变频驱动异步电动机最小损耗快速响应控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变频调速技术以其优良的调速性能、显著的节电效果和广泛的适用性已成为现代工业节能降耗、改善控制性能的一种重要手段。但是,无论采用普通压频比控制,还是高性能的矢量控制策略,当电机远离额定工作点运行时,特别是在轻载、低速工况下,其效率远不是最优的。近年来,随着国际能源形势日趋紧张以及人们对机电设备高性能化的要求不断提高,应用广泛的变频驱动异步电动机的最小损耗控制问题引起了人们的强烈关注。特别是随着电动汽车研究热潮的兴起,电动汽车对其异步电机变频驱动系统提出了更加苛刻的要求,不但要求损耗最小,而且要求响应速度快。实际上,同时满足这两方面的要求是相当困难的,迄今为止,还没有满意的解决方案,无论在理论上还是在实践上都存在不少值得探究的问题,特别是快速响应控制问题,目前国内几乎尚未开展这方面的研究。
     对于诸如电动汽车这类对节能和动态控制性能都有较高要求的应用场合,实现其异步电机驱动系统的最优控制有三个关键问题:一是如何获取最优转子磁链,实现最小损耗控制;二是设计快速动态响应控制策略,避免因弱磁优化控制而引起的系统动态性能下降;三是设计高性能闭环控制策略,使系统在参数时变、磁链变化大和存在负载扰动等情况下仍具有优良的调速性能。本文以电动汽车电驱动系统为研究背景,综合运用最优化理论和电机控制理论深入研究了其最小损耗控制策略和快速响应控制策略,并应用自抗扰控制理论设计了高性能闭环控制器,通过大量的仿真和实验研究验证了这些新方法的有效性,得到了一些富有创新性的研究成果,为电动汽车电驱动系统效率最优控制提供了有效的解决方案。
     本文首先讨论了变频调速及其控制技术、电动汽车电驱动系统及变频驱动异步电动机最小损耗控制的发展历史与研究现状,深入分析了近年来涌现出来的最小损耗控制策略,包括损耗模型控制、在线搜索控制和最小定子电流控制等策略的特点及其存在的不足,并指出了该领域目前的研究热点。
     深入分析异步电动机损耗特性和考虑铁损的异步电机数学模型,建立了矢量控制变频驱动异步电机的损耗模型,导出了基于模型的最小损耗控制策略,揭示了最优磁链的变化规律。进而设计了基于TMS320LF2407A DSP和最小损耗控制策略的异步电机变频调速实验系统,完成了大量的实验研究,实验结果表明:在电机稳态运行时,应用最小损耗控制策略能获得满意的节能效果和控制性能,特别是在轻载高速情况下的节能效果更优于重载低速的情况。为了解决最小损耗控制精度受异步
Variable Frequency Variable Speed (VFVS) technology has becoming the primary method to save energy and improve operation performance with its excellent variable speed behavior, remarkable energy-conservation and wide applicability. However, when operation points deflect from rated point, the efficiency of the motors will not be optimal whether by V/F control or vector control, especially in the case of light load and low speed. In recent years, along with tenser international energy situation and increasing requirement of high operation performance, the loss minimization control of IM attracts more and more attention. Now, the research of electric vehicles is no doubt a hotspot, whose drive-train system strictly demands both the least losses and fast response. In fact, to meet both demands is so hard that there has not been any satisfied solution yet. Some existed problems, especially fast response problem, are still to be discussed.As to the cases such as electric vehicles, which have a high demand not only for energy- conservation but also for good control performance, there are three vital problems to solve to realize the optimal control of their drive-train systems. First is how to obtain optimal rotor flux linkage for loss minimization control; Second is to design fast response control strategy to avoid the descending of dynamic performance caused by the flux linkage optimal control; Third is to design high performance closed loop control strategy to make the system keep excellent variable-speed behavior under the situations of time-varied parameters, variable flux linkage and variable load, etc. Under the background of electric vehicles, this paper studies on the loss minimization control strategy and fast response control strategy in detail, and designs a high performance closed-loop controller by the aid of the self-disturbance rejection theory. Simulations and experiments results prove the validity of these new methods, whilst fruitful innovative results are obtained, which provide effective solutions for the efficiency optimal control of the electric vehicles' drive-train systems.In this paper, the development and research situation of the VFVS and its control technology are discussed at first, so are the drive-train system in electric vehicles and the motor's loss minimization control. After that, the loss minimization control strategies have been analyzed in detail, which spring out recently. The research hotspots in this field are pointed out.On the basis of detailed analysis of the asynchronous motor's loss behavior and its mathematical model including the iron losses, a kind of loss model control strategy is deduced and the variety law of the optimal flux linkage is illustrated. And then, an experimental system is designed based on the TMS320LF2407A DSP and the strategy above, and a large number of corresponding experiments are completed. The experimental results show that, the proposed strategy can well satisfy our demand under stable state and speed changing. To be noted, the energy conservation effect in the light-load, high-speed situation is superior to that in the heavy-load, low-speed situation. To solve the problem that the control precision of the strategy above is influenced by the parameters of asynchronous motor, the gradual memory erase RLS algorithm is introduced into the parameter estimation of asynchronous motor's loss model, followed by the loss minimization control strategy considering the motor parameter's time-variant,
