基于组合参数分析的质子交换膜燃料电池性能优化数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)由于不受卡诺循环限制、能量转化率高、可室温快速启动、无电解液流失、水易排除、寿命长、比功率与比能量高等突出优点,是目前最有希望应用于便携式电源、小型固定发电站、电动汽车等交通工具的动力电源。但是PEMFC目前还处于研究阶段,它的一些机理和关键问题还没有解决。质子交换膜燃料电池多参数同时变化对电池性能的影响以及电池极化曲线为什么重合就是其中还没有解决的两个关键问题。
     本文首先采用Gambit2.2建立了一个平行流场PEMFC几何模型,通过计算流体力学软件Fluent6.3建立三维、两相、非等温、稳态数学模型,其中描述了PEMFC流动、传热与传质、电化学反应和水传递等模型。
     其次,本文采用正交设计、模糊熵权法与数值模拟相结合,系统研究了12个参数同时变化对电池极化曲线的影响以及参数间的交互关系。结果表明:阴极传递系数、阴极交换电流密度、氧气参考浓度、氧气在参考状态下的扩散系数对电池极化曲线有高度显著影响;阳极交换电流密度、扩散层的绝对渗透率对电池极化曲线有显著影响;扩散层孔隙率、氢气在参考状态下的扩散系数、水在参考状态下的扩散系数对电池极化曲线有一定影响;阳极传递系数、氢气参考浓度对电池极化曲线影响比较小。阴极传递系数与氧气在参考状态下的扩散系数、阴极交换电流密度与氧气参考浓度、阴极交换电流密度与氧气在参考状态下的扩散系数、氧气参考浓度与氧气在参考状态下的扩散系数有高度显著的交互作用;阴极传递系数与阴极交换电流密度、阴极传递系数与氧气参考浓度有显著的交互作用;阴极传递系数与阴极交换电流密度及氧气在参考状态下的扩散系数有一定的交互作用;其余的参数间的交互作用比较小。
     最后,在上述研究的基础上,根据电化学关联式,重点对影响电池极化曲线较大的3个高敏感参数及另外3个对电池极化曲线影响略大的敏感参数进行了研究,探寻他们在什么情况下才能使极化曲线重合,以及他们与极化曲线重合的内在关系。研究结果表明:当保持PEMFC其他参数不变时,在参数取值区间内,同时改变阳极交换电流密度和氢气参考浓度,并使其满足特定关系式时,极化曲线完全重合;当保持PEMFC其他参数不变时,在参数取值区间内,同时改变阴极交换电流密度和氧气参考浓度,并使其满足特定关系式时,极化曲线完全重合;当保持PEMFC其他参数不变时,在参数取值区间内,同时改变阳极交换电流密度和阳极传递系数,并使其满足特定关系式时,极化曲线完全重合;当保持PEMFC其他参数不变时,在参数取值区间内,同时改变阴极交换电流密度和阴极传递系数,不能使极化曲线完全重合,但改变这两个参数可能会出现极化曲线部分重合;当保持PEMFC其他参数不变时,在参数取值区间内,同时改变阳极交换电流密度与阴极交换电流密度或者阳极传递系数与阴极传递系数,不能使极化曲线完全重合,但可能出现极化曲线部分重合;当保持PEMFC其他参数不变时,在参数取值区间内,同时改变阳极交换电流密度、氢气参考浓度、阳极传递系数,使其满足某些特定关系式时,极化曲线完全重合;当保持PEMFC其他参数不变时,在参数取值区间内,同时改变阴极交换电流密度、氧气参考浓度、阴极传递系数,不能使极化曲线完全重合。但其有可能使极化曲线近似重合;当保持PEMFC其他参数不变时,在参数取值区间内,同时改变阳极交换电流密度、氢气参考浓度、阴极交换电流密度、氧气参考浓度,使其满足某些特定关系式时,极化曲线不重合。但是当加上某些约束条件,极化曲线完全重合。
     PEMFC的性能受诸多参数的影响,对参数组合的研究,不仅减少了参数的研究个数,更重要的是一种全新研究方法在PEMFC性能优化研究方面的应用,促进了PEMFC基础理论研究的发展:通过分析参数之间的相互关系,揭示电池性能控制的微观机理,避免了单一参数研究的不足之处;通过分析组合参数的物理意义,为深入研究打下基础;通过分析组合参数或约束条件与极化曲线之间的关系,明确电池性能优化的方向。
Proton exchange membrane fuel cell (PEMFC) has became the most promising applications of portable power, small-scale stationary power plants, electric vehicles and other modes of transport power supply ,because its not only have high-energy efficiency, quick start at room temperature, no electrolyte loss, long life, easy to water exclude, but also not subject to Carnot cycle limit. But the actual PEMFC is still in the researching stage, and some of critical questions aren’t dissolved. The polarization coincide is one of them, so this paper aims at researching polarization coincide of PEMFC.
