生脉成骨胶囊促进血管生成的机理研究与临床观察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     研究中药生脉成骨胶囊药物血清促进血管生成的作用机理,以及对人脐静脉内皮细胞株分泌内皮素1、前列环素I_2和一氧化氮等血管活性物质的影响。为生脉成骨胶囊临床用于治疗股骨头缺血性坏死,改善股骨头血液供应提供实验依据;并通过临床观察验证生脉成骨胶囊促进坏死股骨头及其周围血管生成的效果。从现代药理学角度阐明“瘀去则新生脉长”的中医基础理论。
     方法
     在复习治疗性血管生成的研究进展和临床应用的基础之上,结合该项国家自然科学基金(No.30171143)和广东省自然科学基金(No.010251)资助项目已经取得的阶段性成果,本博士课题分为基础实验和临床观察两部分进行研究。
     基础实验:应用噻唑蓝(methyl thiazolyl tetrazolium,MTT)比色法研究生脉成骨胶囊药物血清对体外培养的人脐静脉细胞株(ECV304)增殖的影响,利用酶联免疫吸附测定法(enzyme-linked immunosorbent assay,ELISA)检测生脉成骨胶囊药物血清作用1h和2h后ECV304细胞培养上清中血管内皮生长因子(vascular endothelial growth factor,VEGF)浓度,采用ELISA法检测生脉成骨胶囊药物血清作用1h和2h后,ECV304细胞培养上清中内皮素1(endothelin-1,ET-1)和前列环素I_2(prostacyclin I_2,PGI_2)浓度,用硝酸还原酶法检测生脉成骨胶囊药物血清作用1h和2h后,ECV304细胞培养上清中一氧化氮(nitric oxide,NO)浓度,应用透射电镜技术观察生脉成骨胶囊药物血清作用12h后各组ECV304细胞的超微结构。所得数据以SPSS10.0软件进行统计分析。
     临床观察:将纳入研究的股骨头缺血性坏死患者分为单纯介入治疗组(对照组)和中药加介入治疗组(中药组),通过数字减影血管成像技术(digital substraction angiography,DSA)观察治疗前及治疗2个月后的坏死股骨头及其周围血管成像,利用JVC ky-F30B 3-CCD彩色图像摄录输入仪进行图像采集及Kontron iBAS 2.0全自动图像分析系统计算出治疗前后的股骨头及其周围血管成像区域灰度值,并取其差值,以t检验进行统计分析。
ObjectiveTo study the angiogenesis mechanism of Shengmai Chenggu Capsule (SMCGC) and its effects on the function of vasoactive-substance-secreting of endothelial cell, so as to provide experimental evidence for its clinical application to treat avascular necrosis of femoral head and improve the blood supply of femoral head. Further more, to precisely measure the grey value of blood vessels in and around the necrotic femoral heads before and after the treatment of in taking SMCGC and radiological interventional treatment with the technique of digital substraction angiography.To elucidate the basic theory "to promote generating blood vessels by stimulating the blood circulating" of Traditional Chinese Medicine from the viewpoint of modern pharmacology.MethodOn the basis of reviewing the experimental progress and clinical application of therapeutic angiogenesis, combined with the previous results from the same project sponsored by National Scientific Fund Committee (No.30171143) and Scientific Fund of Guangdong Province (No.010251) respectively, this doctoral program was divided into two parts: basic experiment and clinical study. In the first part, MTT method was used to study the influence of SMCGC-containing rabbits' serum on the proliferation of ECV304 cell. After ECV304 cell being stimulated by SMCGC-containing rabbits' serum for 1 hour and 2 hours, ELISA method was applied to measure the VEGF concentration in the cultured liquid;With the same method, the concentration of ET-1、 PGI_2 in the cultured
    liquid was detected;The concentration of NO in the cultured liquid was detected with enzymic method. The micro-structure of ECV304 cell was observed by transmission electronic microscope technique after being treated for 12 hours. In the clinical trial part, patients involved in the study, who suffer from avascular necrosis of femoral head, were divided into two groups, the patients in group one received interventional radiology treatment only, the patients in the other group got interventional radiology treatment as well as SMCGC-intaking, digital subtractive angiography technique was used to observe the vessels in and around the necrotic femoral head before the treatment and 2 months after the treatment, with image-analyzing software the grey value of angiography before and after the treatment was measured, the differences between the relevant were analyzed statistically with t test.ResultIn the experimental part, after ECV304 cell being treated with SMCGC-containing rabbits' serum for 1 hour, the concentration VEGF of the cultured liquid in low-dose-group increased significantly VEGF(P<0.01), two hours later, the VEGF concentration of the cultured liquid in low-dose-group and medium-dose-group increased significantly (P<0.01). After being stimulated with different doses of SMCGC-containing rabbits' serum for 12 hours and 36 hours, the proliferation of ECV304 cell in all groups was not significantly increased(P<0.05), further more, the proliferation of ECV304 cell in medium-dose-rabbit-serum group and high-dose-rabbit-serum group was