    which improves the system's precision and robustness.Based on gradient algorithm and golden section method, the search controllers are designed to optimize the efficiency of the asynchronous motor to avoid the parameter change's influence to loss minimization control. The simulation results indicate that the convergence speed of golden section method is obviously superior to that of the gradient algorithm; however in the former search process, the fluctuation of flux linkage is not reduced. So the improved golden section algorithm is proposed, the validity of which is verified through theoretical analysis and experiments. Combined the advantages both of loss model controller and the search controller, a novel hybrid loss minimization control strategy is presented. The steps are as follows: first, get the approximate optimal flux linkage according to the loss model; second, find operation point with the minimal input power by on-line search. Simulation and experiment verify that, this hybrid strategy, which has rapid convergence speed and robustness, is a promising method to efficiency optimization of asynchronous motor.In the traditional loss minimization control system, the improvement of the efficiency is at the cost of deterioration of the dynamic response. Aimed at the problem above, a fast response control strategy is studied based on the current dynamic assignment. The experiment results indicate that this method will decrease the dynamic speed dropping and reduce dynamic adjustment time. Inspired by the ideas of voltage space vector and direct torque control, a new strategy which directly composes the voltage vector is proposed, which realizes the high behavior control in the dynamic process of load variety. Different from both the direct torque control and the classical vector control, this scheme combines vector control's good stable performance and direct torque control's fast dynamical response, whilst it does not increase any hardware in control system. Simulation results show that, this scheme, which has excellent dynamic performance, notably reduces the speed-fall of loss minimization control system when load changes. It is indeed an efficient solution to the contradiction between the loss minimization and fast response control.The asynchronous motor is a complicated, nonlinear, multi-variable, parameter time-variant controlled object. Especially in the drive-train system with loss minimization control strategy to adopt, the change of flux linkage will inevitably bring perturbations into the system and make it unstable. Therefore, a closed loop controller with high performance and its parameter-adjustable scheme are designed by means of nonlinear self-disturbance rejection control theory. Experiment results illustrate that, compared to the classical PI controllers, the proposed controller has faster speed-tracking performance and better anti-disturbance performance, and provides good references for closed loop strategy selection in loss minimization control system.
引文
[1] 赵跃进,秦和.中国电动机能效标准制定[J].中小型电机,2002,29(2):58-62.
    [2] 王占奎.交流电机变频调速的应用[J].电工技术杂志,2004,(3):35-38.
    [3] Jie Zhang. High performance control of a three-level IGBT inverter fed AC drive[C]. IEEE Thirtieth IAS Annual Meeting, 1995, 30(1): 22-28.
    [4] 江明,王伟.变频调速技术的发展概况及趋势[J].安徽机电学院学报,2002, 17(4): 73-77.
    [5] Bose B K. Power electronics and motor drives-recent technology advances[C]. Proceedings of the 2002 IEEE International Symposium, (1): 22-25.
    [6] Dreinhoefer L H, Magee F D. AC drives in the metals industry[C]. IEEE 37th IAS Annual Meeting, 2002, 37(1): 1234-1239.
    [7] 谭弗娃,金如麟.展望变频调速及其控制技术的前景[J].电器工业,2003,(1):6-7.
    [8] 陈国呈.变频器的发展动向与变频器在应用中应注意的一些问题[J].上海大学学报,1995,1(5):542-549.
    [9] 李永东,李敏.大容量交流电动机调速技术现状及展望[J].电气时代,2001,(10):2-5.
    [10] 李永东,倚鹏.大功率高性能逆变器技术发展综述[J].电气传动,2000,20(6):3-8.
    [11] 吴加林.我国首台直接高压大功率变频器问世[J].能源技术,2003,(3):176.
    [12] Lorenz L. State of the art and future key power semiconductor device concepts for innovative system[C]. The 4th IPEMC, China, Xi'an, 2003, 4(1): 29-35.
    [13] 陈治明.碳化硅电力电子器件研发新进展[C].中国电工技术学会电力电子学会第九届学术年会论文集,2004,9(10):1-6.
    [14] 张承慧,程金,夏东伟,崔纳新.变频调速技术的发展及其在电力系统中的应用[J].热能动力工程,2003,18(5):439-444.
    [15] 孙涓涓,李永东.异步电机定子电压定向矢量控制系统的改进[J].电工技术学报,2002,17(2):29-33.
    [16] Kanokvate, Tungpimolmt, Fang-Zhang Peng, Tadashi Fukao. Robust vector control of induction motor using stator and rotor circuit time constants[J]. IEEE Trans. on Indus. Appli., 1994, 30(5): 1241-1246.
    [17] Hasegawa M, Furutani S, Doki S, Okuma S. Robust Vector Control of Induction Motors Using Full-Order Observer in Consideration of Core Loss[J]. IEEE Transactions on Industrial Electronics, 2003, 50(5): 912-919.
    [18] 赵争鸣,袁立强,孟朔,李崇坚.通用变频器矢量控制与直接转矩控制特性 比较[J].电工技术学报,2004,19(4):81-84.
    [19] 胡虎,李永东.交流电机直接转矩控制策略——现状与趋势fJ].电气传动,2004,34(3):3-8.
