中空磁性介孔纳米催化剂的制备及其在有机化学反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中空磁性介孔硅球(HMMS)具有优良的结构受到很大的关注,由于他们独一无二的特征,像低毒、好的兼容性、低的密度、磁性特点和高的比表面积,并且在孔表面拥有丰富的硅羟基,适合在多相催化体系中作为载体。显然,结合金属纳米颗粒和中空磁性纳米颗粒得到中空磁性介孔纳米催化剂(金属/HMMS),将具有高效的催化活性和可磁性回收特点。Pd/HMMS和Ag/HMMS,通过各种表征手段分析催化剂的结构,并且研究了它们在有机化学反应中的应用。
     1.钯和Fe304纳米粒子嵌入在介孔硅壳的中空磁性介孔纳米催化剂(Pd/HMMS)通过葡萄糖溶胶碳球,钯和四氧化三铁颗粒聚合物作为硬模板,包裹四乙氧基硅烷(TEOS)和十六烷基三甲氧基溴化铵(CTAB)混合物成功的制备。所合成的Pd/HMMS在Suzuki偶联反应中显示了超好的催化活性,对碘苯和苯硼酸的反应,仅仅3min时间便可以得到超过99%的产率,而且经过多次重复回收再利用催化活性几乎没有下降。
     2.由中空磁性介孔硅球和银纳米颗粒组成的Ag/HMMS纳米催化剂,在温和的条件下,高效的催化p-二羰基化合物胺化形成p-烯胺酮(酯)类化合物。在甲醇作为溶剂,60℃的条件下,乙酰丙酮和苄胺仅仅反应一个小时可以达到100%的产率。这种新颖的催化剂可在外界磁场下容易的从反应体系中分离出来,并且循环利用五次催化活性并没有明显的降低。
Hollow magnetic mesoporous silica spheres (HMMS) with well-defined structures have received great interest as supports in heterogeneous catalysis systems, owing to their unique properties such as low toxicity, good compatibilities, low density, magnetic properties and very high specific surface area with abundant Si-OH bonds on the pore surface. Obviously, to combine metal nanoparticles and HMMS to form hollow magnetic mesoporous nano-catalysts (metal/HMMS) will realize high activity and magnetic recyclability. We synthesized Pd/HMMS and Ag/HMMS, to analyze the structure of the catalysts through a variety of characterization methods, and study their application in organic reactions.
     1. The nano-catalyst of hollow magnetic mesoporous silica spheres (Pd/HMMS), with Pd and Fe3O4nanoparticles embedded in the mesoporous silica shell, were successfully prepared by using the colloidal carbon spheres of glucose, Pd and Fe3O4heteroaggregates as the hard template together with a coating of tetraethoxysilane (TEOS) and cetyltrimethylammonium bromide (CTAB) mixture. The synthesized Pd/HMMS shows excellent catalytic activity in the Suzuki cross-coupling reaction of iodobenzene with phenylboronic acid with over99%yield in3min and can be recycled multiple times without any significant loss in catalytic activity.
     2. A nano-cayalyst (Ag/HMMS) composed of hollow magnetic mesoporous spheres (HMMS) and Ag nanoparticles was found to be an efficient catalyst for synthesis of P-enamino ketones or esters from β-dicarbonyl compound under mild reaction conditions. Using methanol as a solvent, the condensation reaction of acetylacetone and benzylamine proceeded to give over100%yields at60℃for1h. The novel catalyst could be easily recovered by an external magnet from the reaction mixture and recycled five times without any significant loss in activity.
引文
[1]Chen, Z., Cui, Z. M., Niu, F., Jiang, L..Song, W. G. Pd nanoparticles in silica hollow spheres with mesoporous walls:a nanoreactor with extremely high activity[J]. Chem Commun (Camb). 2010,46(35):6524-6526.
    [2]Dou, J..Zeng, H. C. Targeted Synthesis of Silicomolybdic Acid (Keggin Acid) inside Mesoporous Silica Hollow Spheres for Friedel-Crafts Alkylation[J]. Journal of the American Chemical Society.2012,134(39):16235-16246.
    [3]Fang, X., Liu, Z., Hsieh, M.-F., Chen, M., Liu, P., Chen, C., et al. Hollow Mesoporous Aluminosilica Spheres with Perpendicular Pore Channels as Catalytic Nanoreactors[J]. The Journal of Physical Chemistry C.2012,6(5):4434-4444.
    [4]Yu, J., Ge, L., Liu, S., Dai, P., Ge, S..Zheng, W. Facile and scalable synthesis of a novel rigid artificial superoxide dismutase based on modified hollow mesoporous silica microspheres[J]. Biosensors and Bioelectronics.2011,26(5):1936-1941.
    [5]Yao, Y., McDowell, M. T., Ryu, I., Wu, H., Liu, N., Hu, L., et al. Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life[J]. Nano Letters. 2011,11(7):2949-2954.
    [6]Gao. C., Zhang, Q., Lu, Z..Yin, Y. Templated Synthesis of Metal Nanorods in Silica Nanotubes[J]. Journal of the American Chemical Society.2011,133(49):19706-19709.
    [7]Shi, S., Wang, M., Chen, C., Lu, F., Zheng, X., Gao, J., et al. Preparation of hydrophobic hollow silica nanospheres with porous shells and their application in pollutant removal[J]. RSC Advances.2013,3(4):1158-1164.
    [8]Liu, J., Qiao, S. Z., Chen, J. S., Lou, X. W., Xing, X..Lu, G. Q. Yolk/shell nanoparticles:new platforms for nanoreactors, drug delivery and lithium-ion batteries[J]. Chem Commun (Camb). 2011,47(47):12578-12591. [9]Yang, Y., Liu, J., Li, X., Liu, X..Yang, Q. Organosilane-Assisted Transformation from Core-Shell to Yolk-Shell Nanocomposites[J]. Chemistry of materials.2011,23(16):3676-3684.
    [10]Zhu, Y., Fang, Y., Borchardt, L..Kaskel, S. PEGylated hollow mesoporous silica nanoparticles as potential drug delivery vehicles[J]. Microporous and Mesoporous Materials.2011,141(1-3): 199-206.
    [11]Zhu, Y., Meng, W., Gao, K.Hanagata, N. Hollow Mesoporous Silica/Poly(l-lysine) Particles for Codelivery of Drug and Gene with Enzyme-Triggered Release Property[J]. The Journal of Physical Chemistry C.2011,115(28):13630-13636.
    [12]Li, X., Yang, Y..Yang, Q. Organo-functionalized silica hollow nanospheres:synthesis and catalytic application[J]. Journal of Materials Chemistry A.2013,1(5):1525.
    [13]Sanles-Sobrido, M., Perez-Lorenzo, M., Rodriguez-Gonzalez, B., Salgueirino, V..Correa-Duarte, M. A. Highly Active Nanoreactors:Nanomaterial Encapsulation Based on Confined Catalysis[J]. Angewandte Chemie International Edition.2012,51(16):3877-3882.
    [14]Yin, Y., Chen, M., Zhou, S..Wu, L. A general and feasible method for the fabrication of functional nanoparticles in mesoporous silica hollow composite spheres[J]. Journal of Materials Chemistry.2012,22(22).11245-11251.
    [15]Wu, X.-J..Xu, D. Soft Template Synthesis of Yolk/Silica Shell particles[J]. Advanced Materials.2010,22(13):1516-1520.
    [16]Menga, Q., Xianga, S., Zhanga, K., Wanga, M., Bua, X., Xuea, P., et al. A facile two-step etching method to fabricate porous hollow silica particles[J]. Journal of Colloid and Interface Science.2012,384(1):22-28.