inhibited significantly after being treated 36 hours(P<0.01). After ECV304 cell being treated with SMCGC-containing rabbits' serum for 1 hour, the concentration of ET-1 in cultured liquid of high-dose-group significantly decreased(P<0.05) ? the concentration of PGI2 in cultured liquid of low-dose-group, medium-dose-group and high-dose-group was significantly decreased(P<0.05), the concentration of NO in all three groups increased (P>0.05);2 hours later, the concentration of ET-1 in cultured liquid of high-dose-group significantly increased (P<0.05), compared with the control group, the concentration of PGI2 in all three groups was still at low level (P<0.05), but the concentration of PGI2 in the
    cultured liquid of low-dose-group increased significantly compared with that of medium-dose-group and high-dose-group (P<0.05), the concentration of NO in the cultured liquid of all three groups increased (P>0.05). Compared with blank group, medium-dose-group and high-dose-group, the number of chondriosomes in low-dose-group and Ligustrazine group increased , and the size of chondriosomes in Ligustrazine group became larger, there were more and larger transparent bubbles in the ECV304 cells of high-dose-group than in those of other groups.The clinical study results were as follows: two months after the interventional radiological therapy combined with SMCGC-intaking, the grey value of blood vessels in and around the femoral head increased significantly (P<0.05), the hip pain was relieved and the Harris scores increased significantlyoConclusionThe results of the basic experiment indicated that low dose SMCGC-containing rabbits' serum could stimulate ECV304 cell to secret VEGF significantly after being stimulated 1 hour, both low dose and medium dose SMCGC-containing rabbits' serum could stimulate ECV304 cell to secret VEGF significantly after being stimulated hours, however the SMCGC-containing rabbits' serum of the high-dose-group had no such effect, which elucidates stimulating the endothelial cell to secret VEGF may be the mechanism of promoting angiogenesis of SMCGC, but the effect did not increase with the dose. SMCGC-containing rabbits' serum of all the three groups inhibited the PGh-secreting function of ECV304 cell could explained the mechanism of its anti-inflammation and pain-killing effect;SMCGC-containing rabbits' serum of all the three groups promote ECV304 cell to secret NO, as to the ET-1-secreting function, high dose SMCGC-containing rabbits' serum had a two-direction effect, inhibiting first and promoting later. SMCGC-containing rabbits' serum had no proliferation-promoting effect for the ECV304 cell cultured in vitro and had no obvious influence on the microstructure of the ECV304 cell, while Ligustrazine might do some damage to the chondriosomes of ECV304 cells. The results of clinical study showed that interventional radiological therapy combined with SMCGC-intaking had a better therapeutic
    angiogenesis effect than merely interventional radiological therapy, further more, interventional radiological therapy combined with SMCGC-intaking had a better therapeutic outcoming when it came to symptoms-relieving and function-improving. All in all, the conclusion can be drawn that SMCGC stimulates the angiogenesis by promoting the endothelial cell to secret VEGF, it also had a profound influence on the secreting function of other vascular substances such as ET-1, NO and PGh, these results provided a reliable experimental and clinical background to use SMCGC as one effective method to treat avascular necrosis of femoral head.
引文
[1] Carmeliet P. Mechanisms of angiogenesis and arteriogenesis [J]. Nat Med, 2000, 6: 389-395.
    [2] Sellke FW, Simons M. Angiogenesis in cardiovascular disease: Current status and therapeutic potential [J]. Drugs, 1999, 58: 391-396.
    [3] Timothy DH. Therapeutic angiogenesis [J]. BMJ, 1999, 318: 1536-539.
    [4] Folkman J. Tumor angiogenesis: Therapeutic implication [J]. N Engl J Med, 1971, 285: 1182-1186.
    [5] Brem S, Cotran R, Folkman J. Tumor angiogenesis: a quantitative method for histologic grading [J]. J Nat Cancer Inst, 1972, 48: 347-356.
