家蝇抗菌肽基因的表达模式与重组表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中大多数多细胞生物都生活在与病原微生物经常接触的环境中。这些生物的生存依赖于体内多种成分参与的宿主防御体系。高等脊椎动物的宿主防御依赖于两种类型的免疫反应:天然免疫和获得性免疫。而在昆虫等无脊椎动物中,宿主防御仅仅依赖于天然免疫。
     天然免疫的一个主要机制为在生物体内组成性或诱导性表达一些内源肽,它们构成了机体防御病原体的快速而高效的手段,这些肽被称为抗菌肽。抗菌肽构成了原始的免疫反应机制,在从人到植物再到昆虫的真核生物中广泛存在,一些微生物中也出现了它们的踪迹。抗菌肽具有分子量小、等电点高、热稳定好、在生理条件下多数带正电荷、广谱抗菌等特点。它们不仅对革兰氏阳性菌和革兰氏阴性菌有较强的杀灭作用,对某些真菌、原生动物,尤其对耐药性细菌也具有杀灭作用。随着新的疾病不断产生,细菌的抗性已成为医学中不断增加的威胁。由于抗菌肽具有广谱的抗菌活性,被认为是解决病原微生物对抗生素不断增强的抗性问题的很好选择。一些抗菌肽还表现出了抗肿瘤、抗病毒和防治寄生虫传染病方面的应用潜力。在治疗HIV等性传播疾病方面也展现出了良好的应用前景。在农业生产中,它不仅可以用于动物饲料和食品保鲜,将抗菌肽基因转入动物和植物体中可以有效地防治一些病害的发生。人们对于抗菌肽的广泛研究还增加了人们对于先天性免疫系统的认知。因此,对抗菌肽的研究具有重要的理论意义和应用价值。
     家蝇与人类的生活密切相关。家蝇从幼虫到成虫均生活在杂菌横生的环境里,是许多病原体的携带者,约100多个引起人类和动物疾病的病原体与家蝇有关,包括伤寒、霍乱、杆菌性痢疾、肺结核、炭疽热、婴儿腹泻和一些寄生虫病等。由于家蝇自身不受这些病原微生物的感染,人们推测家蝇体内具有独特的免疫防御机制,体内可能产生活性较强的抗菌肽。我们实验室曾从家蝇中纯化到1条分子量为10KDa的抗菌肽,它具有热稳定性,100℃加热10min仍有活性,表现出抗革兰氏阴性菌和革兰氏阳性菌的潜力。之后,我们实验室从家蝇中克隆出1条防御素基因(GenBank no.AY260152),命名为家蝇防御素Md defensin(Mdde),和1条天蚕素基因(GenBank no.AF416602),命名为家蝇天蚕素Md-Cecropin(Md-Cec)。其它学者还从家蝇中克隆出了家蝇攻击素基因(GenBank no.AY460106和GenBank no.DQ062744)。
     本研究应用RT-PCR和原位杂交技术研究家蝇抗菌肽基因在家蝇体内的表达模式,对比经微生物诱导前后,以及诱导后不同时间家蝇体内抗菌肽基因表达量的变化,调查抗菌肽基因在家蝇体内的组织分布情况。并应用RT-PCR克
The most of multicellular organisms live in surroundings laden with pathogens. The survival of them depends on host defense mechanisms involving various components in vivo. In high vertebrates such as mammalian, the host defense systems depend on two types of immune: the innate immunity and the acquired immunity. But the defenses of invertebrate, such as insects, only depend on innate immunity.A character of the innate immunity is that endogenous peptides are constitutively expressed or induced, which provide a fast and effective means of defence against pathogens. This group of peptides termed 'antimicrobial peptides' (AMPs). AMPs make up of a primitive immune mechanism and are found in a wide range of eukaryotic organisms, from humans to plants and insects. Some of them are found in microorganisms. Most of these peptides have small molecular weight, high isoelectric point, heat stability, overall net positive charge under the physiological condition, a broad antimicrobial spectrum and so on. They not only function on Gram-positive bacteria and Gram-negative bacteria, but also on fungi, protozoa, especially bacteria with drug resistance. With the continual emergence of new diseases, bacterial resistance has become a growing threat to human health. Due to their broad-spectrum of antimicrobial activities, the AMPs were considered to be excellent candidates for potential novel antibiotic agents. Some AMPs also exhibit tumouricidal and virucidal properties, and have potential of prevention and cure of parasite infectious disease. A few of these peptides show activity against pathogens causing sexually transmitted infection, including HIV. In agricultural production, they not only are used as animal feed additive or antistaling agent for food storage, but also in transgenic animals or plants to prevent diseases. The extensive studies on AMPs have helped us to understand the innate immunity well.