    [17]Teng, Z., Su, X., Zheng, Y., Sun, J., Chen, G., Tian, C., et al. Mesoporous Silica Hollow Spheres with Ordered Radial Mesochannels by a Spontaneous Self-Transformation Approach[J]. Chemistry of materials.2013,25(1):98-105.
    [18]Wang, X., Cui, T., Cui, F., Zhang, Y., Li, D..Zhang, Z. Facile access to ultrasmall Eu2O3 nanoparticle-functionalized hollow silica nanospheres based on the spontaneous formation and decomposition of a cross-linked organic/inorganic hybrid core[J]. Chem Commun (Camb).2011, 47(22):6329-6331.
    [19]Yin, Y., Rioux, R. M., Erdonmez, C. K., Hughes, S., Somorjai, G. A..Alivisatos, A. P. Formation of Hollow Nanocrystals through the Nanoscale Kirkendall Effect [J]. Science.2004, 304(5671):711-714.
    [20]Du, X., Yao, L..He, J. One-Pot Fabrication of Noble-Metal Nanoparticles That Are Encapsulated in Hollow Silica Nanospheres:Dual Roles of Poly(acrylic acid) [J]. Chemistry-A European Journal.2012,18(25):7878-7885.
    [21]Du, X..He, J. Facile size-controllable syntheses of highly monodisperse polystyrene nano-and microspheres by polyvinylpyrrolidone-mediated emulsifier-free emulsion polymerization[J]. Journal of Applied Polymer Science.2008,108(3),1755-1760.
    [22]Le, Y., Chen, J.-F., Wang, J.-X., Shao, L..Wang, W.-C. A novel pathway for synthesis of silica hollow spheres with mesostructured walls[J]. Materials Letters.2004,58(15):2105-2108.
    [23]Zhao, Y., Wang, H., Liu, Y., Ye, J..Shen, S. Hollow MCM-41 microspheres derived from P(St-MMA)/MCM-41 core/shell composite particles[J]. Materials Letters.2008,62(27): 4254-4256.
    [24]Wang, S., Zhang, M., Wang, D., Zhang, W..Liu, S. Synthesis of hollow mesoporous silica microspheres through surface sol-gel process on polystyrene-co-poly(4-vinylpyridine) core-shell microspheres[J]. Microporous and Mesoporous Materials.2011,139(1-3):1-7.
    [25]Zhao, W., Lang, M., Li, Y., Li, L..Shi, J. Fabrication of uniform hollow mesoporous silica spheres and ellipsoids of tunable size through a facile hard-templating route[J]. Journal of Materials Chemistry.2009,19(18):2778-2783.
    [26]Yang, M., Wang, G..Yang, Z. Synthesis of hollow spheres with mesoporous silica nanoparticles shell[J]. Materials Chemistry and Physics.2008,111(1):5-8.
    [27]Wu, X., Tian, Y., Cui, Y., Wei, L., Wang, Q..Chen, Y. Raspberry-like Silica Hollow Spheres:(?)Hierarchical Structures by Dual Latex-Surfactant Templating Route[J]. The Journal of Physical Chemistry C.2007,111(27):9704-9708.
    [28]Guo, L., Dong, X., Cui, X., Cui, F..Shi, J. Morphology and dispersivity modulation of hollow microporous spheres synthesized by a hard template route[J]. Materials Letters.2009,63(13-14): 1141-1143.
    [29]Qi, G., Wang, Y., Estevez, L., Switzer, A. K., Duan, X., Yang, X., et al. Facile and Scalable Synthesis of Monodispersed Spherical Capsules with a Mesoporous Shell[J]. Chemistry of materials.2010,22(9):2693-2695.
    [30]Schacht S, H. O., Voigt-Martin I.G, Stucky G.D, Schuth F. Oil-water interface templating of mesoporous macroscale structures[J]. Science.1996,273:768-771.
    [31]Li, W., Sha, X., Dong, W..Wang, Z. Synthesis of stable hollow silica microspheres with mesoporous shell in nonionic W/O emulsion[J]. Chem Commun (Camb).2002,0(20):2434-2435.
    [32]Zhang, A., Zhang, Y., Xing, N., Hou, K..Guo, X. Hollow Silica Spheres with a Novel Mesoporous Shell Perforated Vertically by Hexagonally Arrayed Cylindrical Nanochannels[J]. Chemistry of materials.2009,21(18):4122-426.
    [33]Li, J., Liu, J., Wang, D., Guo, R., Li, X..Qi, W. Interfacially Controlled Synthesis of Hollow Mesoporous Silica Spheres with Radially Oriented Pore Structures[J]. Langmuir.2010,26(14): 12267-12272.
    [34]Fowler, C. E., Khushalani, D..Mann, S. Interfacial synthesis of hollow microspheres of mesostructured silica[J]. Chem Commun (Camb).2001,0(19):2028-2029.
    [35]Yongsheng, Jianlin, Zile, Hangrong, Meiling.Dongsheng. Hollow Spheres of Mesoporous Aluminosilicate with a Three-Dimensional Pore Network and Extraordinarily High Hydrothermal Stability[J]. Nano Letters.2003,3(5):609-612.
    [36]Zhang, H., Wu, J., Zhou, L., Zhang, D..Qi, L. Facile Synthesis of Monodisperse Microspheres and Gigantic Hollow Shells of Mesoporous Silica in Mixed Water-Ethanol Solvents[J]. Langmuir.2007),23(3):1107-1113.
    [37]Teng, Z., Han, Y., Li, J., Yan, F..Yang, W. Preparation of hollow mesoporous silica spheres by a sol-gel/emulsion approach [J]. Microporous and Mesoporous Materials.2010,127(1-2): 67-72.
    [38]Zhu, Y., Shi, J., Shen, W., Chen, H., Dong, X..Ruan, M. Preparation of novel hollow mesoporous silica spheres and their sustained-release property[J]. Nanotechnology.2005,16(11): 2633-2638.
    [39]Zhu, J., Tang, J., Zhao, L., Zhou, X., Wang, Y..Yu, C. Ultrasmall, Well-Dispersed, Hollow Siliceous Spheres with Enhanced Endocytosis Properties[J]. Small.2010,6(2):276-282.
    [40]Feng, Z., Li, Y., Niu, D., Li, L., Zhao, W., Chen, H., et al. A facile route to hollow nanospheres of mesoporous silica with tunable size[J]. Chem Commun (Camb).2008,0(23): 2629-2631.
    [41]Ogawa, M..Yamamoto, N. Preparation of Blow-Molded Macroscopic Bubbles of Mesoporous Silica by a Supramolecular Templating Approach[J]. Langmuir.1999,15(6):2227-2229.
    [42]Rana, R. K., Mastai, Y..Gedanken, A. Acoustic Cavitation Leading to the Morphosynthesis of Mesoporous Silica Vesicles[J]. Advanced Materials.2002,14(19):1414-1418.
    [43]Wang, J., Xia, Y., Wang, W., Poliakoff, M..Mokaya, R. Synthesis of mesoporous silica hollow spheres in supercritical CO2/water systems[J]. Journal of Materials Chemistry.2006, 16(18):1751-1756.
    [44]Chen, D., Li, L., Tang, F..Qi, S. Facile and Scalable Synthesis of Tailored Silica "Nanorattle" Structures[J]. Advanced Materials.2009,21(37):3804-3807.
    [45]Zhang, T., Zhang, Q., Ge, J., Goebl, J., Sun, M., Yan, Y., et al. A Self-Templated Route to Hollow Silica Microspheres[J]. The Journal of Physical Chemistry C.2009,13(8):3168-3175.