    [20] 孙笑辉,张曾科,韩曾晋.基于直接转矩控制的感应电动机转矩脉动最小化方法研究[J].中国电机工程学报,2002,22(8):109-112.
    [21] 谢运祥,蒋思梅,徐文宪.异步电机变频调速的高动态响应控制-直接转矩控制法[J].华南理工大学学报(自然科学版),1995,23(5):134-141.
    [22] 刘亚东,吴学智,黄立培.改善直接转矩控制性能的SVPWM方法[J].清华大学学报(自然科学版),2004,44(7):869-872.
    [23] 王文森,李永东,王光辉等.基于PI自适应法的无速度传感器异步电动机矢量控制系统[J].电工技术学报.2002,17(1):1-6.
    [24] 冯垛生.无速度传感器矢量控制原理与实践[M].北京:机械工业出版社,1998.
    [25] 曾岳南,陈伯时.异步电动机无速度传感器的矢量控制[J].电气传动自动化,2000,22(4):3-6.
    [26] Ortega R., Espinosa G.. Torque Regulation of Induction Motor[J]. Automatica, 1993, 29(3): 621-633.
    [27] Isidori A. Nonlinear Control System[M]. London: Springer-Verlag, 1995, 3rd Edition.
    [28] Raumer T V, Dion J M, Dugard L, Thomas J L. Applied nonlinear control of an induction motor using digital signal processing[J]. IEEE Transactions on Control System Technology, 1994, 2(4): 327-335.
    [29] 陈伯时,徐荫定.电流滞环逆变器异步电动机的非线性解耦控制系统[J].自动化学报,1994,20(1):50-56.
    [30] 陈冲,齐虹.非线性状态反馈解耦控制的交流数字调速系统[J].电工技术学报,1999,14(1):12-16.
    [31] 刘国海,戴先中.感应电动机调速系统的解耦控制[J].电工技术学报,2001,16(5):30-34.
    [32] Taylor D G.. Nonlinear Control of Electric Machines: An overview. [J]. IEEE Control System, 1994, 14(6): 41-51.
    [33] Tan H. Field orientation and adaptive backstepping for induction motor control[C]. IEEE Industry Applications Conference, 1999, 34(4): 2357-2363.
    [34] 韩京清.从PID技术到“自抗扰控制”技术[J].控制工程,2002,9(3):13-18.
    [35] 韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):19-23.
    [36] 焦连伟,陈寿孙,王晓丰.电力系统自抗扰控制器[J].清华大学学报,1999,39(3):27-29.
    [37] 高龙,韩俊生,李崇坚等.非线性鲁棒自抗扰控制器在电力系统中的应用[J].清华大学学报,2000,40(3):27-29.
    [38] 冯光,黄立培,朱东起.采用自抗扰控制器的高性能异步电机调速系统[J].中国电机工程学报,2001,21(10):55-58.
    [39] 夏长亮,李正军,杨荣等.基于自抗扰控制器的无刷直流电机控制系统[J].中国电机工程学报,2005,25(2):82-86.
    [40] 吴守箴,臧英杰.电气传动的脉宽调制控制技术[M].北京:机械工业出版社,1997.
    [41] 李永东.脉宽调制(PWM)技术-回顾、现状及展望[J].电气传动,1996,26(3):2-11
    [42] Lowery T F, Petro D W. Application considerations for PWM inverter-fed low-voltage induction motor[J]. IEEE Trans. Ind. Applicat., 1994, 30(2):286-293.
    [43] 张岳匀,谢运祥,何志伟.交流传动系统PWM技术的近期发展及展望[J].微电机,1999,32(1):28-39.
    [44] 赵相宾,年培新.谈我国变频调速技术的发展及应用[J].电气传动,2000,30(1):3-6.
    [45] 王太成.变频调速技术的现状和发展[J].山西建筑,2003,29(6):160-161.
    [46] 庄朝晖,熊有伦,马挺.多相感应电机变频调速系统——回顾、现状及展望[J].电气传动,2001,31(2):3-7.
    [47] 万钢.中国电动汽车的现状和发展[J].中国环保产业,2003,(2):30-32.
    [48] 阮毅,陈伯时.电力传动系统的转矩控制规律[J].电气传动,1999,29(5):3-5.
    [49] 毛宗源,苏开才.电力电子技术在电动汽车中的应用[J].电力电子技术,1996,11(4):100-104.
    [50] 马宪民.电动汽车的电气驱动系统[J].西安公路交通大学学报,2001,21(3):86-86.
    [51] Bose B K, Patel N R, Rajashekara K. A neuro-fuzzy-based on-Line efficiency optimization control of a stator flux-oriented direct vector-controlled induction motor drive[J]. IEEE Trans. on Ind. Electron, 1997, 44(2): 270-273.
    [52] Stefanski T, Karys S. Loss minimisation control of induction motor drive for electrical vehicle[C]. Proceedings of the IEEE International Symposium on ISIE, 1996, (2): 952-957.
    [53] 牛晨,陈易,郭鹏义等.电动汽车的电效率优化问题[C].中国电工技术学会电力电子学会第八届学术年会论文集,深圳:2001,849-857.