    [6] Folkman J, Haudenschild. Angiogenesis in vitro [J]. Nature, 1980, 288: 551-555.
    [7] Hockel M, Schlenger K, Soctrow S, et al. Therapeutical angiogenesis [J]. Arch Surg, 1993, 128(4): 423-429.
    [8] Taub P J, Marmur JD, Zhang WX, et al. Locally administered vascular endothelial growth factor increases survival of ischemic experimental skin flaps[J]. Plast Reconstr Surg, 1998, 102(6): 2033-2039.
    [9] Melillo G, Scoccianti M, Lovesdi I, et al. Gene therapy for collateral vessel development [J]. Cardiovascular Res, 1997, 35(2): 480-489.
    [10] Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promote accumulation of ascites fluid [J]. Science, 1983, 219: 983-985.
    [11] Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells [J]. Biochem Biophys Res Commun. 1989, 161: 851-858.
    [12] Leurg DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen [J]. Science, 1989, 246: 1306-1309.
    [13] Gleadle JM, Ebert BL, Firth JD, Ratcliffe PJ. Regulationof angiogenic growth factor expression by hypoxia transition metals, and chelating agents [J]. Am J Physiol, 1995, 268(6Pt1), C1362-1368.
    [14] Chin K, Kurashima Y, Ogura T, et al. Induction of vascular endothelial growth factor by nitric oxide in human glioblastoma and hepatocellular carcinoma cells [J]. Oncogene, 1997, 24(15): 437-442.
    [15] Yanagisawa M, Kurihara H, Kimura S, et alo A novel potent vasoconstrictor peptide produced by vascular endothelial cells [J]. Nature, 1988, 332: 411-415.
    [16] Inoue A, Yanagisawa M, Takuwa Y, et al. The human preproendothelin-1 gene. Complete nucleotide sequence and regulation of expression [J]. J Biol Chem, 1989, 264(25): 14954-14959.
    [17] Noiri E, Hu Y, Bahou WF, et al. Permissive role of nitric oxide in endothelin-induced migration of endothelial cells [J]. J Biol Chem, 1997, 272(3): 1747-1752.
    [18] Noiri E, Lee E, Testa J, et al. Podokinesis in endothelial cell migration: role of NO [J]. Am J Physiol, 1998, 274(Pt 1): C236-244.
    [19] Bagnato A, Budzikowski AS, Tskahara H, et al. Endothelin receptor blockade inhibits proliferation of Kaposis's sarcoma cells [J]. Am J Pathol, 2001, 158(3): 841-847.
    [20] Salani D, Taraboletti G, Rasano L, et al. Endotheline-1 induces an angiogensic pheenotype in cultured endothelial cells and stimulates neovascularization in vivo [J]. Am J Pathol, 2000, 157(5): 1703-1711.
    [21] Bek EL, Micmillen MA. Endothelins are angiogenic [J]. J Cardiovasc Pharmacol, 2000, 36, S5: S135-S139.
    [22] Cruz A, Parnot C, Rabatti D, et al. Endothelin-1, a regulator of angiogenesis in the chick choriallavtoie membrane [J]. J Vasc Res, 2001, 38(6): 536-545.
    [23] Matasuura A, Yamochi W, Hirata K, et al. Stimulatory interaction between vascular endothelial growth factor and endothelin-1 on each gene expression[J]. Hypertension, 1998, 32(1): 89-95.
    [24] Giad A, Saleh D, Yanagisawa M, et al. Endothelin-1 immuoreactivity and RNA in the transplanted human heart [J]. Transplantation, 1995, 59(9): 1308-1313.
    [25] Tsui JC, Baker DM, Biecker E, et al. Potential role of endothelin-1 in ischemia-induced angiogenesis in critical leg ischemia [J]. Br J Surg, 2002, 89(6): 741-747.
    [26] Morrissey JJ, Mclracken R, Kaneto H, et al. Cloning and expression of a cDNA encoding human endotholium-derived relaxing factor/nitric oxide synthase [J]. J Biol chem, 1992, 267: 14519-14522.
    [27] Fukumura D, Jain PK. Role of nitric oxide in angiogenesis and microcirculation in tumors [J]. Cancer Metastasis Rev, 1998, 17(1): 77-89.
    [28] Garcia Cardena G, Folkman J. Is there a role for nitric oxide in tumor angiogenesis? [J]. J Natl Cancer Inst, 1998, 90: 560-561.