    [46]Dr, T. Z., Dr, J. G., Hu, Y., Zhang, Q., Dr, S. A..Prof, Y. Y. Formation of Hollow Silica Colloids through a Spontaneous Dissolution-Regrowth Process[J]. Angewandte Chemie International Edition.2008,47(31):5806-5811.
    [47]Chen, Y., Chen, H., Guo, L., Me, Q., Chen, F., Zhou, J., et al. Hoilow/Rattle-Type Mesoporous Nanostructures by a Structural Difference-Based Selective Etching Strategy[J]. ACS Nano.2010,4(1):529-539.
    [48]Jiang, X..Brinker, C. J. Aerosol-Assisted Self-Assembly of Single-Crystal Core/Nanoporous Shell Particles as Model Controlled Release Capsules[J]. Journal of the American Chemical Society.2006,128(14):529-539.
    [49]Fujiwara, M., Shiokawa, K., Sakakura, L.Nakahara, Y. Silica Hollow Spheres with Nano-Macroholes Like Diatomaceous Earth[J]. Nano Letters.2006,6(12):2925-2928.
    [50]Sadasivana, S..Sukhorukova, G. B. Fabrication of hollow multifunctional spheres containing MCM-41 nanoparticles and magnetite nanoparticles using layer-by-layer method[J]. Journal of Colloid and Interface Science.2006,304(2):437-441.
    [51]Ruo-Biao, M., Yan-Bao, F..Xiao-Hua, M. Preparation and Electrochemical Performance of Tin-Dioxide Filled Multi-Walled Carbon Nanotubes[J]. Acta Chim. Sinica.2009,25(03): 441-445.
    [52]Du, X., Liu, X., Chen, H..He, J. Facile Fabrication of Raspberry-like Composite Nanoparticles and Their Application as Building Blocks for Constructing Superhydrophilic Coatings[J]. The Journal of Physical Chemistry C.2009,113(21):9063-9070.
    [53]Tartaj, P., Morales, M. P., Gonzalez-Carreno, T., Veintemillas-Verdaguer, S..Serna, C. J. Advances in magnetic nanoparticles for biotechnology applications[J]. Journal of Magnetism and Magnetic Materials.2005,290-291(1):28-34.
    [54]Xu, C..Sun, S. Monodisperse magnetic nanoparticles for biomedical applications[J]. Polymer International.2007,56(7):821-826.
    [55]Gunther L. Magnetic nano-particles for high density recording[J]. Phys.World.1990,3: 28-38.
    [56]Horak, D., Babic, M., Mackova, H..Benes, M. J. Preparation and properties of magnetic nano-and microsized particles for biological and environmental separations[J]. Journal of Separation Science.2007,30(11):1751-1772.
    [57]Lu, A.-H., Salabas, E.L. Scuth, F. Magnetic Nanoparticles:Synthesis, Protection, Functionalization, and Application[J]. Angewandte Chemie International Edition.2007,46(8): 1222-1244.
    [58]Polshettiwar, V., Baruwati, B..Varma, R. S. Nanoparticle -supported and magnetically recoverable nickel catalyst:a robust and economic hydrogenation and transfer hydrogenation protocol[J]. Green Chemistry.2008,11(1):127-131.
    [59]Guin, D., Baruwati, B..Manorama, S. V. Pd on Amine-Terminated Ferrite Nanoparticles:A Complete Magnetically Recoverable Facile Catalyst for Hydrogenation Reactions[J]. Organic Letters.2007,9(7):1419-1421.
    [60]Amali, A. J..Rana, R. K. Stabilisation of Pd(0) on surface functionalised Fe3O4 nanoparticles:magnetically recoverable and stable recyclable catalyst for hydrogenation and Suzuki-Miyaura reactions[J]. Green Chemistry.2009,11(11),1781-1786.
    [61]Liu, J., Peng, X., Sun, W., Zhao, Y..Xia, C. Magnetically Separable Pd Catalyst for Carbonylative Sonogashira Coupling Reactions for the Synthesis of a,(3-Alkynyl Ketones[J]. Organic Letters.2008,10(18):3933-3936.
    [62]Levison, P. R., Badger. S. E., Dennis, J., Hathi, P., Davies, M. J., Bruce, I. J., et al. Recent developments of magnetic beads for use in nucleic acid purification[J]. Journal of Chromatography A.1998,816(7):107-111.
    [63]Gruttner, C., Rudershausen, S..Teller, J. Improved Properties of Magnetic particles by combination of different polymer materials as particle matrix[J]. Journal of Magnetism and Magnetic Materials.2001,225(1-2):1-7.
    [64]Kang, Y. S., Risbud, S., Rabolt, J. F..Stroeve, P. Synthesis and Characterization of Nanometer-Size Fe3O4 and y-Fe2O3 Particles[J]. Chemistry of materials.1996,8(9):2209-2211.
    [65]Vayssieres, L., Chaneac, C., Tronc, E..Jolivet, J. P. Size Tailoring of Magnetite Particles Formed by Aqueous Precipitation:An Example of Thermodynamic Stability of Nanometric Oxide Particles[J]. Journal of Colloid and Interface Science.1998,205(2):205-212.
    [66]Babes, L., Denizot, t., Tanguy, G., Jeune, J. J. L..Jallet, P. Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents:A Parametric Study[J]. Journal of Colloid and Interface Science.1999,212(2):474-482.
    [67]Sahoo, Y., Pizem, H., Fried, T., Golodnitsky, D., Burstein, L., Sukenik, C. N., et al. Alkyl Phosphonate/Phosphate Coating on Magnetite Nanoparticles:A Comparison with Fatty Acids[J]. Langmuir.2001,17(25):7907-7911.
    [68]Kim, D. K., Mikhaylova, M., Zhang, Y..Muhammed, M. Protective Coating of Superparamagnetic Iron Oxide Nanoparticles[J]. Chemistry of materials.2003,15(8):1617-1627.
    [69]T. Fried, G. S..Markovich, G. Ordered Two-Dimensional Arrays of Ferrite Nanoparticles[J]. Advanced Materials.2001,13(15):1158-1161.
    [70]Jana, N. R.,Chen, Y..Peng, X. Size- and Shape-Controlled Magnetic (Cr. Mn. Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach[J]. Chemistry of materials.2004,16(20): 3931-3935.
    [71]Lisiecki, I..Pileni, M. P. Synthesis of Well-Defined and Low Size Distribution Cobalt Nanocrystals:The Limited Influence of Reverse Micelles[J]. Langmuir.2003,19(22):9486-9489.
    [72]Zhang, J., Liu, Z., Han, B., Jiang, T., Wu, W., Chen, J., et al. Preparation of Polystyrene-Encapsulated Silver Nanorods and Nanofibers by Combination of Reverse Micelles, Gas Antisolvent, and Ultrasound Techniques[J]. The Journal of Physical Chemistry B.2004. 108(7):2200-2204.
    [73]Montagne, F., Mondain-Monval, O., Pichot, C., Mozzanega, H..Elaissari, A. Preparation and characterization of narrow sized (O/W) magnetic emulsion[J]. Journal of Magnetism and Magnetic Materials.2002,250:302-312.
    [74]Lopez-Quintela M.A.,Rivas J. Chemical reactions in microemulsions:a powerful method to obtain ultrafine particles[J]. Journal of Colloid and Interface Science.1993,158(2):446-551.
    [75]Carpenter, E. E. Iron nanoparticles as potential magnetic carriers[J]. Journal of Magnetism and Magnetic Materials.2001,225(1-2):17-20.
    [76]Woo, K., Lee, H. J., Ahn, J.-P..Park, Y. S. Sol-Gel Mediated Synthesis of Fe2O3 Nanorods[J]. Advanced Materials.2003,15(20):1761-1764.