    [54] Chis M, Jayaram S, Rajashekara K. Neural network-based efficiency optimization of EV drive[C]. IEEE Conference on Electrical and Computer Engineering, 1997,(2): 454-461.
    [55] 孙立志,赵辉,陆永平.电动汽车中的电机驱动系统[J].电工电能新技术.1997,(4):14-19.
    [56] 徐强,张维刚.电动车用辅助逆变器的设计与实现[J].电气传动,2003,33(2):41-44.
    [57] 刘勇,苏开才,何鸿肃.电动汽车用的斩波-逆变控制器[J].广东机械学院学报,1997,15(2):53-57.
    [58] Trzynadlowski A M, Zhiqiang Wang, Nagashima J M, Stancu C, Zelechowski M H. Comparative investigation of PWM techniques for a new drive for electric vehicles[J]. IEEE Transactions on Industry Applications, 2003, 39(5): 1396-1403.
    [59] Schupbach R M, Balda J C. Comparing DC-DC converters for power management in hybrid electric vehicles[C]. Proceedings of the Electric Machines and Drives Conference, 2003, (3): 1369-1374.
    [60] Miller J M. Power electronics in hybrid electric vehicle applications[C]. IEEE 18th Annual Meeting on APEC, 2003, 18(1): 23-29.
    [61] Shinnaka S, Takeuchi S, Kitajima A, Equchi F, Haruki H. Frequency-hybrid vector control for sensorless induction motor and its application to electric vehicle drive[C]. IEEE 16th Annual Meeting on APEC, 2001, 16(1): 32-39.
    [62] Fu Z X, Xiang J, Reynolds W C, Nefcy B. Vector control of an IPM synchronous machine capable of full range operations for hybrid electric vehicle application[C]. Proceedings of the Industry Applications Conference, 2003, (3): 1443-1450.
    [63] 汤东胜,吴光强,李超,郑松林.电动汽车交流驱动系统的矢量控制[J].山东交通学院学报,2002,10(2):21-25.
    [64] Soltis A, Xiang Chen. A new control strategy for hybrid electric vehicles[C]. Proceedings of the American Control Conference, 2003, (2): 1398-1403.
    [65] Saeks R, Cox C J, Neidhoefer J, Mays P R, Murray J J. Adaptive control of a hybrid electric vehicle[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(4): 213-234.
    [66] Maia C A, Resende P, Silvino J L. A neural vector control for induction machine[C]. Proceedings of the IEEE International Symposium on Industrial Electronics, 1997, (3): 1265-1269.
    [67] 张文志,吕恬生.基于改进的遗传算法和模糊逻辑控制的移动机器人导航 [J].机器人,2003,25(1):1-6.
    [68] Adams D J, Hsu J S, Young R W, Peng F Z. Power Electronics and Electric Machinery Challenges and Opportunities in Electric and Hybrid Vehicles[C]. Proceedings of the International Symposium on Automotive Technology and Automation, 1997, 16-19.
    [69] Adnanes A K, Nilsen R, Loken R, Norum L. Efficiency analysis of electric vehicles, with emphasis on efficiency optimized excitation[C]. IEEE Industry Applications Society Annual Meeting, 1993, (1): 455-462.
    [70] 范健文.电动汽车电气驱动系统[J].广西工学院学报,2003,14(2):51-55
    [71] 夏云.电动汽车动力驱动系统的研究现状和应用前景(2)[J].微电机,2003,36(4):47-50.
    [72] 范健文,马小强,吴彤峰.电动汽车电驱动系统控制技术[J].广西工学院学报,2003,14(3):25-28.
    [73] Canudas D W C, Seleme S I. Robust torque control design for induction motors[J]. The Minimum Energy Approach, 1997, 33(1): 66-79.
    [74] 冯信华,陶甫廷,肖成章.感应电动机轻载节能的分析与实验[J].广西工学院学报,1996,7(1):53-57.
    [75] Zhou Mingbao, Qu Wenlong. The optimal torque and efficiency control for the induction motor[C]. IEEE 20th PESC Annual Meeting, 1989, 20(2): 939-944.
    [76] 黎英,时维国.变频调速电机的运行效率及节能控制研究[J].电气传动自动化,1999,21(1):21-25.
    [77] Abrahamsen F, Blaaberg F, Pedersen J K, Thoegersen P B. Efficiency optimized control of medium-size induction motor drives[J]. IEEE Transactions on Industrial Application, 2001, 37(6): 1761-1767.
    [78] Sousa G C D, Simonetti D S L, Norena E E C. Efficiency optimization of a solar boat induction motor drive[C]. Proceedings of the Industry Applications Conference, 2000, (3): 1424-1430.
    [79] Cleland J G, McCormick V E, Turner M W. Design of an efficiency optimization controller for inverter-fed AC induction motors[J]. IEEE 30th IAS Annual Meeting, 1995, 30(1): 16-21.
    [80] Sousa G C D, Bose B K, Cleland J, Spiegel R J, Chappell P J. Loss modeling of converter induction machine system for variable speed drive[C]. Proceedings of the International Conference on Industrial Electronics Control Instrumentation and Automation, 1992, (1): 114-120.