    Therefore, the studies in AMPs have important academic value and good application prospect.The houseflies (Musca domestica) that live in surroundings full of various microbes are closely correlative with human life. Houseflies have been implicated in the spread of over 100 pathogens that may cause diseases in humans and animals, including typhoid, cholera, bacillary dysentery, tuberculosis, anthrax ophthalmia and infantile diarrhea, as well as parasitic worms. But they can thrive without causing infection. Therefore it is presumed that the houseflies have unique immune defense mechanism and can product antimicrobial peptides with strong activity. Our laboratory has purified an antimicrobial peptide, with a molecular weight of 10 kDa. The peptide was heat stable, and had activities that were retained after 10 min incubation at 100 °C. It showed potential activities against Gram-positive and Gram-negative bacteria. After that, our lab also cloned a defensin gene (GenBank no. AY260152), named Md defensin {Mdde), and a cecropin gene (GenBank no. AF416602), named Md-Cecropin (Md-Cec), from housefly. Otherwise, attacin genes (GenBank no. AY460106 and GenBank no. DQ062744) were cloned by other authors form housefly.In this study, the expression patterns of the genes encoding cecropin, defensin and attacin were studied by semi-quantitative RT-PCR and in situ hybridization. We analysed the effects of challenge with the mixtures of Escherichia coli and Staphylococcus aureus on the antimicrobial peptides mRNA transcription in the larvae of M. domestica, and investigated the tissue distributions of the gene transcripts in larvae of M. domestica. The cDNA sequence encoding mature attacin peptide was cloned by RT-PCR, and then expressed in prokaryotic expression system.The results of the studies are as follows.1. RT-PCR was performed using Md-Cec specific primers MdcecF/MdcecR and total RNA from the unchallenged and challenged larvae at 5h, lOh, 24h and 48h after challenge respectively. The results showed that the Md-cec gene expression was detectable in challenged larvae from 5h to 24h after infection challenge, whereas not detectable in native larvae and challenged larvae at 48h. Quantitative
    analysis by Labwork v4.5 revealed that the quantity of Md-Cec transcript increased rapidly in 5h after challenge, then decreased slowly, maintained to lOh, distinctly reduced at 24h, no detectable again at 48h.2. In order to localize expression of Md-Cec mRNA in different tissues, we performed in situ hybridization with Md-Cec antisense DIG RNA probes and the tissue slices of larvae unchallenged and challenged with the mixtures of E. coli and 5. aureus. The results showed that there was strong transcription in the fat body, and that transcript was also detected in the epithelia of the body wall and epidermis of gut. However, transcript was not observed in muscles, or trachea in the challenged larvae. In unchallenged flies, no transcript was detected in any tissue.3. To analyze the effects of challenge with the mixtures of E. coli and S1. aureus on the Mdde transcripts in the larvae of M. domestica, RT-PCR was performed using Mdde specific primers Mdde F/Mdde R and total RNA from the unchallenged and challenged larvae respectively at 5h, lOh, 24h and 48h after challenge. The results of RT-PCR showed that the Mdde transcripts were found in either the challenged larvae with the mixtures of E. coli and S. aureus from 5h to 48h or unchallenged insects, and that the transcript level of the gene rapidly increased at 5h after challenge, largely increased at 48h.4. To study the tissue distributions of the Mdde transcripts in larvae of housefly, the in situ hybridization with Mdde antisense DIG RNA probes were carried out. The results of the in situ hybridization showed that the gene of Mdde was transcribed mainly in the epithelia of the body wall and the fat body, and no transcription signal was detected in tracheae, gut and muscles. The transcripts of Mdde in the epithelia of the body wall were found both in challenged larvae and unchallenged larvae, whereas the transcripts of Mdde in fat body were found only in challenged larvae.5. RT-PCR was performed using housefly attacin specific primers Attacin F/Attacin R and total RNA from the whole body of the unchallenged larvae and the tissues of challenged larvae at lOh after challenge by E.coli. The results showed that the attacin gene expression was not detectable in native larvae, and was detectable in fat body of challenged larvae, whereas not detectable in body wall and
    gut of challenged larvae.6. A cDNA encoding mature attacin peptide of housefly (Musca domestica) was isolated from total RNA of challenged larvae by E. coli, using RT-PCR, and named Mdatt. The sequence alignment showed that the nucleotide sequence of Mdatt is 97% identical to M. domestica attacin (GenBank no. DQ062744) and 96% to another M. domestica attacin(Gen&ank no. AY460106), while the deduced amino acid sequence of Mdatt is 99% and 98% identical respectively to GenBank DQ062744 and GenBank AY460106. The Mdatt was cloned into the pGEX-4T-l vector and expressed in E.coli BL21. The result of SDS-PAGE showed that the expressed production resided in the host cells in the form of inclusion bodies.Base on the analyses of the above results, the conclusions we come up with are as follows.1. The transcription of the Md-cec is inducible by microbe infections. The rapidly transcription occur in 5h after challenge by bacteria. The quantities of the transcript maintain to lOh, distinctly reduce at 24h, and come back to native level at 48h.2. The distribution of the Md-Cec transcript has tissue specificity. The transcript mainly produces in fat body, body wall and midgut, not in muscles and trachea.3. The transcription of Mdde in larvae of M domestica is constitutive. But the transcript quantity is inducible to increase by microorganism. The quantity gradually increases after challenge by bacteria, rapidly increases in 5h, largely increases at 48h.4. The Mdde transcript also has tissue specificity, mainly in body wall and fat body. The transcription is low level constitutive expression in body wall, whereas inducible in fat body. Differing from Md-cec, the transcript of Mdde is not found in gut. We consider that the transcription pattern of the Mdde in larvae of M. domestica is the results of the insect adapting to the natural environment.5. The transcription of the attacin is inducible by microbe infections in larvae of M. domestica. The transcript mainly produces in fat body, not in body wall and gut.
    6. The cDNA sequence encoding mature attacin peptide is conserved, and the amino acid sequence more conserved. The mature attacin peptide can be expressed in prokaryotic expression system.This study will enhance the understanding of the immune system in housefly;enrich the knowledge of the innate immunity in insects. The recombinant expressed antimicrobial peptides can be used in continued studies, and large-scale production may be used in genetic engineered medicine and animal feed additives.