     First in this paper, a parallel flow field PEMFC geometrical model was developed by Gambit2.2, and at the same time, developing a three-dimensional, non-isothermal, steady mathematic model of PEMFC by Fluent6.3. And it describe fluid flow model, mass and heat transfer model, electrochemistry reaction model, water transfer model and so on.
     Second, combined with orthogonal design, fuzzy entropy weight method and numerical simulation, systematic study the impacting of PEMFC polarization and interactions among the 12 parameters. The results show that: cathode transfer coefficient, cathode exchange current density, oxygen reference concentration, reference diffusion coefficient of oxygen are main affecting factors to the battery polarization; anode exchange current density, diffusion layer absolute permeability have significant influence to the cell polarization; Diffusion layer porosity , hydrogen diffusion coefficient in the reference state , water diffusion coefficient in the reference state have certain influence to the cell polarization; anode transfer coefficient, hydrogen concentration have relatively small impact to the cell polarization. cathode transfer coefficient and reference diffusion coefficient of oxygen, cathode exchange current density and oxygen reference concentration, cathode exchange current density and reference diffusion coefficient of oxygen, oxygen reference concentration and reference diffusion coefficient of oxygen have almighty significant interactions; cathode transfer coefficient and the cathode exchange current density, cathode transfer coefficient and the oxygen reference concentration have significant interaction; cathode transfer coefficient and the cathode exchange current density and oxygen diffusion coefficient in the reference state have certain interaction; the rest of other parameters have relatively small interaction.
     Final,based on previous studies, according to electrochemical correlation, emphasis research three highly sensitive parameters and three sensitive parameters, try to find polarization curves coincide, and the intrinsic relationship between parameters and polarization coincide. The results show that:(1)under the condition of keeping PEMFC other parameters unchanged, in the parameter value ranges, change the anode reference exchange current density and the concentration of hydrogen, and make it contented specific relationship, polarization curves completely coincide;(2) under the condition of keeping PEMFC other parameters unchanged, in the parameter value ranges, change the cathode reference exchange current density and oxygen concentration, and make it contented specific relationship, polarization curves completely coincide;(3) under the condition of keeping PEMFC other parameters unchanged, in the parameter value ranges, change the anode exchange current density and anode transfer coefficient, and make it contented specific relationship, polarization curves completely coincide;(4) under the condition of keeping PEMFC other parameters unchanged, in the parameter value ranges, change the cathode exchange current density and cathode transfer coefficient, polarization curve can not coincide. But changes the two parameters may make polarization curves piece overlap;(5) under the condition of keeping PEMFC other parameters unchanged, in the parameter value ranges, change the anode exchange current density and cathode exchange current density or anode transfer coefficient and the cathode transfer coefficient, and make it contented specific relationship, the polarization curve can not coincide, but the polarization curves may piece overlap;(6) under the condition of keeping PEMFC other parameters unchanged, in the parameter value ranges, change the anode exchange current density, hydrogen reference concentration, anode transfer coefficient, and make it contented specific relationship, polarization curves completely coincide;(7) under the condition of keeping PEMFC other parameters unchanged, in the parameter value ranges, change the cathode exchange current density, oxygen reference concentration, cathode transfer coefficient, the polarization curve can not coincide. But polarization maybe partly coincide;(8) under the condition of keeping PEMFC other parameters unchanged, in the parameter value ranges, change the anode exchange current density, hydrogen reference to the concentration of the cathode exchange current density, oxygen concentration reference, and make it contented specific relationship, polarization curve can not coincide. But when combined with certain constraints, polarization curves completely coincide.