    [77]Zhang, F., Jin, J., Zhong, X., Li, S., Niu, J., Li, R., et al. Pd immobilized on amine-functionalized magnetite nanoparticles:a novel and highly active catalyst for hydrogenation and Heck reactions[J]. Green Chemistry.2011,13(5):1238-1243.
    [78]Jin, X., Zhang, K., Sun, J., Wang, J., Dong, Z..Li, R. Magnetite nanoparticles immobilized Salen Pd (Ⅱ) as a green catalyst for Suzuki reaction[J]. Catalysis Communications.2012,26(5): 199-203.
    [79]Niu, J.-R., Huo, X., Zhang, F.-W., Wang, H.-B., Zhao, P., Hu, W.-Q., et al. Preparation of Recoverable Pd Catalysts for Carbonylative Cross-Coupling and Hydrogenation Reactions[J]. Chemcatchem.2012,4(1),1-7.
    [80]Zhao, W., Gu, J., Zhang, L., Chen, H..Shi, J. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure[J]. Journal of the American Chemical Society.2005,127(25):8916-8917.
    [81]Ruiz-Hernandez, E., Lopez-Noriega, A., Arcos, D., Izquierdo-Barba, I., Terasaki, O..Vallet-Regi, M. Aerosol-Assisted Synthesis of Magnetic Mesoporous Silica Spheres for Drug Targeting[J]. Chemistry of materials.2007,19(14):3455-3463.
    [82]Zhao, W., Chen, H., Li, Y., Li, L., Lang, M..Shi, J. Uniform Rattle-type Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and their Sustained-Release Property[J]. Advanced Functional Materials.2008,18(18):2780-2788.
    [83]Zhang, L., Qiao, S. Z., Jin, Y. G., Chen, Z. G., Gu, H. C.Lu, G. Q. Magnetic Hollow Spheres of Periodic Mesoporous Organosilica and Fe3O4 Nanocrystals:Fabrication and Structure Control[J]. Advanced Materials.2008,20(4):805-809.
    [84]Xuan, S., Liang, F..Shu, K. Novel method to fabricate magnetic hollow silica particles with anisotropic structure[J]. Journal of Magnetism and Magnetic Materials[J].2009),321(8): 1029-1033.
    [85]Zhou, J., Wu, W., Caruntu, D., Yu, M. H., Martin, A., Chen, J. F., et al. Synthesis of porous magnetic hollow silica nanospheres for nanomedicine application[J]. The Journal of Physical Chemistry C.2007,111(47):17473-17477.
    [86]Zhu, Y., Kockrick, E., Ikoma, T., Hanagata, N..Kaskel, S. An Efficient Route to Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres Using Colloidal Carbon Spheres Templates[J]. Chemistry of materials.2009,21(12):2547-2553.
    [87]Xia, L. Y., Zhang, M. Q., Yuan, C. e..Rong, M. Z. A facile heteroaggregate-template route to hollow magnetic mesoporous spheres with tunable shell structures[J]. Journal of Materials Chemistry.2011,21(25):9020-9026.
    [88]Somorjai, G. A., Frei, H..Park, J. Y. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques[J]. Journal of the American Chemical Society.2009,131(46):16589-16605.
    [89]Bond, G. C..Thompson, D. T. Catalysis by Gold[J]. Catalysis Reviews:Science and Engineering.1999,41(3-4),319-388.
    [90]Bell, A. T. The Impact of Nanoscience on Heterogeneous Catalysis[J]. Science.2009, 299(5613):1688-1691.
    [91]Harding, C., Habibpour, V., Kunz, S., Farnbacher, A. N.-S., Heiz, U., Yoon, B., et al. Control and Manipulation of Gold Nanocatalysis:Effects of Metal Oxide Support Thickness and Composition[J]. Journal of the American Chemical Society.2009,131(2):538-548.
    [92]Carlini, C., Patrono, P., Galletti, A. M. R., Sbrana, G..Zima, V. Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate[J]. Applied Catalysis A:General.2005,289(2):197-204.
    [93]Budroni, G..Corma, A. Gold and gold-platinum as active and selective catalyst for biomass conversion:Synthesis of γ-butyrolactone and one-pot synthesis of pyrrolidone[J]. Journal of Catalysis.2008,257(2):403-408.
    [94]Casanova, O., Iborra, S..Corma, A. Biomass into Chemicals:Aerobic Oxidation of 5-Hydroxymethyl-2-furfural into 2,5-Furandicarboxylic Acid with Gold Nanoparticle Catalysts[J]. ChemSusChem.2009,2(12):1138-1144.
    [95]Wey Yang Teoh, R. A., Lutz Madler, Sotiris E. Pratsinis. Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid[J]. Catalysis Today.2007,120(2):203-213.
    [96]Kuhn, J. N., Huang, W., Tsung, C.-K., Zhang, Y..Somorjai, G. A. Structure Sensitivity of Carbon-Nitrogen Ring Opening:Impact of Platinum Particle Size from below 1 to 5 nm upon Pyrrole Hydrogenation Product Selectivity over Monodisperse Platinum Nanoparticles Loaded onto Mesoporous Silica[J]. Journal of the American Chemical Society.2008,130(43): 14026-14027.
    [97]Tsung, C.-K., Kuhn, J. N., Huang, W., Aliaga, C., Hung, L.-L., Somorjai, G. A., et al. Sub-10 nm Platinum Nanocrystals with Size and Shape Control:Catalytic Study for Ethylene and Pyrrole Hydrogenation[J]. Journal of the American Chemical Society.2009,131(16):5816-5822.
    [98]Sinfelt, J. H. Role of surface science in catalysis[J]. Surface Science.2002,500(1-3): 923-946.
    [99]Norskov, J. K., Bligaard, T., Hvolb(?)k, B., Abild-Pedersen, F., and,I. C..Christensen, C. H. The nature of the active site in heterogeneous metal catalysis[J]. Chemical Society Reviews.2008, 37(10):2163-2171.
    [100]Norskov, J. K.. Bligaard, T., Rossmeisl. J..Christensen. C. H. Towards the computational design of solid catalysts[J]. Nature Chemistry.2009.121(1):37-46.
    [101]Sinfelt, J. H., Via. G. H..Lytle, F. W. Application of EXAFS in Catalysis. Structure of Bimetallic Cluster Catalysts[J]. Catalysis Reviews:Science and Engineering.1984,26(1):81-140.
    [102]Studt, F., Abild-Pedersen, F., Bligaard, T., Sorensen, R. Z., Christensen, C. H..N(?)rskov, J. K. Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of AcetylenefJ]. Science.2008,320(5881):1320-1322.
    [103]Tao, F., Grass, M. E., Zhang, Y., Butcher, D. R., Renzas, J. R., Liu, Z., et al. Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles[J]. Science.2008, 322(5903):932-934.
    [104]Kamat, P. V. Meeting the Clean Energy Demand:Nanostructure Architectures for Solar Energy Conversion[J]. The Journal of Physical Chemistry C.2007,111(7):2834-2860.
    [105]Hochbaum, A. I..Yang, P. Semiconductor Nanowires for Energy Conversion[J]. Chemical Reviews.2010,110(1):527-546.
    [106]Yum, J.-H., Chen, P., Gratzel, M..Nazeeruddin, M. K. Recent Developments in Solid-State Dye-Sensitized Solar Cells[J]. ChemSusChem.2008,1(8-9):699-707.
    [107]Hardin, B. E., Hoke, E. T., Armstrong, P. B., Yum, J.-H., Comte, P., Torres, T., et al. Increased light harvesting in dye-sensitized solar cells with energy relay dyes[J]. Nature Photonics. 2009,3:406-411.