引文
Ahmad M, Piludu M, Oppenheim FG, Helmerhorst E J, Hand AR. Immunocytochemical localization of histatins in human salivary glands. J Histochem Cytochem. 2004 Mar;52(3): 361-70.
    Akira S. Toll-like receptor signaling. J Biol Chem. 2003 Oct 3;278(40): 38105-8.
    Andra J, Berninghausen O, Leippe M. Cecropins, antibacterial peptides from insects and mammals, are potently fungicidal against Candida albicans. Med Microbiol Immunol (Berl). 2001 Apr;189(3): 169-73.
    Aranha C, Gupta S, Reddy KV. Contraceptive efficacy of antimicrobial peptide Nisin: in vitro and in vivo studies. Contraception. 2004 Apr;69(4): 333-8.
    Baba K, Okada M, Kawano T, Komano H, Natori S. Purification of sarcotoxin Ⅲ, a new antibacterial protein of Sarcophaga peregrina. J Biochem (Tokyo). 1987 Jul;102(1): 69-74.
    Baker MA, Maloy WL, Zasloff M, Jacob LS. Anticancer efficacy of Magainin2 and analogue peptides. Cancer Res. 1993 Jul 1;53(13): 3052-7.
    Ballweber LM, Jaynes JE, Stamm WE, Lampe MF. In vitro microbicidal activities of cecropin peptides D2A21 and D4E1 and gel formulations containing 0.1 to 2% D2A21 against Chlamydia trachomatis. Antimicrob Agents Chemother. 2002 Jan;46(1): 34-41.
    Bals R. Epithelial antimicrobial peptides in host defense against infection. Respir Res. 2000;1(3): 141-50.
    Basanez G, Shinnar AE, Zimmerberg J. Interaction of hagfish cathelicidin antimicrobial peptides with model lipid membranes. FEBS Lett. 2002 Dec 4;532(1-2): 115-20.
    Bechinger, B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta. 1999 Dec 15;1462(1-2): 157-83.
    Bierbaum G, Sahl HG. Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J Bacteriol. 1987 Dec;169(12): 5452-8.
    Borenstein LA, Ganz T, Sell S, Lehrer RI, Miller JM. Contribution of rabbit leukocyte defensins to the host response in experimental syphilis. Infect Immun. 1991 Apr;59(4):1368-77.
    Boulanger N, Munks RJ, Hamilton JV, Vovelle F, Brun R, Lehane MJ, Bulet P. Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood-sucking insect Stomoxys calcitrans. J Biol Chem. 2002 Dec 20;277(51):49921-6.
    Brahmachary M, Krishnan SPT, Koh JLY, Khan AM, Seah SH, Tan TW, Brusic V, Bajic VB. Antimic: a database of antimicrobial sequences. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D586-9.
    Brightbill HD, Modlin RL. Toll-like receptors: molecular mechanisms of the mammalian immune response. Immunology. 2000 Sep;101(1):1-10.
    Brockus CW, Jackwood MW, Harmon BG. Characterization of beta-defensin prepropeptide mRNA from chicken and turkey bone marrow. Anim Genet. 1998 Aug;29(4):283-9.
    Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005 Mar;3(3):238-50.
    Bulet P, Cociancich S, Dimarcq JL, Lambert J, Reichhart JM, Hoffmann D, Hetru C, Hoffmann JA. Insect immunity. Isolation from a coleopteran insect of a novel inducible antibacterial peptide and of new members of the insect defensin family. J Biol Chem. 1991 Dec 25;266(36):24520-5.
    Bulet P, Hetru C, Dimarcq J, Hoffmann D. Antimicrobial peptides from insects: structure and function. Dev Comp Immunol 1999;23:329-44.
    Bulet P, Stocklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev. 2004 Apr;198:169-84.
    Bulet, P, Hetru C, Dimarcq JL, Hoffmann D. Antimicrobial peptides in insects;structure and function. Dev Comp Immunol. 1999 Jun-Jul;23(4-5):329-44.
    Casteels P, Ampe C, Jacobs F, Tempst P. Functional and chemical characterization of hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J Biol Chem. 1993 Apr 5;268(10):7044-54.
    Castro MS, Fontes W. Plant defense and antimicrobial peptides. Protein Pept Lett. 2005 Jan;12(1):13-8.
    Charlet M, Chernysh S, Philippe H, Hetru C, Hoffmann JA, Bulet P. Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J Biol Chem. 1996 Sep 6;271(36): 21808-13.
    Chen LC, Wang JX, Liu Y, Wang LY, Wang LC, Zhao XF. Purification and characterization of an antibacterial peptide from housefly, Musca domestica. J Shandong Uni (Natural Sci). 2001;36(3):351-7(In Chinese).
    Chen LC, Wang JX. The antibacterial peptides from insects. Progress in Biotechnology. 1999;19(5):55-60(In Chinese).
    Chernysh S, Kim SI, Bekker G, Pleskach VA, Filatova NA, Anikin VB, Platonov VG, Bulet P. Antiviral and antitumor peptides from insects. Proc Natl Acad Sci U S A. 2002 Oct l;99(20): 12628-32.
    Conlon JM, Kolodziejek J, Nowotny N.Antimicrobial peptides from ranid frogs:taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim Biophys Acta. 2004 Jan 14;1696(1):1-14.
    Corzo G, Villegas E, Gomez-Lagunas F, Possani LD, Belokoneva OS, Nakajima T.Oxyopinins, large amphipathic peptides isolated from the venom of the wolf spider Oxyopes kitabensis with cytolytic properties and positive insecticidal cooperativity with spider neurotoxins. J Biol Chem. 2002 Jun 28;277(26):23627-37.