     PEMFC performance is influenced by many parameters, the research of combination parameters, not only reduced the parameter research integer, but more importantly is that one brand-new research technique is applicated in PEMFC performance optimization research, and promoted the PEMFC basic study development. Through analyzes the parameters reciprocity, it could revelation the control microscopic mechanism of battery, avoiding the sole parameter research deficiency. Through analysis the combination parameter's physics significance, it could build the foundation for deep research. Through analysis the combination parameter or the constraints and polarization curve's relations, it would give us clear direction about the battery performance optimizes.
引文
[1]衣宝廉.燃料电池—原理.技术.应用[M].北京:化学工业出版社,2003.
    [2]涂海涛.质子交换膜燃料传递过程数值分析[D].大连:大连理工大学,2007.
    [3]詹姆斯.拉米尼,安德鲁.迪克斯.燃料电池系统—原理.设计.应用[M].北京:科学出版社,2006.
    [4]李瑛,王林山.燃料电池[M].北京:冶金工业出版社, 2000.
    [5] Jacobson MZ, Colella WG, Golden DM. Cleaning the air and improving health with hydrogen fuel-cell vehicles [J]. J Science,2005, 308(5730): 1901-1905.
    [6]李瑛,王林山.燃料电池[M].北京:冶金工业出版社,2002.
    [7] Gregor Hoogers. FUEL CELL TECHNOLOGY HANDB00K[M]. CRC Press,2003.
    [8]毛宗强.燃料电池[M].北京:化学工业出版社,2005.
    [9]谭雅巍.燃料电池测试实验台的改进及流场板结构的实验研究[D].西安:西安交通大学, 2005.
    [10]张纯,毛宗强.磷酸燃料电池(PAFC)电站技术的发展、现状和展望[J].电源技术,1996,20(5):216-221.
    [11]江义,李文钊,王世忠.高温固体氧化物燃料电池(SOFC)进展[J].化学进展,1997,9(4):387-396.
    [12] Hashimoton. Global SOFC activities and evaluation programs[J].J Jrnal of Power sourees,1994,49:103-114.
    [13]张中太,黄传勇.固体氧化物燃料电池的研究进展[J].材料导报,1999,13(4):19-23.
    [14]张义煌,董永来,江义等.薄膜型中温固体氧化物燃料电池(SOFC)研制及性能考察[J].电化学,2000,6(1):78-83.
    [15]蒋鹤麟,王瑛,吴志鸿.质子交换膜燃料电池的研究与开发[J].稀有金属,2000,24(4):301-308.
    [16]李忠华.质子交换膜燃料电池热模拟计算[D].武汉:武汉理工大学,2007.
    [17] Wilson MS, Gottesfeld. High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells [J].J Electrochem.Soc, 139(2): L28-L31.
    [18] Taylor EJ, Anderson EB, Vilambi NRK. Preparation of high-platinum-utilization gas diffusion electrodes for proton-exchange-membrane fuel cells [J]. J Electrochem.Soc, 1992, 139(2): L45-L46.
    [19] Bp Pic, Sinohytec Co. China first hydrogen fueling station starts work in Beijing [N]. Sino Cast China Business Daily News: London (UK), 2006-11-10.
    [20]田玉冬,朱新坚,曹广益.质子交换膜燃料电池技术发展与温度控制[J].移动电源与车辆,2005,l:37-41.
    [21]衣宝廉,韩明.千瓦级质子交换膜燃料电池[J].电源技术. 1999,23: 120-125.
    [22]于景荣,衣宝廉.高性能质子交换膜燃料电池[J].电化学. 1999,5: 449-454.
    [23] Eddiq M, Khaleghi H, Mirzaei M. Numerical analysis of gas cross-over through the membrane in a proton exchange membrane fuel cell [J].J Power Sources, 2006,161(1): 371-379.
    [24] Sammes. Fuel cell technology: reaching towards commercialization[N]. Berlin: Springer-Verlag, 2006.
    [25] Wang B. Recent development of non-platinum catalysts for oxygen reduction reaction [J]. J Power Sources, 2005, 152(1): 1-15.