    [108]Gratzel, M. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells[J]. Inorganic Chemistry.2005,44(20):6841-6851.
    [109]Steele, B. C. H..Heinzel, A. Materials for fuel-cell technologies[J]. Nature.2001,414: 345-352.
    [110]Winter, M. What Are Batteries, Fuel Cells, and Supercapacitors? [J] Chemical Reviews. 2004,104(10):4245-4270.
    [111]Maier, J. Nanoionics:ion transport and electrochemical storage in confined systems[J].2005, Nature Materials,4:805-815.
    [112]Maier, J. Nanoionics:ionic charge carriers in small systems[J]. Physical Chemistry Chemical Physics.2009,11 (17):3011-3022.
    [113]Maekawa, H., Tanaka, R., Sato, T., Fujimaki, Y..Yamamura, T. Size-dependent ionic conductivity observed for ordered mesoporous alumina-Li composite[J]. Solid State Ionics.2004, 175(1-4):281-285.
    [114]Aurbach, D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries[J]. Journal of Power Sources.2000,89(2):206-218.
    [115]Baraldi, P. G., Simoni, D..Manfredini, S. Carbon Electrodes for Double-Layer Capacitors I. Relations Between Ion and Pore Dimensions[J]. Journal of The Electrochemical Society.2000, 147(7):2486-2493.
    [116]Wang, Y..Cao, G. Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries[J]. Advanced Materials.2008,20(12):2251-2269.
    [117]Venkatasubramanian, R. Applied physics:Nanothermal trumpets[J]. Nature.2010,463: 619.
    [118]Harman, T. C., Taylor, P. J., Walsh, M. P..LaForge. B. E. Quantum Dot Superlattice Thermoelectric Materials and Devices[J]. Science.2002,297(5590):2229-2232.
    [119]Venkatasubramanian. R.. Siivola, E., Colpitts, T..O'Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature.2001,413:597-602.
    [120]Whitesides, G. M..Stroock, A. D. Flexible Methods for Microfluidics[J]. Physics Today. 2001,54(6):42.
    [121]Schubert, E. F..Kim, J. K. Solid-State Light Sources Getting Smart[J]. Science.2005, 308(5726):1274-1278
    [122]Alivisatos, A. P. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals[J]. The Journal of Physical Chemistry.1996,100(31):13226-13239.
    [123]R. Liu, Y. Zhang, X. Zhao, A. Agarwal. L. J. Mueller, P. Y. Feng. pH-Responsive Nanogated Ensemble Based on Gold Capped Mesoporous Silica through an Acid-Labile Acetal Linker[J]. Journal of the American Chemical Society.2010,132,1500-1501.
    [124]Du, X..He, J. Carrier effect in the synthesis of rattle-type Au@hollow silica nanospheres by impregnation and thermal decomposition method[J]. Microporous and Mesoporous Materials. 2012,163:201-210.
    [125]Yang, X., Du, L., Liao, S., Li, Y..Song, H. High-performance gold-promoted palladium catalyst towards the hydrogenation of phenol with mesoporous hollow spheres as support[J]. Catalysis Communications.2012,17:29-33.
    [126]Wang, F., Tang, Y., Zhang, B., Chen, B..Wang, Y. Preparation of novel magnetic hollow mesoporous silica microspheres and their efficient adsorption[J]. Journal of Colloid and Interface Science.2012,386(1):129-134.
    [127]Zhu, Y., Ikoma, T., Hanagata, N..Kaskel, S. Rattle-type Fe3O4@SiO2 hollow mesoporous spheres as carriers for drug delivery[J]. Small.2010,6(3):471-478.
    [128]Yamada, Y., Mizutani, M., Nakamura, T..Yano, K. Mesoporous Microcapsules with Decorated Inner Surface:Fabrication and Photocatalytic Activity [J]. Chemistry of materials.2010, 22(5):1695-1703.
    [129]Zhu, Y., Fang, Y..Kaskel, S. Folate-Conjugated Fe3O4@SiO2 Hollow Mesoporous Spheres for Targeted Anticancer Drug Delivery[J]. The Journal of Physical Chemistry C.2010,114(39): 16382-16388.
    [130]Xia, L. Y., Zhang, M. Q., Yuan, C. e..Rong, M. Z. A facile heteroaggregate-template route to hollow magnetic mesoporous spheres with tunable shell structures[J]. Journal of Materials Chemistry.2011,21(25):9020-9026.
    [131]Sun, J., Dong, Z., Sun, X., Li, P., Zhang, F., Hu, W., et al. Pd nanoparticles in hollow magnetic mesoporous spheres:High activity, and magnetic recyclability[J]. Journal of Molecular Catalysis A:Chemical.2013,367:46-51.
    [1]Zhang, Q., Zhang, T., Ge, J..Yin, Y. Permeable Silica Shell through Surface-Protected Etching[J]. Nano Letters.2008,8(9),2867-2871.
    [2]Fang, X., Chen, C., Liu, Z., Liu, P..Zheng, N. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres[J]. Nanoscale.2011,3(4):1632-1639.
    [3]Du, L., Liao, S., Khatib, H. A., Stoddart, J. F..Zink, J. I. Controlled-Access Hollow Mechanized Silica Nanocontainers[J]. Journal of the American Chemical Society.2009,131(42): 15136-15142.
    [4]Lee, J., Park, J. C., Bang, J. U..Song, H. Precise Tuning of Porosity and Surface Functionality in Au@SiO2 Nanoreactors for High Catalytic Efficiency[J]. Chemistry of materials.2008,20(18): 5839-5844.
    [5]Wu, S.-H., Tseng, C.-T., Lin, Y.-S., Lin, C.-H., Hung, Y..Mou, C.-Y. Catalytic nano-rattle of Au@hollow silica:towards a poison-resistant nanocatalyst[J]. Journal of Materials Chemistry. 2011,21(3):789-794.
    [6]Tan, L., Chen, D., Liu, H.Tang, F. A silica nanorattle with a mesoporous shell:an ideal nanoreactor for the preparation of tunable gold cores[J]. Advanced Materials.2010,22(43): 4885-4889.
    [7]Yang, X., Du, L., Liao, S., Li, Y.,Song, H. High-performance gold-promoted palladium catalyst towards the hydrogenation of phenol with mesoporous hollow spheres as support[J]. Catalysis Communications.2012,17(5):29-33.
    [8]Chen, Z., Cui, Z. M., Niu, F., Jiang, L..Song, W. G. Pd nanoparticles in silica hollow spheres with mesoporous walls:a nanoreactor with extremely high activity[J]. Chem Commun (Camb). 2010,46(35):6524-6526.
    [9]Yang, X., Liao, S., Zeng, J..Liang, Z. A mesoporous hollow silica sphere (MHSS):Synthesis through a facile emulsion approach and application of support for high performance Pd/MHSS catalyst for phenol hydrogenation[J]. Applied Surface Science.2011,257(9):4472-4477.
    [10]Bacharia, K., Milletb, J. M. M., Bonvillec, P., Cherifia, O..Figuerasb, F. Spectroscopic characterization of iron nanoparticles in Fe-mesoporous silicate catalysts[J]. Journal of Catalysis. 2007,247(1):52-58.
    [11]Bourlinos, A. B., Karakassides, M. A..Petridis, D. Synthesis and Characterization of Iron-Containing MCM-41 Porous Silica by the Exchange Method of the Template[J]. The Journal of Physical Chemistry B.2000,104(18):4375-4380.