    Cruciani RA, Barker JL, Zasloff M, Chen HC, Colamonici O. Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3792-6.
    Cuthbertson B J, Shepard E F, Chapman R W, Gross P S. Diversity of the penaeidin antimicrobial peptides in two shrimp species. Immunogenetics. 2002 Sep;54(6):442-5.
    Dagan A, Efron L, Gaidukov L, Mor A, Ginsburg H. In vitro antiplasmodium effects of dermaseptin S4 derivatives. Antimicrob Agents Chemother. 2002 Apr;46(4):1059-66.
    Daher KA, Selsted ME, Lehrer RI. Direct inactivation of viruses by human granulocyte defensins. J Virol. 1986 Dec;60(3):1068-74.
    Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature. 2001 Jun 14;411(6839):826-33.
    Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):71-87.
    De Lucca AJ, Walsh TJ. Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob Agents Chemother. 1999 Jan;43(1):1-11.
    Deatoumieux D, Bulet P, Loew D, Dorsselaer A V, Rodriguez J, Bachere E. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem. 1997 Nov 7;272(45):28398-406.
    DeLucca AJ, Bland JM, Jacks TJ, Grimm C, Cleveland TE, Walsh TJ. Fungicidal activity of cecropin A. Antimicrob Agents Chemother. 1997 Feb;41(2):481-3.
    Destoumieux D, Munoz M, Bulet P, Bachere E. Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda). Cell Mol Life Sci 2000;57:1260-71.
    Destoumieux-Garzon D, Saulnier D, Garnier J, Jouffrey C, Bulet P, Bachere E.Crustacean Immunity: antifungal peptides are generated from the c-terminus of shrimp hemocyanin in response tomicrobial challenge. J Biol Chem. 2001 Dec 14;276(50):47070-7.
    Ehret-Sabatier L, Loew D, Goyffon M, Fehlbaum P, Hoffmann JA, van Dorsselaer A, Bulet P. 1996. Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J Biol Chem. 1996 Nov 22;271(47):29537-44.
    Ekengren S, Hultmark D. Drosophila cecropin as an antifungal agent. Insect Biochem Mol Biol. 1999 Nov;29(11):965-72.
    Fehlbaum P, Bulet P, Chernysh S, Briand JP, Roussel JP, Letellier L, Hetru C, Hoffmann JA. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1221-5.
    Fella TJ, Hancock RE. Improved activity of a synthetic indolicidin analog. Antimicrob Agents Chemother. 1997 Apr;41(4):771-5.
    Fernandez de Caleya R, Gonzalez-Pascual B, Garcia-Olmedo F, Carbonero P. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol. 1972 May;23(5):998-1000.
    Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P. Plant defense peptides. Biopolymers. 1998;47(6):479-91.
    Gardner A, West SA, Buckling A. Bacteriocins, spite and virulence. Proc Biol Sci. 2004 Jul 22;271(1547): 1529-35.
    Geng H, An CJ, Hao YJ, Li DS, Du RQ. Molecular Cloning and Expression of Attacin from Housefl y (Musca domestica). Acta Genetica Sinica. 2004 Dec;31(12):1344-50(In Chinese).
    Giacometti A, Cirioni O, Ghiselli R, Orlando F, Kamysz W, Rocchi M, D'Amato G, Mocchegiani F, Silvestri C, Lukasiak J, Saba V, Scalise G. Effects of pexiganan alone and combined with betalactams in experimental endotoxic shock. Peptides. 2005 Feb;26(2):207-16.
    Gibson BW, Poulter L, Williams DH, Maggio JE. Novel peptide fragments originating from PGLa and the caerulein and xenopsin precursors from Xenopus laevis. J Biol Chem. 1986 Apr 25;261(12):5341-9.
    Gobert V, Gottar M, Matskevich AA, Rutschmann S, Royet J, Belvin M, Hoffmann JA, Ferrandon D. Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science. 2003 Dec 19;302(5653):2126-30.
    Gueguen Y, Gamier J, Robert L, Lefranc MP, Mougenot I, de Lorgeril J, Janech M,Gross PS, Warr GW, Cuthbertson B, Barracco MA, Bulet P, Aumelas A, Yang Y, Bo D, Xiang J, Tassanakajon A, Piquemal D, Bachere E. PenBase, the shrimp antimicrobial peptide penaeidin database: Sequence-based classification and recommended nomenclature. Dev Comp Immunol. 2005, 15[Epub ahead of print].
    Guthmiller JM, Vargas KG, Srikantha R, Schomberg LL, Weistroffer PL, McCray PB Jr, Tack BF. Susceptibilities of oral bacteria and yeast to mammalian cathelicidins. Antimicrob Agents Chemother. 2001 Nov;45(11):3216-9.
    Gwadz RW, Kaslow D, Lee JY, Maloy WL, Zasloff M, Miller LH. Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect Immun. 1989 Sep;57(9): 2628-33.
    Haversen LA, Engberg I, Baltzer L, Dolphin G, Hanson LA, Mattsby-Baltzer I. Human lactoferrin and peptides derived from a surface exposed helical region reduce experimental Escherichia coli urinary tract infection in mice. Infect Immun. 2000 Oct;68(10):5816-23.
    Hemmi H, Ishibashi J, Hara S, Yamakawa M.Solution structure of moricin, an antibacterial peptide, isolated from the silkworm Bombyx mori. FEBS Lett. 2002 May 8;518(1-3):33-8.
    Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313-8.
    Hoffmann JA. The immune response of Drosophila. Nature. 2003 Nov 6;426(6962):33-8.