    [26] Mehta V, Cooper JS. Review and analysis of PEM fuel cell design and manufacturing [J]. J Power Sources, 2003, 114(1): 32-53.
    [27] Busick DN, Wilson MS. Low-cost composite materials for PEFC bipolar plates [J]. J Fuel Cells Bulletin, 1999, 2(5): 6-8.
    [28] Li X, Sabir I. Review of bipolar plates in PEM fuel cells: flow-field designs [J]. J Hydrogen Energy, 2005, 30(4): 359-371.
    [29] Kumar A, Reddy RG. Materials and design development for bipolar/end plates in fuel cells [J]. J Power Sources, 2004, 129(1): 62-67.
    [30] Lee SJ, Chen YP, Huang CH. Electroforming of metallic bipolar plates with micro-featured flow field [J].J Power Sources, 2005, 145(2): 369-375.
    [31]徐腊梅. PEM燃料电池动态特性的建模与仿真[D].武汉:武汉理工大学,2007.
    [32] Shiang-Wuu Perng, Horng-Wen Wu. Heat transfer in a PEMFC flow channel[J]. J Applied Thermal Engineering, 2009, 29(17-18) :3579-3594.
    [33]李文娟.质子交换膜燃料电池传质传热过程参数的数值模拟研究[D].湛江:广东海洋大学,2009.
    [34] Yi YS, Nguyen TV. Multicomponent transport in porous electrodes of proton exchange membrane fuel cells using the interdigitated gas distributors [J]. J Electrochem Soc, 1999, 146(1): 38-45.
    [35] Eikerling M, Kharkats YI, Kornyshev AA, et al. Phenomenological theory of electro-osmotic effect and water management in polymer electrolyte proton-conductingmembranes [J]. J Electrochem Soc, 1998, 145(8): 2684-2699.
    [36] Chu HS, Yeh C, Chen F. Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell [J]. J Power Sources, 2003, 123(1): 1-9.
    [37] Hwang JJ, Chen CK, Savinell RF, et al. A three-dimensional numerical simulation of the transport phenomena in the cathodic side of a PEMFC [J]. J Appl Electrochem, 2004, 34(2): 217-224.
    [38] Chan SH, Tun WA. Catalyst layer models for proton exchange membrane fuel cells [J]. Chem Eng Tchnol, 2001, 24(1): 51-57.
    [39] Grujicic M, Zhao CL, Chittajallu KM, et al. Cathode and interdigitated air distributor geometry optimization in polymer electrolyte membrane (PEM) fuel cells [J]. J Mater Sci Eng B, 2004, 108(3): 241-252.
    [40] Saito M, Arimura N, Hayamizu K, et al. Mechanisms of ion and water transport in perfluorosulfonated ionomer membrane for fuel cells [J]. J Phys Chem B, 2004, 108(41): 16064-16070.
    [41] Suares GE, Hoo KA. Parameter estimation of a proton-exchange membrane fuel cell using voltage-current data [J]. Chem Eng Sci, 2000, 55(12): 2237-2247.
    [42]凌长明、李文娟、闵春华等.电化学参数对质子交换膜燃料电池内传递过程的影响[J].可再生能源,2010, 4.
    [43] Gyenge EL. Dimensionless numbers and correlating equations for the analysis of the membrane-gas diffusion electrode assembly in polymer electrolyte fuel cells [J]. J Power Sources, 2005, 152: 105-121.
    [44] Jeng KT, Kuo CP, Lee SF. Modeling the catalyst layer of a PEM fuel cell cathode using a dimensionless approach [J]. J Power Sources, 2004, 128: 145-151.
    [45] Min CH, He YL, Liu XL, et al. Parameter sensitivity examination and discussion of PEM fuel cell simulation model validation Part II: results of sensitivity analysis and validation of the model [J]. J Power Sources, 2006, 160(1): 374-385
    [46] Sheng-Ju Wu, Sheau-Wen Shiah,Wei-Lung Yu. Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network [J].J Renewable Energy, 2009,34(1) :135-144.
    [47] Satish G. Kandlikar ,Zijie Lu. Thermal management issues in a PEMFC stack– A brief review of current status [J]. J Applied Thermal Engineering, 2009, 29: 1276–1280.