    [12]Domine, M. E., Hernandez-Soto, M. C., Navarro, M. T..Perez, Y. Pt and Pd nanoparticles supported on structured materials as catalysts for the selective reductive animation of carbonyl compounds[J]. Catalysis Today.2011,172(1):13-20.
    [13]Selvama, P., Mohapatraa, S. K., Sonavaneb, S. U.Jayaramb, R. V. Catalytic hydrodehalogenation of aryl halides, reduction of nitroarenes and reductive cleavage of azo compounds over mesoporous PdMCM-41 molecular sieves under transfer hydrogenation conditions[J]. Applied Catalysis B:Environmental.2004,49(4):251-255.
    [14]Krawiec, P., Kockrick, E., Simon, P., Auffermann, C..Kaskel. S. Platinum-Catalyzed Template Removal for the in Situ Synthesis of MCM-41 Supported Catalysts[J]. Chemistry of materials.2006,18(11):2663-2669.
    [15]Han, P., Wang, X., Qiu, X., Ji, X..Gao, L. One-step synthesis of palladium/SBA-15 nanocomposites and its catalytic application[J]. Journal of Molecular Catalysis A:Chemical.2007, 272(1-2):136-141.
    [16]Li, C, Zhang, Q., Wang, Y..Wan, H. Preparation, Characterization and Catalytic Activity of Palladium Nanoparticles Encapsulated in SBA-15[J]. Catalysis Letters.2008,120(1-2),126-136.
    [17]Wang, H..Liu, C.-j. Preparation and characterization of SBA-15 supported Pd catalyst for CO oxidation[J]. Applied Catalysis B:Environmental.2011,106(3-4):672-680.
    [18]Wang, P..Zheng, X. Pd/SBA-15 nanocomposite:Synthesis, structure and catalytic properties in Heck reactions[J]. Powder Technology.2011,210(2):115-121.
    [19]Fukuoka, A., Araki, H., Sakamoto, Y., Inagaki, S., Fukushima, Y..Ichikawa, M. Palladium nanowires and nanoparticles in mesoporous silica templates[J]. Inorganica Chimica Acta.2003, 350(4),371-378.
    [20]Park, S., Park, D. R., Choi, J. H., Kim, T. J., Chung, Y.-M., Oh, S.-H., et al. Direct synthesis of hydrogen peroxide from hydrogen and oxygen over insoluble CS2.5H0.5PW12O40 heteropolyacid supported on Pd/MCF[J]. Journal of Molecular Catalysis A:Chemical.2010,332(1-2):76-83.
    [21]Dr, S. S., Prof, V. S..Prof, W. R. T. Magnetically Separable Nanocatalysts:Bridges between Homogeneous and Heterogeneous Catalysis[J]. Angewandte Chemie International Edition.2010, 49(20):3428-3459.
    [22]Lv, B., Xu, Y., Tian. H., Wu, D..Sun, Y. Synthesis of Fe3O4\SiO2\Ag nanoparticles and its application in surface-enhanced Raman scattering[J]. Journal of Solid State Chemistry.2010, 183(12):2968-2973.
    [23]Deng, Y., Cai, Y., Sun, Z., Liu, J., Wei, J., Li, W., et al. Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure:A Highly Integrated Catalyst System[J]. Journal of the American Chemical Society.2010,132(24):8466-8473.
    [24]Zhang, F., Jin, J., Zhong, X., Li, S., Niu, J., Li, R., et al. Pd immobilized on amine-functionalized magnetite nanoparticles:a novel and highly active catalyst for hydrogenation and Heck reactions[J]. Green Chemistry.2011,13(5):1238-1243.
    [25]Jin, X., Zhang, K., Sun, J., Wang, J., Dong, Z..Li, R. Magnetite nanoparticles immobilized Salen Pd (Ⅱ) as a green catalyst for Suzuki reaction[J]. Catalysis Communications.2012,26(5): 199-203.
    [26]Niu, J.-R., Huo, X., Zhang, F.-W., Wang, H.-B., Zhao, P., Hu, W.-Q., et al. Preparation of Recoverable Pd Catalysts for Carbonylative Cross-Coupling and Hydrogenation Reactions. Chemcatchem[J].2012,4(1),1-7.
    [27]Zhu, Y., Kockrick, E., Ikoma, T., Hanagata, N..Kaskel, S. An Efficient Route to Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres Using Colloidal Carbon Spheres Templates[J]. Chemistry of materials.2009,21(12):2547-2553.
    [28]Zhu, Y., Fang, Y..Kaskel, S. Folate-Conjugated Fe3O4@SiO2 Hollow Mesoporous Spheres for Targeted Anticancer Drug Delivery[J]. The Journal of Physical Chemistry C.2010,114(39): 16382-16388.
    [29]Zhu, Y., Ikoma, T., Hanagata, N..Kaskel, S. Rattle-type Fe3O4@SiO2 hollow mesoporous spheres as carriers for drug delivery[J]. Small.2010,6(3):471-478.
    [30]Zhou, J., Wu, W., Caruntu, D., Yu, M. H., Martin. A., Chen, J. F., et al. Synthesis of porous magnetic hollow silica nanospheres for nanomedicine application[J]. The Journal of Physical Chemistry C.2007,111(47):17473-17477.
    [31]Zhao, W., Chen, H., Li, Y., Li, L., Lang, M..Shi, J. Uniform Rattle-type Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and their Sustained-Release Property[J]. Advanced Functional Materials.2008,18(18):2780-2788.
    [32]Xia, L. Y., Zhang, M. Q., Yuan, C. e..Rong, M. Z. A facile heteroaggregate-template route to hollow magnetic mesoporous spheres with tunable shell structures[J]. Journal of Materials Chemistry.2011,21(25):9020-9026.
    [33]Jin, P., Chen, Q., Hao, L., Tian, R., Zhang, L..Wang, L. Synthesis and Catalytic Properties of Nickel Silica Composite Hollow Nanospheres[J]. The Journal of Physical Chemistry B.2004, 108(20):6311-6314.
    [34]Zhang, Y., Li, J., Han, D., Zhang, H., Liu, P..Li, C. An efficient resolution of racemic secondary alcohols on magnetically separable[J]. biocatalyst Biochem Biophys Res Commun. 2008,365(4):609-613.
    [35]Li, J., Zhang, Y., Han, D., Gao, Q..Li, C. Asymmetric transfer hydrogenation using recoverable ruthenium catalyst immobilized into magnetic mesoporous silica[J]. Journal of Molecular Catalysis A:Chemical.2009,298(1-2):31-35.
    [36]Tu, C., Du, J.. Yao, L., Yang, C., Ge, M., Xu, C. et al. Magnetic Ni/SiO2 composite microcapsules prepared by one-pot synthesis[J]. Journal of Materials Chemistry.2009.19(9). 1245-1251.
    [37]Sun, X..Li, Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angew Chem Int Ed Engl.2004,43(5):597-601.
    [38]Zhong, L.-S., Hu, J.-S., Cui, Z.-M., Wan, L.-J..Song, W.-G. In-Situ Loading of Noble Metal Nanoparticles on Hydroxyl-Group-Rich Titania Precursor and Their Catalytic Applications[J]. Chemistry of materials.2007,19(18),4557-4562.
    [1]Kascheres, C. M. The Chemistry of Enaminones, Diazocarbonyls and Small Rings:Our Contribution[J]. J. Braz. Chem. Soc.2003,14(6):945-969.
    [2]Elassar, A.-Z. A..EI-Khair, A. A. Recent developments in the chemistry of enaminones[J]. Tetrahedron.2003,59:8463-8480.
