交流电机的转矩控制及电动车驱动技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力电子技术、计算机技术的发展,交流电机控制技术有了很大的发展,已经逐渐替代传统的直流传动技术,应用在国民经济的许多领域。现今的交流电机控制技术主要朝着数字化、智能化、集成化的方向发展,集中在磁场定向控制(FOC)、直接转矩控制(DTC)以及空间电压矢量PWM (SVPWM)等方面的研究展开。DTC作为近年来发展的一种新型的控制技术,成为了交流电机控制领域的研究热点,本文的研究就是针对鼠笼电机转矩控制以及电动车驱动控制的技术而系统地展开的。
     首先,通过大量的文献综述,归纳总结了交流电机控制和电动车交流驱动控制技术的发展现状、方向以及存在的问题,认为FOC、DTC以及SVPWM各自都存在优缺点,在最终解决交流电机实现线性控制特性的问题上它们必须相互融合,取长补短,而且在这些方法中磁链观测是非常重要的一项。
     然后,通过对DTC系统进行数学分析和实验研究,归纳了DTC的特点,分析了磁链模型中参数变化的影响。为了改善DTC系统的低速特性,提出了相位校正转矩控制法(PT-DTC),保留了U-I模型结构简单的优点,同时改善了低速特性。根据前面的分析和实验,结合Lyapnov稳定性原理、系统传函的零极点的方法进一步对DTC系统的稳定性进行分析,认为在低速段状态观测的渐进稳定性是影响系统稳定的主要因素。
     为了改善DTC的控制特性,在分析电压矢量对磁链和转矩的控制效果的基础上,结合SVPWM提出一种改进型矢量转矩控制法——IVTC,改进了磁链的低速模型,明确了电机转矩、磁链和电压矢量之间函数关系,丰富了控制手段,提高了控制特性,适宜工程实现。在进行该研究的过程中,提出一种简化的DFC-PWM法,能够有效改善输出转矩的性能;同时就电机参数的辨识也提出了一种NIM法,它利用最小二乘原理,简化了电机模型,在运算中设计滤波器简化了数据处理,保证了方法的可靠性和简单性。
     在电动车的交流驱动控制技术应用上,除了前面的电机控制技术外,主要分析了再生制动的状态,设计了一种转差控制的再生制动控制RBSRC;在分析零矢量限流性能的基础上提出了一种新型的限流模式,保证了系统运行的可靠性;为提高电池低压下电机的输出转矩,设计了两种模式的过调制,提高了电压的利用效率。
     最后应用以上研究结果,在国防预研专项资金的支持下,设计完成了GREEN SCIENCE电动实验车一辆。
With development of power electronics and microprocessors, AC drives have been improved greatly, which are steadily taking the place of DC drives in traditional fields. It is now developing towards digital, intelligent and integrated implementation, which is focused on field orient control (FOC), direct torque control (DTC) and space vector pulse width modulation (SVPWM) etc. Since DTC is a newly developed method, recently it is an important and challenging area in the field of AC drives. In this thesis, attention is focused on DTC of squirrel cage motors and electric vehicles (EV) driven by AC motors.
    Based on an overall review of related papers, the state of the arts and development trends of AC drives and EV's AC drives are summarized. Since there are some disadvantages among FOC, DTC and SVPWM, it is necessary to mix all these methods and syntheses them to achieve linear characteristics. And observation of the stator flux is the most important one for AC drives.
    After analysis and experiments on DTC system, the disadvantages of DTC are summarized. Also sensitivities between parameters and control character are analyzed based on each type of flux model. In the end of this part, a DTC method with phase tuned (PT-DTC) is proposed to improve character at low speed and its feasibility is proved by experiments.
    Based upon analysis and experiments in the fore part, stabilities of DTC systems are further discussed using Lyapunov theory, zero and pole method of transfer function of AC systems. It is very important that stability of observation for stator flux and current has serious effect for vibration at low speed.
    To improve DTC system, an improved method of vector torque control (IVTC), based on analysis of effects between vectors and variations of flux and torque, is proposed which utilizes an improved flux model at low speed. Since it sets up a function, it is possible for researchers to use more kinds of strategies to control flux and magnetic torque respectively in DTC systems. During the research, a simple PWM method with direct flux control (DFC-PWM) and a novel identification method (NIM) for parameters using least square theory are proposed. Filter is designed to simplex calculations without decreasing correctness of results.
    For EV application, except traction methods for AC drives above, some new schemes are discussed. After analysis the state of regenerative brake, a new regenerative brake method of slip ratio control (RBSRC) is presented here. Since zero vector can not limit currents all
    