    [29] Pamela G, Lloyd, Hsiao T, et al. Arteriogenesis and angiogenesis in rat ischemic hindlimb: role of nitric oxide [J]. Am J Physiol Heart Circ Physiol, 2001, 281: H2528-H2538.
    [30] Morbidelli L, Chang CH, Douglas J G, et al. Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium [J]. Am J Physiol. 1996, 270(lPt2): H411-415.
    [31] Ziche M, Morbidelli L, Choudhuri R, et al. Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis [J]. J Clin Invest, 1997, 99(11): 2625-2634.
    [32] Papapetropoulos A, Garcia Cardena G, Madri JA, et al. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells [J]. J Clin Invest, 1997, 100: 3131-3139.
    [33] Ziche M, Morbidelli E, Masini E, et al. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P [J]. J Clin Invest, 1994, 94: 2036-2044.
    [34] Shing Y, Folkman J, Sullivan R, et al. Heparin affinity: purification of a tumor-derive capillary endothelial cell growth factor [J]. Science, 1984, 223: 1296-1299.
    [35] Prats H, Kaghad M, Prats AC, et al. High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons [J]. Proc Natl Acad Sci USA, 1989, 86:1836.
    [36] Montesano R, Vassalli JD, Baird A, et al. Basic fibroblast growth factor induces angiogenesis in vitro [J]. Proc Natl Acad Sci USA, 1986, 83(19): 7297-7301.
    [37] Unger EF, Sheffield CD, Epstein SE, et al. Heparin promotes the formation of extracardiac to coronary anastomoses in a canine model [J]. Am J Physiol, 1991, 260(3pt2): H1625-1634.
    [38] Chleboun JO, Martins RN, Mitchell CA, et al. Basic FGF enhances the development of the collateral circulation after acute arterial occlusion [J]. Biochem Biophys Res Commun, 1992, 185(1): 510-516.
    [39] Pu LQ, Snidermann AD, Brassard R, et al. Enhanced revascularization of the ischemic limb by angiogenic therapy [J]. Circulation, 1993, 88(1): 208-215.
    [40] Wang JS. Basic fibroblast growth factor for stimulation of bone formation in osteo-inductive or conductive implants [J]. Acta Orthop Scand (S269), 1996, 67: 1-32.
    [41] Nakamae A, Sunagawa T, Ishida O, et al. Acceleration of surgical angiogenesis in necrotic bone with a single injection of fibroblast growth factor-2 (FGF-2) [J]. J Orthop Res. 2004, 22(3): 509-513.
    [42] Takashita S, Zheng LP, Brogi E, et al. Therapeutic angiogenesis: a single intra-arterial bollus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model [J]. J Clin Invest, 1994, 63(2): 662-670.
    [43] Takeshita S, Pu LQ, Lawrence AS, et al. Intramuscular administration of vascular endothelial growth factor induced dose-dependent collateral artery augmentation in a rabbit model of chronic limb ischemia [J]. Circulation, 1994, 90(part 2): 11228-11238.
    [44] Mack CA, Patel SR, Schwarz EA, et al. Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deozyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart [J]. J Thorac Cardiovasc Surg, 1998, 115(1): 168-177.
    [45] Melillo G, Scoccianti M, Lovesdi I, e t al. Gene therapy for collateral vessel development [J]. Cardiovascular Res, 1997, 35(2): 480-489.
    [46] 顾洪,陈少萍,张电波,等.血管内皮生长因子基因治疗兔下肢缺血的实验研究[J].第二军医大学学报,2000,21(5):447-449.
    [47] 刘日光,尹培荣,杨述华,等.人VEGF165基因在狗骨髓基质细胞中的表达[J].中国矫形外科杂志,2004,12(19):1476-1478.
    [48] 段小军,杨柳,周跃.生物材料在治疗性血管生成中的应用[J].中华创伤骨科杂志,2004,6(12):1399-1403.
    [49] Smith, DW. Is avascular necrosis of the femoral head the result of inhibition of angiogenesis? [J]. Med Hypotheses, 1997, 49(6): 497-500.
    [50] Mont MA, Jones LC, Einhorn TA, et al. Osteonecrosis of the femoral head. Potential treatment with growth and differentiation factors [J]. lin Orthop Relat Res, 1998, 355S: S314-335.
