechanism of initiator-mediated transcription: evidence for a functional interaction between the TATA-binding protein and DNA in the absence of a specific recognition sequence. Mol Cell Biol. 1993, 13: 3841-3849.
    77. Blake MC, Jambou RC, Swick AG, Kahn JW, Azizkhan JC. Transcriptional initiation is controlled by upstream GC-box interactions in a TATAA-less promoter. Mol Cell Biol. 1990, 10: 6632-6641.
    78. Jolliff K, Li Y, Johnson LF. Multiple protein-DNA interactions in the TATAA-less mouse thymidylate synthase promoter. Nucleic Acids Res. 1991, 19: 2267-2274.
    79. Kollmar R, Sukow KA, Sponagle SK, Farnham PJ. Start site selection at the TATA-less carbamoyl-phosphate synthase (glutamine-hydrolyzing)/aspartate carbamoyltransferase/dihydroorotase promoter. J Biol Chem. 1994, 269: 2252-2257.
    80. Black AR, Azizkhan JC. Transcriptional regulation of growth-related genes by E2F and Sp1. The Pezcoller Foundation Journal. 1996, 3: 4-16.
    81. Jackson SP, MacDonald JJ, Lees-Miller S, Tjian R. GC box binding induces phosphorylation of Sp1 by a DNA-dependent protein kinase. Cell. 1990, 63: 155-165.
    82. Kingsley C, Winoto A. Cloning of GT box-binding proteins: a novel Sp1 multigene
    
    
    family regulating T-cell receptor gene expression. Mol Cell Biol. 1992, 12: 4251-4261.
    83. Philipsen S, Suske G. A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res. 1999, 27: 2991-3000.
    84. Black AR, Jensen D, Lin SY, Azizkhan JC. Growth/cell cycle regulation of Sp1 phosphorylation. J Biol Chem. 1999, 274: 1207-1215.
    85. Eastman HB, Swick AG, Schmitt MC, Azizkhan JC. Stimulation of dihydrofolate reductase promoter activity by antimetabolic drugs. Proc Natl Acad Sci USA. 1991, 88: 8572-8576.
    86. Fandos C, Sanchez-Feutrie M, Santalucia T, Vinals F, Cadefau J, Guma A, Cusso R, Kaliman P, Canicio J, Palacin M, Zorzano A. GLUT1 glucose transporter gene transcription is repressed by Sp3. Evidence for a regulatory role of Sp3 during myogenesis. J Mol Biol. 1999, 294: 103-119.
    87. Kutoh E, Margot JB, Schwander J. Identification and characterization of the putative retinoblastoma control element of the rat insulin-like growth factor binding protein-2 gene. Cancer Lett. 1999, 136: 187-194.
    88. Milanini J, Vinals F, Pouyssegur J, Pages G. p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts. J Biol Chem. 1998, 273: 18165-18172.
    89. Sorensen P, Wintersberger E. Sp1 and NF-Y are necessary and sufficient for growth-dependent regulation of the hamster thymidine kinase promoter. J Biol Chem. 1999, 274: 30943-30949.
    90. Spencer JA, Misra RP. Expression of the SRF gene occurs through a Ras/Sp/SRF-mediated- mechanism in response to serum growth signals. Oncogene. 1999, 18: 7319-7327.
    91. McClure RF, Heppelmann CJ, Paya CV. Constitutive Fas ligand gene transcription in Sertoli cells is regulated by Sp1. J Biol Chem. 1999, 274: 7756-7762.
    92. Rebollo A, Dumoutier L, Renauld JC, Zaballos A, Ayllon V, Martinez AC. Bcl-3 expression promotes cell survival following interleukin-4 deprivation and is controlled by AP1 and AP1-like transcription factors. Mol Cell Biol. 2000, 20: 3407-3416.
    93. Igata E, Inoue T, Ohtani-Fujita N, Sowa Y, Tsujimoto Y, Sakai T. Molecular cloning and functional analysis of the murine bax gene promoter. Gene. 1999, 238: 407-415.
    94. Ulrich E, Kauffmann-Zeh A, Hueber AO, Williamson J, Chittenden T, Ma A, Evan G. Gene structure, cDNA sequence, and expression of murine Bak, a proapoptotic Bcl-2
    
    
    family member. Genomics. 1997, 44: 195-200.
    95. Grillot DA, Gonzalez-Garcia M, Ekhterae D, Duan L, Inohara N, Ohta S, Seldin MF, Nunez G. Genomic organization, promoter region analysis, and chromosome localization of the mouse bcl-x gene. J Immunol. 1997, 158: 4750-4757.
    96. Li F, Altieri DC. The cancer antiapoptosis mouse survivin gene: characterization of locus and transcriptional requirements of basal and cell cycle-dependent expression. Cancer Res. 1999, 59: 3143-3151.
    97. Leitman DC, Mackow ER, Williams T, Baxter JD, West BL. The core promoter region of the tumor necrosis factor alpha gene confers phorbol ester responsiveness to upstream transcriptional activators. Mol Cell Biol. 1992, 12: 1352-1356.
    98. Wang Q, Ji Y, Wang X, Evers BM. Isolation and molecular characterization of the 5-upstream region of the human TRAIL gene. Biochem. Biophys. Res. Commun. 2000, 276: 466-471.
    99. Udvadia AJ, Templeton DJ, Horowitz JM. Functional interactions between the retinoblastoma (Rb) protein and Sp-family members: superactivation by Rb requires amino acids necessary for growth suppression. Proc Natl Acad Sci USA. 1995, 92:3953-3857.
    100. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997, 88:323-331.
    101. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature. 1997, 389:300-305.
    102. Tsugawa K, Jones MK, Sugimachi K, Sarfeh IJ, Tarnawski AS. Biological role of phosphatase PTEN in cancer and tissue injury healing. Front Biosci. 2002, 7: 245-251.
    103. Besson A, Robbins SM, Yong VW. PTEN/MMAC1/TEP1 in signal transduction and tumorigenesis. Eur J Biochem. 1999, 263:605-611.
    104. 辛华主编。细胞生物学实验。科学出版社, 2000
    105. Mertens F, Johansson B, Hoglund M, Mitelman F. Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of neoplasms. Cancer Res. 1997, 57:2765-2780.
    106. Risinger JI, Hayes K, Maxwell GL, Carney ME, Dodge RK, Barrett JC, Berchuck A. PTEN mutation in endometrial cancers is associated with favorable clinical and pathologic characteristics. Clin Cancer Res. 1998, 4:3005-3010.
    107. Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB, Gaffney PR, Reese CB, McCormick F, Tempst P, Coadwell J, Hawkins PT. Protein
    