    [48] Jacopo Catalano, Marco Giacinti Baschetti, Maria Grazia De Angelis et al. Gas and water vapor permeation in a short-side-chain PFSI membrane[J].J Desalination,2009, 240:341-346.
    [49] Lifeng Zhanga, Wei Dua, Hsiaotao T. Bi et al. Gas–liquid two-phase ?ow distributions in parallel channels for fuel cells [J]. J Journal of Power Sources ,2009, 189:1023–1031.
    [50] Qi Z, He C, Kaufman A. Effect of CO in the anode fuel on the performance of PEM fuel cell cathode [J]. J Power Sources, 2002, 111(2): 239-247.
    [51] Cao D, Bergens SH. A direct 2-propanol polymer electrolyte fuel cell [J]. J Power Sources, 2003, 124(1): 12-17.
    [52] Pasaogullari U, Wang CY. Two-phase modeling and flooding prediction of polymer electrolyte fuel cells [J]. J Electrochem Soc, 2005, 152(2): A380-A390.
    [53] Guvelioglu GH, Stenger HG. Flow rate and humidification effects on a PEM fuel cell performance and operation [J]. J Power Sources, 2007, 163(2): 882-891
    [54] Sheng-Ju Wu, Sheau-Wen Shiah, Wei-Lung Yu. Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network[J]. J Renewable Energy, 2009,34:135-144.
    [55]倪淮生,许思传,常国峰等.高压质子交换膜燃料电池运行参数优选研究[J].汽车工程,2009,31(7):597-600.
    [56] Lum KW, McGurik J. 2D and 3D modeling of a PEMFC cathode with interdigitated gas distributors [J]. J Electrochem Soc, 2005, 152(4): A811-A817.
    [57] Inoue G, Matsukuma Y, Minemoto M. Examination of optimal separator shape of polymer electrolyte fuel cell with numerical analysis including the effect of gas flow through gas diffusion layer [J]. J Power Sources, 2006, 157(1): 153-165.
    [58] Du CY, Shi PF, Cheng XQ, et al. Effective protonic and electronic conductivity of the catalyst layers in proton exchange membrane fuel cells [J]. J Electrochem Commun, 2004, 6(5): 435-440.
    [59] Sun W, Tun WA, Karan K. Modeling the influence of GDL and flow-field plate parameters on the reaction distribution in the PEMFC cathode catalyst layer [J]. J Power Sources, 2005, 144(1): 42-53.
    [60] Chan SH, Goh SK, Jiang SP. A mathematical model for polymer electrolyte fuel cell with anode CO kinetics [J]. J Electrochim Acta, 2003, 48(13): 1905-1919.
    [61] Baschuk JJ, Rowe AM, Li X. Modeling and simulation of PEM fuel cells with CO poisoning [J]. J Energy Resour Technol, 2003, 125(2): 94-100.
    [62] J. Caro, Micropor. Diffusion in porous functional materials: Zeolite gas separation membranes, proton exchange membrane fuel cells, dye sensitized solar cells[D]. Microporous and Mesoporous Materials, 2009,3.
    [63] Stockie JM, Promislow K, Wetton BR. A finite volume method for multicomponentgas transport in a porous fuel cell electrode [J]. J Int J Numer Methods Fluids, 2003, 41(6): 577-599.
    [64] Berg P, Promislow K, Pierre JS, et al. Water management in PEM fuel cells [J]. J Electrochem Soc, 2004, 151(3): A341-353.
    [65] Corrêa JM, Farret FA, Popov VA, et al. Sensitivity analysis of the modeling parameters used in simulation of proton exchange membrane fuel cells [J]. J IEEE Transa Energy Convers, 2005, 20(1): 211-218.
    [66] Lee CH, Park HB, Lee YM, et al. Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application [J].J Ind Eng Chem Res, 2005, 44 (20): 7617–7626.
    [67] Guo Q, Sethuraman VA, White RE. Parameter estimates for a PEMFC cathode [J]. J Electrochem.Soc, 2004, 151(7): A983-A993.
    [68]常国峰,倪淮生,许思传,李友才等.高压质子交换膜燃料电池正交试验研究.机械工程学报,2009,45(7):204-209.