    [3]Salama, N. N., Scott, K. R..Eddington, N. D. DM27, an enaminone, modifies the in vitro transport of antiviral therapeutic agents[J]. Biopharmaceutics & Drug Disposition.2004,25(5): 227-236.
    [4]Salama, N. N., Scott, K. R..Eddington, N. D. Ionic liquid promoted synthesis of β-enamino ketones at room temperature[J]. Synlett.2006, (6):933-935.
    [5]Spivey, A. C., Srikaran, R., Diaper, C. M..Turner, D. J. Traceless solid phase synthesis of 2-substituted pyrimidines using an'off-the-shelf chlorogermane-functionalised resin[J]. Organic & Biomolecular Chemistry.2003,1(10):1638-1640.
    [6]Natalie, D. E., Donna, S. C., Khurana, M., Noha, N. S.,James, P. S., Sylvia, J. H., et al. Synthesis and anticonvulsant activity of enaminones. Part 7. Synthesis and anticonvulsant evaluation of ethyl 4-[(substituted phenyl)amino]-6-methyl-2-oxocyclohex-3-ene-l-carboxylates and their corresponding 5-methylcyclohex-2-enone derivatives[J]. European Journal of Medicinal Chemistry.2003.38(1):49-64.
    [7]Hegde, S. G..Jones, C. R. Synthesis of 1,6-dihydro-5-hydroxy-6-oxo-3-(trifluoromethyl)-4-pyridazinecarboxylates[J]. Journal of Heterocyclic Chemistry.1993,30(6): 1501-1508.
    [8]Lue, P..Greenhill, J. V. Academic Press, New York, Advances in Heterocyclic Chemistry, (Ed.: AR Katritzky),1997,67:207-343.
    [9]Katritzky, A. R., Hayden, A. E., Kirichenko, K., Pelphrey, P..Ji, Y. A Novel Route to Imidoylbenzotriazoles and Their Application for the Synthesis of Enaminones[J]. The Journal of Organic Chemistry.2004,69(15):5108-5111.
    [10]Bartoli, G., Cimarelli, C., Dalpozzo, R..Palmieri, G. A versatile route to β-enamino esters by acylation of lithium enamines with diethyl carbonate or benzyl chloroformate[J]. Tetrahedron. 1995,51(31):8613-8622.
    [11]Reddy, D. S., Rajale, T. V., Shivakumar, K..Iqbal, J. A mild and efficient method for the synthesis of vinylogous carbamates from alkyl azides[J]. Tetrahedron Letters.2005,46(6): 979-982.
    [12]Baraldi, P. G., Simoni, D..Manfredini, S. An Improved Preparation of Enaminones from 1,3-Diketones and Ammonium Acetate or Amine Acetates[J]. Synthesis.1983,1983(11): 902-903.
    [13]Elaridi, J., Thaqi, A., Prosser, A., Jackson, W. R..Robinson, A. J. An enantioselective synthesis of β2-amino acid derivatives. Tetrahedron Asymmetry[J].2005,16(7):1309-1319.
    [14]Stefane, B..Polanc, S. A New Regio- and Chemoselective Approach to β-Keto Amides and β-Enamino Carboxamides via 1,3,2-Dioxaborinanes[J]. Synlett.2004,2004(4):698-702
    [15]Zhao, Y., Zhao, J., Zhou. Y., Lei, Z., Li, L..Zhang, H. Effcient synthesis of β-amino-α, β-unsaturated carbonyl compounds[J]. New J. Chem.2005,29:769-772.
    [16]Khodaei, M. M., Khosropour, A. R..Kookhazadeh, M. A novel enamination of β-dicarbonyl compounds catalyzed by Bi(TFA)3 immobilized on molten TBAB[J]. Canadian Journal of Chemistry.2005,83(3):209-212.
    [17]Yadav, J. S., Kumar, V. N., Rao, R. S., Priyadarshini, A. D., Rao, P. P., Reddy, B. V. S., et al. Sc(OTf)3 catalyzed highly rapid and efficient synthesis of β-enamino compounds under solvent-free conditions[J]. Journal of Molecular Catalysis A:Chemical.2006,256(1-2):234-237.
    [18]Epifano, F., Genovese, S..Curini, M. Ytterbium triflate catalyzed synthesis of β-enaminones[J]. Tetrahedron Letters.2007,48(15):2717-2720.
    [19]Mo, L.-P., Liu, S.-F..Li, W.-Z. An Efficient Method for the Enamination of 1,3-Dicarbonyl Compounds with Ceric Ammonium Nitrate (CAN) [J]. Journal of the Chinese Chemical Society. 2007,54(4):879-884.
    [20]Wang, H.-S..Miao, J.-Y. Silica supported sodium hydrogen sulfate catalyzed efficient synthesis of beta-enamino ketones and esters[J]. Chinese Journal of Organic Chemistry.2007, 27(2):266-268.
    [21]Das, B., Venkateswarlu, K., Majhi, A., Reddy, M. R., Reddy, K. N., Rao, Y. K., et al. Highly efficient, mild and chemo- and stereoselective synthesis of enaminones and enamino esters using silica supported perchloric acid under solvent-free conditions[J]. Journal of Molecular Catalysis A: Chemical.2006,246(1-2),276-281.
    [22]Zhang, Z.-H., Yin. L..Wang, Y.-M. A General and Efficient Method for the Preparation of p-Enamino Ketones and Esters Catalyzed by Indium Tribromide[J]. Advanced Synthesis & Catalysis.2006,348(1-2):184-190.
    [23]Zhang, Z.-H..Hu, J.-Y. Cobalt(Ⅱ) Chloride-Mediated Synthesis of β-Enamino Compounds under Solvent-Free Conditions[J]. J. Braz. Chem. Soc.2006,17(7):1447-1451.
    [24]Khodaei, M. M., Khosropour, A. R..Kookhazadeh, M. Enamination of β-Dicarbonyl Compounds Catalyzed by CeCl·7H2O at Ambient Conditions:Ionic Liquid and Solvent-Free Media[J]. Synlett.2004, (11):1980-1984.
    [25]Zhang, Z.-H., Li, T.-S..Li, J.-J. Synthesis of enaminones and enamino esters catalysed by ZrOCl2·8H2O[J]. Catalysis Communications.2007,8(11):1615-1620.
    [26]Bartoli, G., Bosco, M., Locatelli, M., Marcantoni, E., Melchiorre, P..Sambri, L. Zn(ClO4)2-6H2O as a Powerful Catalyst for the Conversion of β-Ketoesters into β-Enamino Esters[J]. Synlett.2004, (2):293-242.
    [27]Vohra, R. K., Renaud, J.-L..Bruneau, C. Efficient Synthesis of β-Aminoacrylates and β-Enaminones Catalyzed by Zn(OAc)2-2H2O[J]. Collection of Czechoslovak Chemical Communications.2005,70(11):1943-1952.
    [28]Texier-Boullet, F. A Simple, Convenient and Mild Synthesis of Imines on Alumina Surface without Solvent[J]. Synthesis.1985, (6/7):679-681.
    [29]Lin, J..Zhang, L.-F. ZrCl4-Catalyzed Efficient Synthesis of Enaminones and Enamino Esters under Solvent-free Conditions[J]. Monatshefte fur Chemie-Chemical Monthly.2007,138(1): 77-81.
    [30]Oskooie, H., Heravi, M., Javadi, N., Bakhtiari, K..Bamoharram, F. K7[PW11CoO40]: Efficient and Ecofriendly Catalyst for the Enamination of β-Dicarbonyl Compounds[J]. Synthetic Communications.2008,38(6):2864-2869.