    [51] Mont MA, Jones LC, Elias JJ, et al. Strut-autografting with and without osteogenic protein-1: a preliminary study of a canine femoral head defect model [J]. J Bone Joint Surg, 2001, 83A: 1013.
    [52] 周华江,聂林,张琦,等.碱性成纤维细胞因子对兔股骨头坏死模型实验修复过程的影响[J].中国矫形外科杂志,2002,10(9):895-897.
    [53] 龚跃昆,李晓辉,李世和,等.bFGF/PDPB促进兔股骨头缺损再血管化的实验研究[J].云南医药,2003,24(6):435-438.
    [54] 肖承江,胡志明,苏焕彬,等.VEGF治疗激素诱发兔股骨头缺血性坏死的初步实验研究[J].国外医学内科学分册,2005,32(5):224-227.
    [55] Yang C, Yang SH, Du JY, et al. Vascular endothelial growth factor gene transfection to enhance the repair of avascular necrosis of the femoral head of rabbit [J]. Chinese Medical Journal, 2003, 23(3): 1544-1548.
    [56] Yang C, Yang SH, Du J, et al. Experimental study of vascular endothelial growth factor gene therapy for avascular necrosis of the femoral head [J]. J Huazhong Univ Sci Technolog Med Sci, 2003, 23(3): 297-299, 316.
    [57] Glowacki J. Angiogenesis in fracture repair [J]. Clin Orthop, 1998, (355S): 82-89.
    [58] Gerber HP, Ferrara N. Angiogenesis and bone growth [J]. Trends Cardiovasc Med, 2000, 10(5): 223-238.
    [59] Guenther HL. EC in culture synthesize a potent bone active mitogen. Endocrinology [J], 1986, 11: 193-201.
    [60] Zelzer E, McLean W, Ng YS, et al. Skeletal defects in VEGF (120/120) mice reveal multiple roles for VEGF in skeletogenesis [J]. Development, 2002, 129(8): 1893-1904.
    [61] Gerber HP, Vu TH, Ryan AM, et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation [J]. Nat Med, 1999, 5(6): 623-628.
    [62] Street J, Bao M, deGuzman L, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover [J]. Proc Natl Acad Sci USA, 2002, 99(15): 9656-9661.
    [63] Tarkka T, Sipola A, Jamsa T, et al. Adenoviral VEGF-A gene transfer induces angiogenesis and promotes bone formation in healing osseous tissues [J]. J Gene Med. 2003, 5(7): 560-566.
    [64] Colnot C, Thomp son Z, Miclau T, et al. Altered fracture repair in the absence of MMP9 [J]. Development, 2003, 130(17): 4123-4133.
    [65] 初同伟,王正国,朱佩芳.骨折愈合过程中血管内皮生长因子基因扩增及蛋白表达研究[J].中华实验外科杂志,2002,19(4):367-368.
    [66] 初同伟,王正国,朱佩芳,等.骨折愈合过程中VEGF及其受体的表达[J].中华创伤杂志,2001,17:344-346.
    [67] Tatsuyama K, Maezawa Y, BabaH, et al. Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone [J]. Eur J Histochem. 2000, 44(3): 269-278.
    [68] Gerstenfeld LC, Cullinane DM, Barnes GL, et al. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation [J]. J Cell Biochem, 2003, 88(5): 873-884.
    [69] 方秀统,牛丰,张新,高鹏,等.独自诱导还是增强促进:血管内皮生长因子在骨形成过程中的作用[J].中国临床康复,2005,9(14):22-24.
    [70] Masaki I, Yonemitsu Y, Yamashita A, et al. Angiogenic gene therapy for experimental critical limb ischemia: acceleration of limb loss by over-expression of vascular endothelial growth factor but not of fibroblast growth factor-2 [J]. Circ Res, 2002, 90(9): 966-973.
    [71] Isner JM, Pieczek A, Schainfeld R, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischemic limb[J]. Lancet. 1996, 348(9024): 370-374.
    [72] Baumgartner I, Pieczek A, Manor O, et al .Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia [J]. Circulation, 1998, 97(12): 1114-1123.
    [73] Baumgartner I, Rauh G, Pieczek A, et al. Lower-Extremity Edema Associated with Gene Transfer of Naked DNA Encoding Vascular Endothelial Growth Factor [J]. Ann Intern Med, 2000, 132(11): 880-884.
    [74] Lederman R J, Mendelsohn FO, Anderson RD, et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial [J]. Lancet. 2002, 359 (9323): 2053-2058.