    [81] Murato T, Tsuchiya T, Takeda I. A new synthesis method for efficiency optimized speed control system of vector-controlled induction machine[C]. Proceedings of the Power Electronics Specialists Conference, 1988, (2): 862-869.
    [82] Peresada S, Tilli A, Tonielli A. Indirect Field-Oriented control of induction motor:new design leads to improved performance and efficiency[C]. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, 1998, 24(3): 1609-1614.
    [83] Aware M V, Tarnekar S G, Kothari A G.. Unity power factor and efficiency control of a voltage source inverter-fed variable-speed induction motor drive[J]. IEEE Proceedings of the Electric Power Applications, 2000, 147(5): 422-430.
    [84] Cucej Z, Borojevic D. Input power minimization at inverter fed induction motor drive system with FOC by field weakening[C]. IEEE 28th Annual meeting on Power Electronics Specialists Conference, 1997, 28(2):1493-1498.
    [85] Bodson M, Chiasson J. A systematic approach to selecting optimal flux references in induction motors[C]. IEEE Industry Applications Society Annual Meeting, 1992, (1): 531-537.
    [86] 何光东,俞健,蒋静坪.利用斐波那契法实现交流电机的效率最优控制[J].控制与决策,1999,14(4):349-353.
    [87] Li Hui, Ozpineci B, Bose B K. A soft-switched high frequency non-resonant link integral pulse modulated DC-AC converter for AC motor drive[C]. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, 1998, 24(2): 736-742.
    [88] Kaga A, Anazawa Y, Akagami H, Watabe S, Makino M. A research of efficiency improvement by means of wedging with soft ferrite in small induction motors[J]. IEEE Transactions on Magnetics, 1982, 18(6): 1547-1549.
    [89] Dewei Xu, Dongqi Zhu, Wu B. High performance induction motor drive with optimized[C]. IEEE 36th IAS Annual Meeting, 2001, 36(3): 1673-1678.
    [90] Zinger D S, Profumo F, Lipo T A, Novotny D W. A direct field oriented controller for induction motor drives using tapped stator windings[J]. IEEE Transactions on Power Electronics, 1990, 5(4): 213-218.
    [91] Baba A, Mendes E, Razek A. Losses minimisation of a field-oriented controlled induction machine by flux optimisation accounting for magnetic saturation[C]. Proceedings of the Electric Machines and Drives Conference, 1997, 1-3.
    [92] Margaris N, Goutas T, Doulgeri Z, Paschali A. Loss minimization in DC drives[J]. IEEE Transactions on Industrial Electronics, 1991, 38(5): 328-336.
    [93] Leidhold R, Garcia G. Losses minimization in a variable speed field-oriented controlled induction generator[C]. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, 1998, 24(2): 865-870.
    [94] Mendes E, Baba A, RazekA . Losses minimization of afield oriented controlled induction machine [C]. Proceedings of the 7th International Conference on Electrical Machines and Drives ,1995,310-314.
    [95] Leidhold R, Garcia G, Valla MI. Field-oriented controlled induction generator with loss minimization [J]. IEEE Transactions on Industrial Electronics, 2002, 49(1): 147-156.
    [96] Lorenz R D, Yang S M. AC induction servo sizing for motion control application via loss minimizing real-time flux control[C]. IEEE Industry Applications Society Annual Meeting, 1989, (1): 612-616.
    [97] Mitsubishi Electric's Technical Reports . Energy-saving induction motors. 2000-06.
    [98] ABB bulletin. Energy efficient motors. 2002.
    [99] Abrahamsen F, Blaabjerg F, Pedersen J K. On the energy optimized control of standard and high-efficiency induction motors in CT and HVAC applications[J]. IEEE Trans, on Ind. Appl., 1998, 34(4): 822-831.
    [100] Lorenz R D, Yang S M. Efficiency-optimized flux trajectories for closed-cycle operation of field-orientation induction machine drives[J]. IEEE Trans. Ind. Applicat., 1992, 28(3): 574-580.
    [101] Garcia G O, Luis J C M, Stephan R M. An efficient controller for an adjustable speed induction motor drive[J]. IEEE Trans, on Ind.Electron, 1994, 41(1): 533-539.
    [102] Kioskeridis I, MargarisN. Loss minimization in induction motor adjustable speed drives[J]. IEEE Trans. Ind. Electron., 1996, 43(1): 226-231.
    [103] Kirschen D S, Novotny D W, Lipo T A. On-line efficiency optimization of a variable frequency induction motor drive[J]. IEEE Trans, on Ind. Applicat, 1985, 21(3): 610-615.
    [104] Sul S K, Park M H. A novel technique for optimal efficiency control of a current-source inverter-fed induction motor[J]. IEEE Trans, on Power Electron, 1988, 3(2): 192-199.
    [105] Famouri P, Cathey J J. Loss minimization control of an induction motor drive[J]. IEEE Trans.on Ind. Applicat, 1991, 27(1): 32-37.
    [106] Moreira J C, Lipo T A, Blasko V. Simple efficiency maximizer for an adjustable frequency induction motor drive[J]. IEEE Trans, on Ind. Applicat, 1991, 27(5): 940-946.
    [107] Sousa G C D, Bose B K, Cleland J D. Fuzzy logic based on-line efficiency optimization control of an indirect vector-controlled induction motor drive[J]. IEEE Trans, on Ind. Electron, 1995, 42(2): 192-198.