    [31]Arcadi, A., Bianclii, G., Giuseppe, S. D..Marinelli, F. Gold catalysis in the reactions of 1,3-dicarbonyls with nucleophiles[J]. Green Chemistry.2003,5(1):64-67.
    [32]Astruc, D., Lu, F..Aranzaes, J. R. Nanoparticles as Recyclable Catalysts:The Frontier between Homogeneous and Heterogeneous Catalysis[J]. Angewandte Chemie International Edition.2005,44(48):7852-7872.
    [33]Hauser, C. R..Reynolds, G. A. Reactions of β-Keto Esters with Aromatic Amines. Syntheses of 2-and 4-Hydroxyquinoline Derivatives[J]. Journal of the American Chemical Society.1948, 70(7):2402-2404.
    [34]Gholap, A. R., Chakor, N. S., Daniel, T., Lahoti, R. J..Srinivasan, K. V. A remarkably rapid regioselective synthesis of β-enaminones using silica chloride in a heterogeneous as well as an ionic liquid in a homogeneous medium at room temperature[J]. Journal of Molecular Catalysis A: Chemical.2006,245(1-2):37-46.
    [35]Chen, X., She, J., Shang, Z.-C., Wu, J..Zhang, P. Room-Temperature Synthesis of Pyrazoles, Diazepines, (3-Enaminones, and β-Enamino Esters Using Silica-Supported Sulfuric Acid as a Reusable Catalyst Under Solvent-Free Conditions[J]. Synthesis Communications.2009,39(6), 947-957.
    [36]Zhang, L.-F..Yang, S.-T. Silica-supported antimony(Ⅲ) chloride as an efficient heterogeneous catalyst for the synthesis of aminopropenones and 3-aminopropenoates under solvent-free conditions[J]. Russian Journal of Organic Chemistry.2009,45(1):18-21.
    [37]Li, G.-C. Phosphotungstic acid catalysed synthesis of β-enamino compounds under solvent-free conditions[J]. Journal of Chemical Research.2007.2007(3):696-698.
    [38]Zhang, Z.-H..Song, L.-M. A solvent-free synthesis of β-amino-a, β-unsaturated ketones and esters[J]. Journal of Chemical Research.2005,2005(12):817-820.
    [39]Kidwai, M., Bhardwaj, S., Mishra, N. K., Bansal, V., Kumar, A..Mozumdar, S. A novel method for the synthesis of β-enaminones using Cu-nanoparticles as catalyst[J]. Catalysis Communications.2009,10(11):1514-1517.
    [40]Bhatte, K. D., Tambade, P. J., Dhake, K. P..Bhanage, B. M. Silver nanoparticles as an efficient, heterogeneous and recyclable catalyst for synthesis of β-enaminones[J]. Catalysis Communications.2010,11(15):1233-1237.
    [41]Gao, Y., Zhang, Q..Xu, J. A Convenient and Effective Method for Synthesizing β-Amino-α, β-Unsaturated Esters and Ketones. Synthesis Communications[J].2004,34(5): 909-916.
    [42]Li, G.-C. Simple and efficient synthesis of 3-aminopropenones and 3-aminopropenoates catalyzed by copper(Ⅱ) nitrate trihydrate under solvent-free conditions[J]. Monatshefte fur Chemie-Chemical Monthly.2008,139(7):789-792.
    [43]Cartaya-Marin, C. P., Henderson, D. G., Soeder, R. W..Zapata, A. J. Synthesis of Enaminones Using Trimethylsilyl Trifluoromethanesulfonate as an Activator[J]. Synthesis Communications. (1997,27(24):4275-4283.
    [44]Samantaray, M. K., Dash, C., Shaikh, M. M., Pang, K., Butcher, R. J..Ghosh, P. Gold(Ⅲ) N-Heterocyclic Carbene Complexes Mediated Synthesis of β-Enaminones From 1,3-Dicarbonyl Compounds and Aliphatic Amines[J]. Inorganic Chemistry.2011,50(5):1840-1848.
    [45]Braibante, H. T. S., Braibante, M. E. F., Rosso, G. B..Oriques, D. A. Preparation of b-enamino carbonylic compounds using microwave radiation/K-10[J]. Journal of the Brazilian Chemical Society.2003.14(6):994-997.
    [46]Valduga, C. J., Squizani, A., Braibante, H. S..Braibante, M. E. F. The Use of K-10/Ultrasound in the Selective Synthesis of Unsymmetrical β-Enamino Ketones[J]. Synthesis. 1998,1998(7),1019-1022.
    [47]Astruc, D., Lu, F..Aranzaes, J. R. Nanoparticles as recyclable catalysts The frontier between homogeneous and heterogeneous catal[J]. Angewandte Chemie International Edition.2005, 44(48):7852-7872.
    [48]Zhu, Y., Kockrick, E., Ikoma, T., Hanagata, N..Kaskel, S. An Efficient Route to Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres Using Colloidal Carbon Spheres Templates. Chemistry of materials[J].2009,21(12):2547-2553.
    [49]Zhu, Y., Fang, Y..Kaskel, S. Folate-Conjugated Fe3O4@SiO2 Hollow Mesoporous Spheres for Targeted Anticancer Drug Delivery[J]. The Journal of Physical Chemistry C.2010,114(39): 16382-16388.
    [50]Zhu, Y., Ikoma, T., Hanagata, N..Kaskel, S. Rattle-type Fe(3)O(4)@SiO(2) hollow mesoporous spheres as carriers for drug delivery[J]. Small.2010,6(3):471-478.
    [51]Zhou, J., Wu, W., Caruntu, D., Yu, M. H., Martin, A., Chen, J. F., et al. Synthesis of porous magnetic hollow silica nanospheres for nanomedicine application[J]. The Journal of Physical Chemistry C.2007,111(47):17473-17477.
    [52]Zhao, W., Chen, H., Li, Y., Li, L., Lang, M..Shi, J. Uniform Rattle-type Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and their Sustained-Release Property[J]. Advanced Functional Materials.2008,18(18):2780-2788.
    [53]Xia, L. Y., Zhang, M. Q., Yuan, C. e..Rong, M. Z. A facile heteroaggregate-template route to hollow magnetic mesoporous spheres with tunable shell structures[J]. Journal of Materials Chemistry.2011,21(25):9020-9026.
    [54]Jin, P., Chen, Q., Hao, L., Tian, R., Zhang, L..Wang, L. Synthesis and Catalytic Properties of Nickel Silica Composite Hollow Nanospheres[J]. The Journal of Physical Chemistry B.2004, 108(20):6311-6314.
    [55]Zhang, Y., Li, J., Han, D., Zhang, H., Liu, P..Li, C. An efficient resolution of racemic secondary alcohols on magnetically separable[J] biocatalyst Biochem Biophys Res Commun. 2008,365(4):609-613.
    [56]Li, J., Zhang, Y., Han, D., Gao, Q..Li, C. Asymmetric transfer hydrogenation using recoverable ruthenium catalyst immobilized into magnetic mesoporous silica[J]. Journal of Molecular Catalysis A:Chemical.2009,298(1-2):31-35.
    [57]Tu, C, Du, J., Yao, L., Yang, C., Ge, M., Xu, C., et al. Magnetic Ni/SiO2 composite microcapsules prepared by one-pot synthesis[J]. Journal of Materials Chemistry.2009,19(9): 1245-1251..
    [58]Sun, X..Li, Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angew Chem Int Ed Engl.2004,43(5):597-601.
    [59]Lv, B., Xu, Y., Tian, H., Wu, D..Sun, Y. Synthesis of Fe3O4\SiO2\Ag nanoparticles and its application in surface-enhanced Raman scattering. Journal of Solid State Chemistry[J]. 2010,183(12):2968-2973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700