    
    
    the time in the experiments, a new current limit mode is introduced. For utilization of the batteries, a method for over modulation with two novel modes is analyzed and realized in EV system.
    Finaly, a prototype of test vehicle, namely GREENSCIENCE, is designed for the application of these methods. In the appendix of this thesis some specified papers and photos are introduced also.
引文
[1] Takahashi.I, Noguchi.T. A new quick_response and high_efficiency control strategy of an induction motor, IEEE Trans.Ind.Appl, 1986,22(5):820~827
    [2] 高景德等.交流电机及其系统的分析,北京:清华大学出版社,1993.8
    [3] Habetler, T.G; Profumo.F, etc. Direct torque control of induction machines using space vector modulation, IEEE Trans on Ind.Appl, 1992,28(5): 1045~1053
    [4] Habetler, T.G; Profumo.F, etc. Stator resistance tuning in a stator flux field oriented drive using an instantaneous hybrid flux estimator, IEE Fifth European Conference on Power Electronics and Applications, 1994,4:152~157
    [5] Habetler, T.G; Profumo.F, Pastorelli. M. Direct torque control of induction machines over a wide speed range, Conference Record of the IEEE Industry Applications Society Annual Meeting, 1994,1:600~605
    [6] 李夙.异步电动机直接转矩控制,北京:机械工业出版社,1994
    [7] 夏超英.交直流传动系统的自适应控制,北京:机械工业出版社,1998.5
    [8] 吴麒.自动控制原理(上、下),北京:清华大学出版社,1990.3
    [9] Abe.T, Habetler, T.G; Profumo, F. Evaluation of a high performance induction motor drive using direct torque control,IEEE Conference Record of the Power Conversion Conference, 1993,444~9
    [10] Hisao Kubota, Takayoshi Nakano, DSP based speed adaptive flux observer of induction motor, IEEE Trans on Ind.Appl,1993, 29(2):344~348
    [11] Walczyna, A.M., Hill, R.J. Space vector PWM strategy for 3~level inverters with direct self~control,IEE Fifth European Conference on Power Electronics and Applications.(4): 152~159
    [12] 高峡,邓忠华,程善美,秦忆.新型直接转矩控制系统研究,电气传动,1996(4):22~28
    [13] Walczyna, A.M. Reduction of current and flux distortions of VSI~fed induction motors with direct self-control, IEE Fifth European Conference on Power Electronics and Applications,(4): 110~124
    [14] Murai Y, Ohashi K, etc. New PWM method for fully digitized inverters, IEEE Trans on Ind.Appl, 1987, 23(5):887~893
    [15] Joachim.Fetz, etc. High efficiency induction motor drive with good dynamics performance for electric vehicles, Evs12,1995
    [16] Kouki Matsuse, Seiji Katsuta, Fast rotor flux contiol of vector controlled induction motor operating at maximum efficiency for electric vehicles,Evs 14, 1997,272~278
    [17] Sayeed A.Mir, M.E.Elbuluk.etc,Fuzzy implementation of direct self control of induction machines,IEEE Trans on Ind.Appl. 1994,30(3)
    
    
    [18] Peter Vas. Vector control of AC machines, clarendon Press, 1990
    [19] Zhong Haoyun, .Mcssinger, Herry P. A new microcomputer_based direct torque control system for three phase induction motor, IEEE Trans on Ind.Appl. 1991,27(2): 294~298
    [20] Khambadkone.A, Holtz.J. Low switching frequency and high dynamic pulsewidth modulation based on field-orientation for high-power inverter drive, IEEE Trans on PE,1992,7(2): 627~4532
    [21] Mutoh.N, Nandoh.K, Ueda. A. Automatic torque boost control method suitable for PWM inverter with a high switching frequency, IEEE Trans on IE,1992,39(3): 250~257
    [22] 三菱电机株式会社编.变频调速器使用手册,北京:兵器工业出版社,1992.5
    [23] 姬志艳,李永东,郑逢时.应用异步电机全阶模型的无速度传感器直接转矩控制系统的仿真研究,电气自动化,1997(3):8~10
    [24] 严青,邓忠华等.直接转矩控制系统低速性能分析--转矩观测器问题,电工技术学报,1996,11(3):21~26
    [25] 严青,王离九.感应电机定子磁通定向(SFO)控制中的死区效应分析,华中理工大学学报,1994,22(8):97~100
    [26] Holtz.J, Beyer, B. Fast current trajectory tracking control based on synchronous optimal pulsewidth modulation, IEEE IAS '94,1994(1):734~741
    [27] 严青,万淑芸等,优化磁链轨迹的高频劈零矢量PWM法及其在数字式变频器中的应用,电工技术学报,1995(4)
    [28] Mir, S.; Elbuluk, M.E.; Zinger, D.S.PI and fuzzy estimators for tuning the stator resistance in direct torque control of induction machines,PESC '94 Record. 1994(1):744~751
    [29] Hu Yuwen, Tang Lixin. A resistance on-line fuzzy observer of induction motor direct torque control (DTC) system, Proceedings IPEMC '94. 1994(2):715~720
    [30] 吴峻,电动汽车控制器的设计与研究,国防科技大学学位论文,1996.12
    [31] Cabrera, L.A.; Elbuluk, M.E.; Zinger, D.S. Learning techniques to train neural networks as a state selector for inverter-fed induction machines using direct torque control, PESC '94 Record. 1994(1):233~242
    [32] Yanhong Xue,Xingyi Xu,etc, A stator flux_oriented voltage source variable speed drive based on dc link measurement, IEEE Trans on Ind.Appl, 1991,27(5):962~969
    [33] Attaianese, C.; Parillo, F.; Perfetto, A.; Tomasso, G. A SVM algorithm for torque control of inverter fed induction motor drive. IEMD '99. 1999,454~456
    [34] Dae-Woong Chung; Seung-Ki Sul. A new dynamic overmodulation strategy for high performance torque control of induction motor. APEC '99. (1):264~270
    [35] Jezernik, K.; Drevensek, D. Robust torque control of induction motor for electric vehicle, AMC '98, 1998,36~41
    [36] Martins, C.A.; Carvalho, A.S.; Roboam, X.; Meynard, T.A. Evolution of induction motor
    