    Hoover DM, Chertov O, Lubkowski J. The structure of human beta defensin-1. New insights into structural properties of beta defensins. J Biol Chem 2001;276: 39021-6.
    Hubert F, Noel T, Roch P. A member of the arthropod defensin family from edible Mediterranean mussels (Mytilus galloprovincialis). Eur J Biochem. 1996 Aug 15;240(1):302-6
    Hultmark D, Engstrom A, Andersson K, Steiner H, Bennich H, Boman HG. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J. 1983;2(4):571-6.
    Hultmark D, Engstrom A, Bennich H, Kapur R, Boman HG.Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur J Biochem. 1982 Sep;127(1):207-17.
    Hultmark D, Steiner H, Rasmuson T, Boman H G, 1980. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem. 1980 May;106(1):7-16
    Hultmark D. Drosophila immunity: paths and patterns. Curr Opin Immunol. 2003 Feb;15(1):12-9.
    Iijima N, Tanimoto N, Emoto Y, Morita Y, Uematsu K, Murakami T, Nakai T.Purification and characterization of three isoforms of chrysophsin, a novel antimicrobial peptide in the gills of the red sea bream, Chrysophrys major. Eur J Biochem. 2003 Feb;270(4):675-86.
    Iijima R, Kurata S, Natori S. Purification, characterization, and cDNA cloning of an antifungal protein from the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J Biol Chem. 1993 Jun 5;268(16):12055-61.
    Imamura M, Wada S, Koizumi N, Kadotani T, Yaoi K, Sato R, Iwahana H. Acaloleptins A: inducible antibacterial peptides from larvae of the beetle, Acalolepta luxuriosa. Arch Insect Biochem Physiol. 1999;40(2):88-98.
    Imler JL, Hoffmann JA. Toll receptors in innate immunity. Trends Cell Biol. 2001 Jul;11(7):304-11.
    Jang WS, Kim KN, Lee YS, Nam MH, Lee IH. Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett. 2002 Jun 19;521(1-3):81-6.
    Jaynes JM, Burton CA, Barr SB, Jeffers GW, Julian GR, White KL, Enright FM, Klei TR, Laine RA. 1988. In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi. FASEB J. 1988 Oct;2(13):2878-83.
    Kaneko T, Goldman WE, Mellroth P, Steiner H, Fukase K, Kusumoto S, Harley W,Fox A, Golenbock D, Silverman N. Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity. 2004 May;20(5):637-49.
    Khoo L, Robinette DW, Noga EJ. Callinectin, an Antibacterial Peptide from Blue Crab, Callinectes sapidus, Hemocytes. Mar Biotechnol (NY). 1999 Jan;1(1):44-51.
    Kim T, Kim YJ. Overview of Innate Immunity in Drosophila. J Biochem Mol Biol. 2005 Mar 31;38(2):121-7.
    Klaudiny J, Albert S, Bachanova K, Kopernicky J, Simuth J. Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochem Mol Biol. 2005,35(1):11-22.
    Kokryakov VN, Harwig SS, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA, Lehrer RI. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 1993 Jul 26;327(2):231-6.
    Krishnakumari V, Nagaraj R. Antimicrobial and hemolytic activities of crabrolin, a 13-residue peptide from the venom of the European hornet, Vespa crabro, and its analogs. J Pept Res. 1997 Aug;50(2):88-93.
    Kuhn-Nentwig L, Miller J, Schaller J, Walz A, Dathe M, Nentwig W. Cupiennin-1, a new family of highly basic antimicrobial peptides in the venom of the spider Cupiennius salei (Ctenidae). J Biol Chem. 2002 Mar 29;277(13):11208-16.
    Ladokhin AS, White SH. 'Detergent-like' permeabilization of anionic lipid vesicles by melittin. Biochim Biophys Acta. 2001 Oct 1;1514(2):253-60.
    Lambert J, Keppi E, Dimarcq JL, et al. Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc Natl Acad Sci USA 1989;86:262-6.
    Lamberty M, Zachary D, Lanot R, Bordereau C, Robert A, Hoffmann JA, Bulet P. Insect immunity. Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J Biol Chem. 2001 Feb 9;276(6):4085-92
    Landon C, Thouzeau C, Labbe H, Bulet P, Vovelle F. Solution structure of spheniscin, a beta-defensin from the penguin stomach. J Biol Chem. 2004 Jul 16;279(29):30433-9.
    Lazarovici P, Primor N, Loew LM. Purification and pore-forming activity of two hydrophobic polypeptides from the secretion of the Red Sea Moses sole (Pardachirus marmoratus). J Biol Chem. 1986 Dec 15;261(35):16704-13.
    Lee IH, Cho Y, Lehrer RI. Effects of pH and salinity on the antimicrobial properties of clavanins. Infect Immun. 1997 Jul;65(7):2898-903.
    Lee IH, Zhao C, Cho Y, Harwig SS, Cooper EL, Lehrer RI. Clavanins, alpha-helical antimicrobial peptides from tunicate hemocytes. FEBS Lett. 1997 Jan 3;400(2):158-62.
    Lee SY, Moon HJ, Kawabata S, Kurata S, Natori S, Lee BL. A sapecin homologue of Holotrichia diomphalia: purification, sequencing and determination of disulfide pairs. Biol Pharm Bull. 1995 Mar;18(3):457-9.
    Lee SY, Moon HJ, Kurata S, Kurama T, Natori S, Lee BL. Purification and molecular cloning of cDNA for an inducible antibacterial protein of larvae of a coleopteran insect, Holotrichia diomphalia. J Biochem (Tokyo). 1994 Jan;115(1):82-6.