    [75] 刘日光,沈冯君,尹培荣,等.中药对股骨头缺血坏死修复过程中血管内皮生长因子基因表达的影响[J].中国骨伤,2004,17(12):705-707.
    [76] 叶建红,宁亚功,李峻辉,等.血管生成法治疗股骨头缺血性坏死概况[J].云南中医学院学报,2004,27(1):47-49.
    [77] 徐传毅,何伟,李雄.从“瘀血”理论辨识股骨头坏死[J].中国中医基础医学杂志,2002,8(5):18-19.
    [78] 周正新.袁浩教授论治股骨头缺血性坏死的学术特点[J].中医正骨,2003,15(6):56-57.
    [79] 孟君,冯君,丘瑞香,等.心脉通胶囊对急性心肌梗塞患者血管内皮生长因子表达的影响[J].广州中医药大学学报,2002,19(2):88-90.
    [80] 雷燕,王军辉,陈可冀.黄芪、当归配伍后促鸡胚绒毛尿囊膜血管生成的药效比较研究[J].中国中药杂志,2003,28(9):876-878.
    [81] 王文健,傅晓东,陈伟华,等.通心络促血管生成作用的实验研究[J].疑难病杂志,2003,2(1):2-4.
    [82] 汪姗姗,李勇,范维琥,等.麝香保心丸对实验性心肌梗塞大鼠心脏的促血管生成作用[J].中成药,2002,24(6):446-449.
    [83] 汪姗姗,李勇,范维琥.麝香保心丸对鸡胚绒毛尿囊膜及培养的血管内皮细胞的促血管生成作用[J].中国中西医结合杂志,2003,23(2):128-131.
    [84] Wang SS, Zheng ZG, Weng YQ, et al. Angiogenesis and anti-angiogenesis activity of Chinese medicinal herbal extracts [J]. Life Sciences. 2004. 74: 2467-2478.
    [85] 钟雪梅,周灵,秦大连,等.补经合剂改善微循环的实验研究[J].中医药研究,1998,14(3):22-24.
    [86] 夏誉薇,蔡连香,张树成.女贞孕育汤对鸡胚绒毛尿囊膜血管生成模型血清药理学研究[J].中医药学刊,2003,21(4):531-534.
    [87] 张树成,刘效群,张志洲,等.补肾调经方药对人着床期子宫内膜血管生成因子及其受体的影响[J].中国中医基础医学杂志,2002,8(5):64-66.
    [88] 王蕾,吕鑫霞,吴志奎,等.补肾生血药对金黄地鼠子宫组织bFGF、VEGF表达水平的影响[J].中国中医基础医学杂志,2000,6(12):25-28.
    [89] 王拥军,施杞,周重建,等.益气化瘀方对大鼠颈椎间盘软骨终板内血管的影响[J].中国中医骨伤科杂志,2002,10(4):1-4.
    [90] 张俐,叶俊材.活血化瘀汤对骨折早期血管内皮生长因子活性的影响[J].中国临床康复,2005,4:4798-4799.
    [91] 张俐,叶俊材,陈伯仪,等.活血化瘀汤对骨折早期缺氧诱导因子-1a及血管内皮生长因子影响的实验研究[J].中国骨伤,2005,18(4):216-218.
    [92] 樊粤光,徐传毅.生脉成骨方对激素性股骨头坏死血管内皮细胞功能的调节及意义[J].中国中医基础医学杂志,2002,8(9):35-37.
    [93] 吴云刚,童培建,肖鲁伟,等.激素性股骨头坏死介入治疗中VEGF表达的实验研究[J].中国中医骨伤科杂志,2002,10(4):30-34.
    [94] 朱瑾波,李玉鼎,李玉书,等.黄芪治疗慢性皮肤溃疡对血管生成过程的机制研究[J].河北中医,1996,18(4):21-22.
    [95] 赵文元,辛学爱.血管复生素治疗血管闭塞性脉管炎的基础和临床研究[J].中国中西医结合外科杂志,1997,3(5):310-331.
    [96] 张树成,吴志奎.研究中药血管生成活性和作用的鸡胚绒毛尿囊膜实验模型的应用[J].中国中医基础医学杂志,1999,5(5):16-19.
    [97] 张树成,吴志奎,王蕾,等.补肾生血和补肾调经方药促血管生成作用实验研究[J].中医杂志,2000,41(6):369-370.