    [108] Ta C M, Hori Y. Convergence improvement of efficiency-optimization control of induction motor drives [J]. IEEE Trans, on Ind.Applicat, 2001, 37(6): 1746-1753.
    [109] Wang J B, Liaw C W. Indirect field-oriented induction motor drive with fuzzy detuning correction and efficiency optimization controls [J]. IEE Electri. Applicat, 1997, 144(1): 37-45.
    [110] Kioskeridis I, Margaris N. Loss minimization in scalar-controlled induction motor drives with search controllers[J]. IEEE Trans, on Power Electron, 1996, 11 (2): 213-220.
    [111] Wasynczuk O, Sudhoff S D, Hansen I G. A Maximum torque per ampere control stratery for induction motor drives[J]. IEEE Trans, on Power Conversion, 1998, 13(2): 163-169.
    [112] Rowan T M, Lipo T A. A quantitative analysis of induction motor performance improvement by SCR voltage control[J]. IEEE Trans, on Ind. Applicat., 1983, 19(3): 543-553.
    [113] Anderson H R, Pedersen J K. Low cost optimized control strategy for a variable speed three phase induction motor[C]. Conf. Rec. PESC' 96, 1996, (1): 920-924.
    [114]Choy I, Kwon S H, Choi J Y. On-line efficiency optimization control of a slip angular frequency controlled induction motor drive using neural networks[C]. IEEE IECON 22nd International Conference, 1996, (2): 1216-1221.
    [115] Kinnares V, Jaruwanchai P, Suksawat D, Pothivejkul S. Effect of motor parameter changes on harmonic power loss in PWM fed induction machines[C]. Proceedings of the IEEE International Conference on PEDS, 1999, (2): 1061-1066.
    [116] Hintze D, Schroder D. Induction motor drive with intelligent controller and parameter adaptation[C]. IEEE Industry Applications Society Annual Meeting, 1992, (1): 970-977.
    [117] Toliyat H A, Levi E, Raina M. A review of RFO induction motor parameter estimation techniques [J]. IEEE Transactions on Energy Conversion, 2003, 18(2): 271-283.
    [118] Noguchi T, Omura T, Hiraishi D. Direct field-oriented control of induction motor with iron-core loss compensation and robust parameter[C]. Proceedings of the 27th Annual Conference of the IEEE Industrial Electronics Society, 2001, 27(2):1201-1206.
    [119] Noguchi T, Hiraishi D. Core loss compensation of direct field-oriented induction motor incorporating robust parameter identification[C]. Proceedings of the 25th Annual Conference of the IEEE Industrial Electronics Society, 1999, 25(3): 1409-1414.
    [120] Noguchi T, Nakmahachalasint P, Watanakul N. Precise torque control of induction motor with on-line parameter identification in consideration of core loss[C]. Proceedings of the Power Conversion Conference, 1997, (1): 113-118.
    [121] 冬雷,李永东,王文森,李明才.矢量控制中感应电动机转子电阻的自适应辨识[J].电工技术学报,2002,17(4):13-17
    [122] Kirschen D S, Novotny D W, Lipo T A. Optimal efficiency control of an induction motor drive[C]. IEEE Trans. on Energy Conv, 1987, EC-2: 70-76.
    [123] Matsuse K, Katsuta. Fast rotor flux control of vector controlled induction motor operating at maximum efficiency for electric vehicles[C]. Proc. EVS-13, 1996: 67-71.
    [124] Matsuse K, Yoshizumi T, Katsuta S. High response flux control of direct-field-oriented induction motor with high efficiency taking core loss into account[J]. IEEE Trans. on Ind. Appl., 1999, 35(1): 62-69.
    [125] Matsuse K, Taniguchi S, Yoshizumi T. A speed-sensorless vector control of induction motor operating at high efficiency taking core loss into account[J]. IEEE Trans. on Ind. Appl., 2001, 37(3): 548-557.
    [126] Kim G K, Ha I J, Ko M S. Control of induction motors for both high dynamic performance and high power efficiency[J]. IEEE Trans. on Ind.Electron., 1992, 39(3): 323-333.
    [127] Li W, Mao Z Y. Efficient control of an induction motor based on the decoupling variable structure strategy[C]. Proc. of the world congress on intelligent control and automation, 2002, 4(4): 2845-2848.
    [128] Spiegel R J, Turner M W, McCormick V E. Fuzzy-logic-based controllers for efficiency optimization of inverter-fed induction motor drives[J]. Fuzzy Sets and Systes, 2003, (137): 387-401.
    [129] Pryymak B, Moreno E J, Peracaula J. Neural network based efficiency optimization of an induction motor drive with vector control[C]. IECON 02, 2002, 28(1): 146-151.
    [130] Poirier E, Ghribi M, Kaddouri A. Loss minimization control of induction motor drives based on genetic algorithms[C]. IEEE International Electric Machines and Drives Conference, 2001, 475-478.
    [131] 张承慧,李爱文,张庆范.感应电动机新型最小损耗控制策略[J].电工技术学报,1998,13(4):25-29.
    [132] 张承慧.变频调速系统效率优化控制、理论与应用:[博士学位论文].济南:山东大学,2001.