    Lee SY, Moon HJ, Kurata S, Natori S, Lee BL. Purification and cDNA cloning of an antifungal protein from the hemolymph of Holotrichia diomphalia larvae. Biol Pharm Bull. 1995 Aug;18(8): 1049-52.
    Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, Selsted ME. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest. 1989 Aug;84(2):553-61.
    Lehrer RI, Szklarek D, Selsted ME, Fleischmann J. Increased content of microbicidal cationic peptides in rabbit alveolar macrophages elicited by complete Freund adjuvant. Infect Immun. 1981 Sep;33(3):775-8.
    Li Q, Laerence CB, Xing HY, Babbitt RA, Bass WT, Maiti IB, Everett NP. Enhanced disease resistance conferred by expression of an antimicrobial magainin analog in transgenic tobacco. Planta. 2001 Mar;212(4):635-9.
    Liang YL, Wang JX, Zhao XF, Du XJ, Xue JF. Molecular cloning and characterization of cecropin from the housefly (Musca domestica), and its expression in Escherichia coli. Dev Comp Immunol. 2005 Jun 24;(In Press).
    Luders T, Birkemo GA, Fimland G, Nissen-Meyer J, Nes IF. Strong synergy between a eukaryotic antimicrobial peptide and bacteriocins from lactic acid bacteria. Appl Environ Microbiol.2003;69:1797-9.
    Marchini D, Manetti AG, Rosetto M, Bernini LF, Telford JL, Baldari CT, Dallai R.cDNA sequence and expression of the ceratotoxin gene encoding an antibacterial sex-specific peptide from the medfly Ceratitis capitata (diptera). J Biol Chem. 1995 Mar 17;270(11):6199-204.
    Marshall SH, Arenas G. Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology. Electronic Journal of Biotechnology [online]. 15 August, 2003, Vol.6 No.2. Available from:http://www.ejbiotechnology.info/content/vol6/issue3/full/1/bip/. ISSN: 0717- 3458
    Matsuyama K, Nafori S. Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. J Biol Chem 1988;263:17112-6.
    Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997 Jul 24;388(6640):394-7.
    Mitta G, Vandenbulcke F, Hubert F, Salzet M, Roch P. Involvement of mytilins in mussel antimicrobial defense. J Biol Chem. 2000 Apr 28;275(17):12954-62.
    Miyakawa Y, Ratnakar P, Rao AG, Costello ML, Mathieu-Costello O, Lehrer RI,Catanzaro A. In-vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against Mycobacterium tuberculosis.Infect Infect Immun. 1996 Mar;64(3):926-32.
    Moerman L, Bosteels S, Noppe W, Willems J, Clynen E, Schoofs L, Thevissen K, Tytgat J, Van Eldere J, Van Der Walt J, Verdonck F. Antibacterial and antifungal properties of alpha-helical, cationic peptides in the venom of scorpions from southern Africa. Eur J Biochem. 2002 Oct;269(19):4799-810.
    Moore AJ, Devine DA, Bibby MC. Preliminary experimental anticancer activity of cecropins. Pept Res. 1994 Sep-Oct;7(5):265-9.
    Naitza S, Ligoxygakis P. Antimicrobial defences in Drosophila: the story so far. Mol Immunol. 2004 Feb;40(12):887-96.
    Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S, Niwa M,Takao T, Shimonishi Y. a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus): isolation and chemical structure. J Biol Chem 1988;263:16709-13.
    Okada M, Natori S. Primary structure of sarcotoxin I, an antibacterial protein induced in the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J Biol Chem. 1985 Jun 25;260(12):7174-7.
    Oren Z, Shai Y. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur J Biochem. 1996 Apr1;237(1):303-10.
    Orivel J, Redeker V, Le Caer JP, Krier F, Revol-Junelles AM, Longeon A, Chaffotte A, Dejean A, Rossier J.. Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. J Biol Chem. 2001 May 25;276(21): 17823-9.
    Papagianni M. Ribosomally synthesized peptides with antimicrobial properties:biosynthesis, structure, function, and applications. Biotechnol Adv. 2003 Sep;21(6):465-99.
    Paquette DW, Simpson DM, Friden P, Braman V, Williams RC. Safety and clinical effects of topical histatin gels in humans with experimental gingivitis. J Clin Periodontol. 2002 Dec;29(12): 1051-8.
    Park CB, Lee JH, Park IY, Kim MS, Kim SC. A novel antimicrobial peptide from the loach, Misgurnus anguillicaudatus. FEBS Lett. 1997 Jul 14;411(2-3): 173-8.
    Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8245-50.
    Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem. 2001 Mar 16;276(11):7806-10.
    Pili-Floury S, Leulier F, Takahashi K, Saigo K, Samain E, Ueda R, Lemaitre B. In vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults. J Biol Chem. 2004 Mar 26;279(13):12848-53.
    Pillai A, Ueno S, Zhang H, Lee JM, Kato Y. Cecropin P1 and novel nematode cecropins: a bacteria-inducible antimicrobial peptide family in the nematode Ascaris suum. Biochem J. 2005 Aug 15;390(Pt 1):207-14.
    Powers JP, Rozek A, Hancock RE. Structure-activity relationships for the beta-hairpin cationic antimicrobial peptide polyphemusin I. Biochim Biophys Acta. 2004 May 6;1698(2):239-50.
    Qu XD, Harwig SS, Oren AM, Shafer WM, Lehrer RI. Susceptibility of Neisseria gonorrhoeae to protegrins Infect Immun. 1996 Apr;64(4):1240-5.