    [69] Min CH, He YL, Liu XL, et al. Parameter sensitivity examination and discussion of PEM fuel cell simulation model validation Part II: results of sensitivity analysis and validation of the model [J]. J Power Sources, 2006, 160(1): 374-385.
    [70] Berning T, Lu DM, Djilali N. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell [J]. J Power Sources, 2002, 106(1-2): 284-294.
    [71] Jen TC, Yan T, Chan SH. Chemical reacting transport phenomena in a PEM fuel cell [J].J Int J Heat Mass Transfer, 2003, 46(22): 4157-4168.
    [72] Kulikovsky AA. Quasi-3D modeling of water transport in polymer electrolyte fuel cells [J]. J Electrochem Soc, 2003, 150(11): A1432- A1439.
    [73] Wang Q, Eikerling M, Song D, et al. Functionally graded cathode catalyst layers for polymer electrolyte fuel cells. I. Theoretical modeling [J].J Electrochem Soc, 2004, 151(7): A950- A957.
    [74] Hou TH, Liu HT. A 3D model for PEM fuel cells operated on reformate [J].J Power Sources, 2004, 138(1-2): 101-110.
    [75] Bernardi DM, Verbrugge MW. A mathematical model of the solid-polymer-electrolyte fuel cell [J].J Electrochem Soc, 1992, 139(9): 2477-2491.
    [76] Hr M, Bolwin K, Schnurnberger W, et al. Dynamic modeling and simulation of a polymer membrane fuel cell including mass transport limitation [J].J Int J Hydrogen Energy, 1998, 23(3): 213-218.
    [77] Siegel NP, Ellis MW, Nelson DJ, et al. A two-dimensional computational model of aPEMFC with liquid water transport [J].J Power Sources, 2004, 128(2): 173-184.
    [78] Ju H, Meng H, Wang CY. A single-phase, non-isothermal model for PEM fuel cells [J].J Int J Heat Mass Transfer, 2005, 48(7): 1303-1315.
    [79] Bevers D, W?hr M. Simulation of a polymer electrolyte fuel cell electrode [J].J Appl Electrochem, 1997, 27(11): 1254-1264.
    [80] Darling RM, Meyers JP. Mathematical model of platinum movement in PEM fuel cells [J].J Electrochem Soc, 2005, 152(1): A242- A247.
    [81] Yin KM. Parametric study of proton-exchange-membrane fuel cell cathode using an agglomerate model [J]. J Electrochem Soc, 2005, 152(3): A583-A593.
    [82] Um S, Wang CY, Chen KS. Computational fluid dynamics modeling of proton exchange membrane fuel cells [J].J Electrochem Soc, 2000, 147(12): 4485-4493.
    [83] Carnes B, Djilali N. Systematic parameter estimation for PEM fuel cell models [J].J Power Sources, 2005, 144(1): 83-93.
    [84] Wang Y, Wang CY. Modeling polymer electrolyte fuel cells with large density and velocity changes [J].J Electrochem Soc, 2005, 152(2): A445- A453.
    [85] Li PW, Schaefer L, Wang QM, et al. Multi-gas transportation and electrochemical performance of a polymer electrolyte fuel cell with complex flow channels [J].J Power Sources, 2003, 115(1): 90-100.
    [86]邰淑彩,孙韫玉,何娟娟.应用数理统计[M].武汉:武汉大学出版社,2005
    [87]贺江涛,周毅.高炮武器系统防护能力的模糊熵权综合评判[J].武器装备自动化,2008,27(2):25-26.
    [88]陈祖云,周令剑,杨胜强等.模糊熵权在建筑施工安全评价中的应用[J].工业安全与环保,2008,34(11):56-58.
    [89]高红江,刘旭.基于模糊熵权的工程项目综合评标法[J].建筑管理现代化,2009,23(2):131-134.
    [90]丛建春,杨玉中.基于熵权的模糊综合评价模型的库存控制绩效评价[J].价值工程,2009,10:78-81.
    [91] Dietmar Gerteisen, Timothy Heilmann, Christoph Ziegler, Modeling the phenomena of dehydration and ?ooding of a polymer electrolyte membrane fuel cell[J].J Journal of Power Sources,2009,187 :165–181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700