    [133] Kioskeridis I, Margaris M. Loss minimization in induction motor adjustable-speed drives[J]. IEEE Transactions Industrial Electronics, 1996, 43(1): 226-231.
    [134] Jae Ho Chang, Byung Kook Kim. Minimum-time minimum-loss speed control of induction motors under field-oriented control[J]. IEEE Transactions on Industrial Electronics, 1997, 44(6): 809-815.
    [135] Espinoza J R, Joos G. A current-source-inverter-fed induction motor drive system with reduced losses[J]. IEEE Transactions on Industry Applications, 1998, 34(4): 796-805.
    [136] Sheng-Ming Yang, Feng-Chieh Lin. Loss-minimization control of vector-controlled induction motor drives[C]. Proceedings of the 4th IEEE International Conference on Power Electronics and Drives Systems, 2001, 4(1): 182-187.
    [137] Lim S, Nam K. Loss-minimising control scheme for induction motors[J]. Proceedings of the Electric Power Applications, 2004, 151 (4): 385-397.
    [138] Sousa G C D, Bose B K, Cleland J, Spiegel R J, Chappell P J. Loss modeling of converter induction machine system for variable speed drive[C]. Proceedings of the International Conference on Industrial Electronics Control Instrumentation and Automation, I992, (1): 114-120.
    [139] Moreira J C, Blasko V, Lipo TA. Low cost efficiency maximizer for an induction motor drive[C]. IEEE Industry Applications Society Annual Meeting, 1989, (1): 426-431.
    [140] Andersen H R, Pedersen J K. Low cost energy optimized control strategy for a variable speed three-phase induction motor[C]. Proceedings of the 27th PESC, 1996, 27(1): 920-924.
    [141] Lu Xianliang, Wu Hangguang. Maximum efficiency control strategy for induction machine[C]. Proceedings of the 15th International Conference on Electrical Machines and Systems, 2001, 15(1): 98-101.
    [142] Boglietti A, Ferraris P, Lazzari M, Pastorelli M. Influence of the inverter characteristics on the iron losses in PWM inverter-fed induction motors[J]. IEEE Transactions on Industry Applications, 1996, 32(5): 1190-1194.
    [143] 陈伯时等.电力拖动自动控制系统(第三版)[M].北京:机械工业出版社,2003.
    [144] 李永东.交流电机数字控制系统[M].北京:机械工业出版社,2002.
    [145] 冬雷,李永东.交流调速技术的发展与应用[J].电工技术杂志,2002,(8):1-3.
    [146] Benhaddadi M, Touhami O, Moulahoum S, Olivier G. Iron core losses:measurement and impact in induction motor vector control[C]. Proceedings of the Instrumentation and Measurement Technology Conference, 1998, (2): 723-727.
    [147] Sokola M, Levi E. Combined Impact Of Iron Loss And Main Flux Saturation On Operation Of Vector Controlled induction Machines[C]. Proceedings of the 6th International Conference on Power Electronics and Variable Speed Drives, 1996, (6): 36-41.
    [148] Moses A J, Leicht J, Anderson P. Iron losses in electrical machines excited by non-sinusoidal voltages[C]. Proceedings of the International Conference on Power Electronics Machines and Drives, 2002, 252-254.
    [149] BogliettiA, Ferraris P, Lazzari M, Pastorelli M. About the possibility of defining a standard method for iron loss measurement in soft magnetic materials with inverter supply[J]. IEEE Transactions on Industry Applications, 1997, 33(5): 1283-1288.
    [150] Boglietti A, Ferraris P, Lazzari M, Pastorelli M. Iron loss measurements with inverter supply a first discussion to define a standard methodology[J]. IEEE Transactions on Magnetics, 1995, 31(6): 4006-4008.
    [151] Bemiaddadi M, Touhami O, Olivier G. Iron core losses impact in induction motor vector control[C]. IEEE Canadian Conference on Electrical and Computer Engineering, 1998, (2): 782-785.
    [152] Levi E. Impact of iron loss on behavior of vector controlled induction machines[J]. IEEE Transactions on Industry Applications, 1995, 31(6): 1287-1296.
    [153] 黎英,时维国,谭昆玲.考虑铁损时异步电动机的数学模型及其仿真研究.电气传动,1998,28(3):7-9.
    [154] Jae Ho Chang, Byung Kook Kim. Minimum-Time Minimum-Loss Speed Control of Induction Motors Under Field-Oriented Control[J]. IEEE Transactions on Industrial Electronics, 1997, 44(6): 809-816.
    [155] Wallace I T, Novotny D W, Lorenz R D, Divan D M. Increasing the dynamic torque per ampere capability of induction machines[J]. IEEE Trans. on Ind. Applicat., 1994, 30(1): 146-153.
    [156] 江思敏.TMS320LF240X DSP硬件开发教程[M].北京:机械工业出版社,2003.
    [157] 刘和平,王维俊等.TMS320LF240X DSP C语言开发应用[M].北京:北京航空航天大学出版社,2003.
    [158] TECHNOSOFT DSP Motion Solutions: DMCode-S (IM) plug-in for DMCD-Pro User Manual, 2000.