    Qu Z, Steiner H, Engstrom A, Bennich H, Boman HG. Insect immunity: isolation and structure of cecropins B and D from pupae of the Chinese oak silk moth, Antheraea pernyi. Eur J Biochem. 1982 Sep;127(1):219-24.
    Rappocciolo E. Antimicrobial peptides as carriers of drugs. Drug Discov Today. 2004 Jun 1;9(11):470.
    Reddy KV, Shahani SK, Meherji PK. Spermicidal activity of Magainins: in vitro and in vivo studies. Contraception. 1996 Apr;53(4):205-10.
    Reddy KVR, Yedery RD, Aranha C. Antimicrobial peptides: premises and promises. Int J Antimicrob Agents. 2004 Dec;24(6):536-47.
    Reddy VR, Manjramkar DD. Evaluation of the antifertility effect of magainin-A in rabbits: in-vitro and in-vivo studies. Fertil Steril. 2000 Feb;73(2):353-8.
    Reed WA, Elzer PH, Enright FM, Jaynes JM, Morrey JD, White KL. Interleukin 2 promoter/enhancer controlled expression of a synthetic cecropin-class lytic peptide in transgenic mice and subsequent resistance to Brucella abortus. Transgenic Res. 1997 Sep;6(5):337-47.
    Relf JM, Chisholm JR, Kemp GD, Smith VJ. Purification and characterization of a cysteine-rich 11.5-kDa antibacterial protein from the granular haemocytes of the shore crab, Carcinus maenas. Eur J Biochem 1999 264: 350-357.
    Risso A, Braidot E, Sordano MC, Vianello A, Macri F, Skerlavaj B, Zanetti M,Gennaro R, Bernardi P. BMAP-28, an antibiotic peptide of innate immunity,induces cell death through opening of the mitochondrial permeability transition pore. Mol Cell Biol. 2002 Mar;22(6):1926-35.
    Ritonja A., Kopitar M., Jerala R., Turk V. Primary structure of a new cysteine proteinase inhibitor from pig leukocytes, FEBS Lett. 1989;255:211-214.
    Romeo D, Skerlavaj B, Bolognesi M, Gennaro R. Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem.1988 Jul 15;263(20):9573-5.
    Ryan MP, Flynn J, Hill C, Ross RP, Meaney WJ. The natural food grade inhibitor, lacticin 3147, reduced the incidence of mastitis after experimental challenge with Streptococcus dysgalactiae in nonlactating dairy cows. J Dairy Sci. 1999 Dec;82(12):2625-31.
    Sharma SV. Melittin-induced hyperactivation of phospholipase A2 activity and calcium influx in ras-transformed cells. Oncogene. 1993 Apr;8(4):939-47.
    Shi J, Ross CR, Chengappa MM, Sylte MJ, McVey DS, Blecha F. Antibacterial activity of a synthetic peptide (PR-26) derived from PR-39, a proline-arginine-rich neutrophil antimicrobial peptide. Antimicrob Agents Chemother.1996 Jan;40(1): 115-21.
    Shigenaga T, Muta T, Toh Y, Tokunaga F, Iwanaga S. Antimicrobial tachyplesin peptide precursor: cDNA cloning and cellular localization in the horseshoe crab (Tachypleus tridentatus). J Biol Chem 1990;265:21350-4.
    Shike H, Lauth X, Westerman ME, Ostland VE, Carlberg JM, Van Olst JC, Shimizu C, Bulet P, Burns JC. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. Eur J Biochem. 2002 Apr;269(8):2232-7.
    Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, Suder P,Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J,Potempa J. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother.2004 Dec;48(12):4673-9.
    Silva PI Jr, Daffre S, Bulet P. Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. Biol Chem. 2000 Oct 27;275(43):33464-70..
    Sinha S, Cheshenko N, Lehrer RI, Herold BC. NP-1, a rabbit alpha-defensin,prevents the entry and intercellular spread of herpes simplex virus type 2. Antimicrob Agents Chemother. 2003 Feb;47(2):494-500.
    Skerlavaj B, Benincasa M, Risso A, Zanetti M, Gennaro R. SMAP- 29: a potent antibacterial and antifungal peptide from sheep leucocytes. FEBS Lett. 1999 Dec 10;463(1-2):58-62.
    Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981 Jul 16;292(5820):246-8.
    Subbalakshmi C, Nagaraj R, Sitaram N. Biological activities of C terminal 15-residue synthetic fragment of melittin: design of an analog with improved antibacterial activity. FEBS Letters, 1999,448:62—66
    Subbalakshmi C, Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett. 1998 Mar 1;160(1):91-6.
    Suetake T, Aizawa T, Koganesawa N, Osaki T, Kobashigawa Y, Demura M,Kawabata S, Kawano K, Tsuda S, Nitta K. Production and characterization of recombinant tachycitin, the Cys-rich chitin-binding protein. Protein Eng. 2002 Sep;15(9):763-9.
    Tamamura H, Ishihara T, Otaka A, Murakami T, Ibuka T, Waki M, Matsumoto A,Yamamoto N, Fujii N. Analysis of the interaction of an anti-HIV peptide T22 ([Tyr5,12, Lys7]-polyphemusin-II), with gp120 and CD4 by surface plasmon resonance. Biochim Biophys Acta. 1996 Nov 14;1298(1):37-44.
    Tanji T, Ip YT. Regulators of the Toll and Imd pathways in the Drosophila innate immune response. Trends Immunol. 2005 Apr;26(4):193-8.