    [98] 王蕾,吴志奎,张树成,等.补肾生血中药血管生成活性整体效应的初步探讨[J].中医杂志,2001,42(11):683-685.
    [99] 陈奇主编.中药药理实验方法学[M].第1版.北京:人民卫生出版社,1993.1103-1105.
    [100] 樊粤光,徐传毅,何伟,等.激素性股骨头坏死病程中股骨头局部VEGFmRNA表达的变化及意义[J].中国矫形外科杂志,2002,10(8):784-786.
    [101] Suzuki O, Bishop AT, Sunagawa T, et al. VEGF-promoted surgical angiogenesis in necrotic bone [J]. Microsurgery, 2004, 24(1): 85-91.
    [102] 杨操,杨述华,杜靖远,等.血管内皮生长因子基因转染促进股骨头坏死修复[J].临床骨科杂志,2004,7(1):90-93.
    [103] Katsube K, Bishop AT, Simari RD, et al. Vascular endothelial growth factor (VEGF) gene transfer enhances surgical revascularization of necrotic bone. J Orthop Res, 2005, 23(2): 469-474.
    [104] 袁浩,方斌,何伟,等.生脉成骨胶囊治疗激素性股骨头坏死的实验研究[J].中医正骨.1999,11(8):3-4.
    [105] 袁浩,何伟,李雄,等.生脉成骨胶囊治疗股骨头坏死的临床疗效观察—附193例286髋疗效分析[J].中医正骨.1999,11(1):6-8.
    [106] 樊粤光,刘建仁,曾展鹏,等.单味成分生脉素促进鸡胚绒毛尿囊膜血管生成的实验研究[J].中医药学刊,2004,22(5):774-777.
    [107] 樊粤光,梁笃,刘建仁,等.中药M对兔内皮细胞增殖影响的初步研究[J].中国实验动物学杂志,2003,11(3):181-183.
    [108] Luscher TF, Yang Z, Kiowski W, et al. Endothelin-induced vasoconstriction and calcium antagonists[J]. J Hum Hypertens. 1992, 6Supp12: S3-8.
    [109] 刘传康,娄思权.激素性股骨头坏死内皮素-1变化的实验研究[J].四川医学,1999,20(3):258-260.
    [110] 刘忠堂,王坤正.非创伤性股骨头缺血坏死血浆内皮素水平的临床研究[J].中国矫形外科杂志,2000,7(11):1096-1097.
    [111] 曾意荣,袁浩,何伟.防治股骨头坏死中药生脉成骨胶囊抗炎和镇痛作用的研究[J].中药药理与临床.2001,17(4):39-40.
    [112] Neri I, Marietta M, Piccinini F, et al. The L-arginine-nitric oxide system regulates platelet aggregation in pregnancy [J]. J Soc Gynecol investig, 1998, 5(4): 192-196.
    [113] Zhou WD, Pan MX, He HB, et al. Effects of tetramethylpyrazine and aspirin on endothelial cell in culture [J]. Acad J First Med Coil PLA, 1992, 12(1): 52-53.
    [114] 徐晓玉,杨丽蓉,陈刚.川芎嗪对人脐静脉内皮细胞ECV304增殖的影响[J].中草药,2004,10(35):1150-1152.
    [115] 张志琳,邵国富,苏海洪,等.川芎嗪对血管内皮细胞抗缺氧损伤保护作用的实验观察[J].中国临床神经科学,1998,6(3):137-139.
    [116] 尹良军,王爱民,蒋静.川芎嗪拮抗激素所致兔血管内皮细胞功能失调[J].中草药,2002,33(10):921-923.
    [117] ARCO (Association Research Circulation Osseous): Committee on terminology and classification. ARCO News. 1992, 4: 41-46.
    [118] 樊粤光,唐立明,何伟,等.中西药结合介入治疗非创伤性股骨头坏死的临床分析[J].中国中西医结合杂志.1999,19(10):605-606.
    [119] 唐立明,樊粤光,何伟,等.介入法治疗激素性股骨头坏死的临床和实验研究[J].中国中医骨伤科杂志,2000,8(5):14-17.
    [120] 权毅,潘显明,何乾文,等.中西医结合介入治疗股骨头缺血坏死[J].中国骨伤,2002,15(5):285-286.
    [121] 李峻辉,宁亚功,彭仲杰,等.中西医结合治疗激素性股骨头坏死的实验研究[J].中国骨伤,2003,16(3):145-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700