    [159] Zinger D S, Lipo T A, Novotny D W. Using induction motor stator windings to extract speed information[C]. IEEE Industry Applications Society Annual Meeting, 1989, (1): 213-218.
    [160] Hou-Tsan Lee, Li-Chen Fu, Hsin-Sain Huang. Sensorless speed tracking of induction motor with unknown torque based on maximum power transfer[J]. IEEE Transactions on Industrial Electronics, 2002, 49(4): 911-924.
    [161] Chakraborty C, Ta M C, Hori T. Speed sensorless efficiency optimized control of induction motor drives suitable for EV applications[C]. Proceedings of the 29th IECON, 2003, 29(1): 913-918.
    [162] Levi E, Mingyu Wang. A speed estimator for high performance sensorless control of induction motors in the field weakening region[J]. IEEE Transactions on Power Electronics, 2002, 17(3): 365-378.
    [163] Taniguchi S, Yoshizumi T, Matsuse K. A method of speed sensorless control of direct-field-oriented[C]. IEEE 14th APEC Annual Meeting, 1999, 14(2): 1244-1250.
    [164] Namiki K, Mstsuse K, Kishimoto T, Yokornizo S. Characteristics of speed sensorless vector controlled induction motor drive operating at high efficiency taking core loss into account[C]. IEEE 16th Annual Meeting on APEC, 2001, 16(1): 25-31.
    [165] Boys J T, Miles M J. Empirical thermal model for inverter-drivencage induction machines[J]. Proc. Inst. Elect. Eng., 1994, 141(6): 360-372.
    [166] Ho E Y Y, Sen P C. Decoupling control of induction motordrives[J]. IEEE Trans. Ind. Electron., 1998, 35(2): 253-262.
    [167] Matsuse K, Yoshizumi T, Katsuta S, Taniguchi S. High-response flux control of direct-field-oriented induction motor with high efficiency taking core loss into account[J]. IEEE Transactions on Industry Applications, 1999, 35(1): 62-69.
    [168] 施光燕,董加礼.最优化方法[M].北京:高等教育出版社,1999
    [169] 薛毅.最优化原理与方法[M].北京:北京工业大学出版社,2001.
    [170] Vukosavic, S.N. Levi, E. A method for transient torque response improvement in optimum efficiency induction motor drives Energy Conversion[J]. IEEE Transactions on Energy Conversion, 2003 18(4): 484-493
    [171] Wallace I.T., Novotny D.W., Lorenz R.D., Divan D.M.. Verification of enhanced dynamic torque per ampere capability in saturated induction machines[J]. IEEE Trans. on Ind. Applicat., 1994, 30(4): 1193-1201.
    [172] Bimal K.Bose. Modem Power Electronics and AC drives[M]. 北京:机械工业出版社,2003.
    [173] 李夙.异步电动机直接转矩控制[M].北京:机械工业出版社,1998.
    [174] 杨贵杰,孙力,崔乃政,陆永平.空间矢量脉宽调制方法的研究[J].中国电机工程学报,2001,21(5):79-83.
    [175] 熊健,康勇,张凯,陈坚.电压空间矢量调制与常规SPWM的比较研究[J].电力电子技术,1999,(1):25-28.
    [176] Zhang, L. Wathanasarn, C. Hardan, F. An efficient microprocessor-based pulse-width modulator using space vector modulation strategy[M]. IECON '94, 1994, 1(1): 91 -96.
    [177] Doval-Gandoy, J. Iglesias, A. Castro, C. Penalve, C. M. Three altematives for implementing space vector modulation with the DSP TMS320F240[M]. IECON'99, 1999, 1(1): 336-341.
    [178] 田亚菲,何继爱,黄智武.电压空间矢量脉宽调制(SVPWM)算法仿真实现及分析[J].电力系统及其自动化学报,.2004,16(4):68-71.
    [179] 程善美,姜向龙.SIMULINK环境下空间矢量PWM的仿真电气自动化[J].2002,24(3):38-41.
    [180] 丛爽.神经网络、模糊系统及其在运动控制中的应用[M].合肥:中国科学技术大学出版社,2001.
    [181] Bimal K. Bose. Modem Power Electronics and AC drives[M].北京:机械工业出版社,2003.
    [182] 陈伯时,冯晓刚,王晓东,夏承光.电气传动系统的智能控制[J].电气传动,1997,(1):3-8
    [183] 韩京清,王伟.非线性跟踪微分器[J],系统科学与数学,1994,14(2):177~183
    [184] 韩京清.一类不确定性对象的扩张状态观测器[J].控制与决策,1995,10(1): 85-88
    [185] 黄一,张文革.自抗扰控制器的发展[J].控制理论与应用,2002,(8):485-492.
    [186] 韩京清,袁露林.跟踪微分器的离散形式[J].系统科学与数学,1999,19(3):268-273.
    [187] 冯光,黄立培,朱东起.采用自抗扰控制器的高性能异步电机调速系统[J].中国电机工程学报,2001,21(10):55-58.
    [188] 刘鸣,绍诚.异步电动机的自抗扰控制器及其参数整定[J].控制与决策,2003,18(5):540-544.
    [189] 要晓梅,王庆林,刘文丽等.一般工业对象的二阶自抗扰控制,控制工程,2002,9(5):59~62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700