    Taylor SW, Craig AG, Fischer WH, Park M, Lehrer RI. Styelin D, an extensively modified antimicrobial peptide from ascidian hemocytes. J Biol Chem. 2000 Dec 8;275(49):38417-26
    Toke O. Antimicrobial Peptides: New Candidates in the Fight against Bacterial Infections. Biopolymers. 2005 May 4;[Epub ahead of print].
    Torres-Larios A, Gurrola GB, Zamudio FZ, Possani LD. Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. Eur J Biochem. 2000 Aug;267(16):5023-31.
    Townes CL, Michailidis G, Nile CJ, Hall J. Induction of cationic chicken liver-expressed antimicrobial peptide 2 in response to Salmonella enterica infection. Infect Immun. 2004 Dec;72(12):6987-93.
    Tran D, Tran PA, Tang YQ, Yuan J, Cole T, Selsted ME. Homodimeric theta-defensins from rhesus macaque leukocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J Biol Chem 2002;277: 3079-3084.
    van Dijk A, Veldhuizen EJ, van Asten AJ, Haagsman HP. CMAP27, a novel chicken cathelicidin-like antimicrobial protein. Vet Immunol Immunopathol. 2005 Jul 15;106(3-4):321-7.
    Vanhoye D, Bruston F, Nicolas P, Amiche M. Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain. Eur J Biochem. 2003 May;270(9):2068-81.
    Wachinger M, Kleinschmidt A, Winder D, von Pechmann N, Ludvigsen A,Neumann M, Holle R, Salmons B, Erfle V, Brack-Werner R. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol. 1998 Apr;79 (Pt 4):731-40.
    Wade D, Englund J. Synthetic antibiotic peptides database. Protein Pept Lett. 2002 Feb;9(1):53-7.
    Wang KJ, Zhou HL, Yang M. A Novel hepcidin like Antimicrobial Peptide Isolated from the Japanese Bass (Lateolabrax japonicus Cuvier et Valenciennes). Journal of Xiamen University(Natural Science). 2004;43:286-7(In Chinese).
    Wang LC, Wang JX, Wang LY, Zhao XF. Cloning and sequence analysis of the full-length cDNA encoding defensin, an antimicrobial peptide from the housefly (Musca domestica). Acta Zoologica Sinica. 2003 Jun;49(3):408-13. (In Chinese)
    Wang Z, Wang GS. APD: the Antimicrobial Peptide Database. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D590-2
    Wehkamp J, Schmidt K, Herrlinger KR, Baxmann S, Behling S, Wohlschlager C, Feller AC, Stange EF, Fellermann K. Defensin pattern in chronic gastritis: HBD-2 is differentially expressed with respect to Helicobacter pylori status. J Clin Pathol. 2003 May;56(5):352-7.
    Wei YX, Guo DS, Li RG, Chen HW, Chen PX. Purification of a big defensin from Ruditapes philippinesis and its antibacterial activity. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2003 Dec;35(12):1145-8(In Chinese).
    Whitmore L, Wallace BA. The Peptaibol Database: a database for sequences and structures of naturally occurring peptaibols. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D593-4.
    Yan L, Adams ME. Lycotoxins, antimicrobial peptides from venom of the wolf spider Lycosa carolinensis. J Biol Chem. 1998 Jan 23;273(4):2059-66.
    Yang D, Biragyn A, Kwak LW, Oppenheim JJ. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 2002 Jun;23(6):291-6.
    Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrel-Stave Model or Toroidal Model? A Case Study on Melittin Pores. Biophys J. 2001 Sep;81(3):1475-85.
    Ye JS, Zheng XJ, Leung KW, Chen HM, Sheu FS. Induction of transient ion channel-like pores in a cancer cell by antibiotic peptide. J Biochem (Tokyo). 2004 Aug;136(2):255-9.
    Zambon RA, Nandakumar M, Vakharia VN, Wu LP. The Toll pathway is important for an antiviral response in Drosophila. Proc Natl Acad Sci U S A. 2005 May 17;102(20):7257-62.
    Zasloff M. Antimicrobial peptides of multicellular organisms Nature. 2002 Jan 24;415(6870):389-95.
    Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin:isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449-53.
    Zeya HI, Spitznagel JK. Cationic proteins of polymorphonuclear leucocytes lysosomes I. Resolution of antibacterial and enzymatic activities. J Bacteriol 1966,91:750-4.
    Zhang G, Ross CR, Blecha F. Porcine antimicrobial peptides: new prospects for bancient molecules of host defense. Vet Res. 2000 May-Jun;31(3):277-96.
    Zhang L, Yu W, He T, Yu J, Caffrey RE, Dalmasso EA, Fu S, Pham T, Mei J, Ho JJ,Zhang W, Lopez P, Ho DD. Contribution of human alpha-defensin 1, 2 and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science. 2002 Nov 1;298(5595):995-1000.
    Zhao C, Liaw L, Lee IH, Lehrer RI. cDNA cloning of three cecropin-like antimicrobial peptides (Styelins) from the tunicate, Styelaclava. FEBS Lett. 1997 Jul 21;412(1):144-8.
    Zhao H, Kinnunen PK. Modulation of the activity of secretory phospholipase A2 by antimicrobial peptides. Antimicrob Agents Chemother. 2003 Mar;47(3):965-71.
    Zhao, C, T. Nguyen, L. Liu, R. E. Sacco, K. A. Brogden, and R. I. Lehrer. Gallinacin-3, an inducible epithelial p-defensin in the chicken. Infect Immun.2001 April;69(4): 2684-2691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700