    
    kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science. 1998, 279:710-714.
    108. Downward J. Lipid-regulated kinases: some common themes at last. Science. 1998, 279:673-674.
    109. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997, 91:231-241.
    110. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science. 1997, 278:687-689.
    111. Coffer PJ, Jin J, Woodgett JR. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J. 1998, 335:1-13.
    112. Dickson LM, Lingohr MK, McCuaig J, Hugl SR, Snow L, Kahn BB, Myers MG Jr, Rhodes CJ. Differential activation of protein kinase B and p70(S6)K by glucose and insulin-like growth factor 1 in pancreatic beta-cells (INS-1). J Biol Chem. 2001, 276:21110-21120
    113. van Weeren PC, de Bruyn KM, de Vries-Smits AM, van Lint J, Burgering BM. Essential role for protein kinase B (PKB) in insulin-induced glycogen synthase kinase 3 inactivation. Characterization of dominant-negative mutant of PKB. J Biol Chem. 1998, 273:13150-13156.
    114. Davies MA, Koul D, Dhesi H, Berman R, McDonnell TJ, McConkey D, Yung WK, Steck PA. Regulation of Akt/PKB activity, cellular growth, and apoptosis in prostate carcinoma cells by MMAC/PTEN. Cancer Res. 1999, 59:2551-2256.
    115. Furnari FB, Huang HJ, Cavenee WK. The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells. Cancer Res. 1998, 58:5002-5008.
    116. Paramio JM, Navarro M, Segrelles C, Gomez-Casero E, Jorcano JL. PTEN tumour suppressor is linked to the cell cycle control through the retinoblastoma protein. Oncogene. 1999, 18:7462-7468.
    117. Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM, Sellers WR. Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci U S A. 1999, 96:2110-2115.
    118. Li J, Simpson L, Takahashi M, Miliaresis C, Myers MP, Tonks N, Parsons R. The PTEN/MMAC1 tumor suppressor induces cell death that is rescued by the AKT/protein kinase B oncogene. Cancer Res. 1998, 58:5667-5672.
    
    119. Cheney IW, Neuteboom ST, Vaillancourt MT, Ramachandra M, Bookstein R. Adenovirus-mediated gene transfer of MMAC1/PTEN to glioblastoma cells inhibits S phase entry by the recruitment of p27Kip1 into cyclin E/CDK2 complexes. Cancer Res. 1999, 59:2318-23.
    120. Mamillapalli R, Gavrilova N, Mihaylova VT, Tsvetkov LM, Wu H, Zhang H, Sun H. PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(SKP2). Curr Biol. 2001, 11:263-267.
    121. Gottschalk AR, Basila D, Wong M, Dean NM, Brandts CH, Stokoe D, Haas-Kogan DA. p27Kip1 is required for PTEN-induced G1 growth arrest. Cancer Res. 2001, 61:2105-2111.
    122. Strobeck MW, Fribourg AF, Puga A, Knudsen ES. Restoration of retinoblastoma mediated signaling to Cdk2 results in cell cycle arrest. Oncogene. 2000, 19:1857-1867.
    123. Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J, Gavrilova N, Mueller B, Liu X, Wu H. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol-3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci U S A. 1999, 96:6199-6204.
    124. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998, 95:29-39.
    125. Frisch SM, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol. 1997, 9:701-706.
    126. Tamura M, Gu J, Danen EH, Takino T, Miyamoto S, Yamada KM. PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem. 1999, 274:20693-20703.
    127. Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L, Liu ET, Cance WG. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res. 1995, 55:2752-2755.
    128. Liliental J, Moon SY, Lesche R, Mamillapalli R, Li D, Zheng Y, Sun H, Wu H. Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Curr Biol. 2000, 10:401-404.
    129. Leopoldt D, Yee HF Jr, Saab S, Rozengurt E. Tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin does not require extracellular signal-regulated
    
    
    kinase activation in Swiss 3T3 cells stimulated by bombesin or platelet-derived growth factor. J Cell Physiol. 2000, 183:208-220.
    130. Schlaepfer DD, Broome MA, Hunter T. Fibronectin-stimulated signaling from a focal adhesion kinase-c-Src complex: involvement of the Grb2, p130cas, and Nck adaptor proteins. Mol Cell Biol. 1997, 17:1702-1713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700