    control methods and related voltage-source inverter topologies, AMC '98,1998,15-20
    [37] Mutschler, P.; Flach, E. Digital implementation of predictive direct control algorithms for induction motors,Thirty-Third IAS Annual Meeting, 1998,(1) : 444-451
    [38] Jun-Koo Kang; Seung-Ki Sul. Torque ripple minimization strategy for direct torque control of production motor. Thirty-Third IAS Annual Meeting, 1998,(1) : 438-443
    [39] Byeong-Seok Lee; Krishnan, R. Adaptive stator resistance compensator for high performance direct torque controlled induction motor drives . Thirty-Third IAS Annual Meeting, 1998,(1) : 423-430
    [40] Maes, J.; Melkebeek, J. Discrete time direct torque control of induction motors using back-EMF measurement. Thirty-Third IAS Annual Meeting, 1998,(1) : 407-414
    [41] Lascu, C.; Boldea, I.; Blaabjerg, F. A modified direct torque control (DTC) for induction motor sensorless drive. Thirty-Third IAS Annual Meeting, 1998,(1) : 415-422
    [42] Euh-Suh Koo; Hyeoun-Dong Lee; Seung-Ki Sul; Joohn-Sheok Kim. Torque control strategy for a parallel hybrid vehicle using fuzzy logic. Thirty-Third IAS Annual Meeting, 1998,(3) : 1715-1720
    [43] Grabowski, P.Z.; Blaabjerg, F. Direct torque neuro-fuzzy control of induction motor drive. IECON '98. 1998 ,(2) : 657-661
    [44] Attaianese, C.; Meo, S.; Perfetto, A. A voltage feeding algorithm for direct torque control of induction motor drives using state feedback.. IECON '98. 1998,(2) : 586-590
    [45] Buja, G.; Casadei, D.; Serra, G. Direct stator flux and torque control of an induction motor: theoretical analysis and experimental results. IECON '98. 1998,(1) : 50-64
    [46] Casadei, D.; Serra, G.; Tani, A. The use of matrix converters in direct torque control of induction machines. IECON'98. 1998,(2) : 744-749
    [47] Kazmierkowski, M.P. Control philosophies of PWM inverter-fed induction motors. IECON 97. 1997,(1) : 16-26
    [48] Sudhoff, S.D.; Corzine, K.A.; Glover, S.F.; Hegner, H.J.; Robey, H.N., Jr. DC link stabilized field oriented control of electric propulsion systems. IEEE Trans on Energy Conversion, 1998,13(1) : 27-33
    [49] Mutschler, P.; Flach, E. Digital implementation of predictive direct control algorithms for induction motors. Thirty-Third IAS Annual Meeting, 1998,(1) : 444-451
    [50] Hu, Y.W.; Zhong, L.; Rahman, M.F.; Lim, K.W.; Xu, Y.; Rahman, M.A.; Bhuiya, A.R. Direct torque control of an induction motor using fuzzy logic. IEEE 1997 Canadian Conference on Electrical and Computer Engineering, 1997, (2) :767-772
    [51] Li Yongdong; Shao Jianwen; Si Baojun. Direct torque control of induction motor for low speed drives considering discrete effects of control and dead-time of inverter,IAS '97,(1) : 781-788
    [52] Nash, J.N. Direct torque control, induction motor vector control without an encoder. IEEE Trans on Ind. Appl, 1997,33(2) : 333-341
    [53] Grabowski, P.Z. Direct torque neuro-fuzzy control of induction motor drive. IECON 97.
    
    1997 (2) : 557-562
    [54] Hoshi, N.; Yoshimoto, K.; Kawamura, A. Driving characteristics of anti-directional-twin-rotary motor on electric vehicle simulator. Proceedings of the Power Conversion Conference, 1997(1) :19-24
    [55] Martins, C.A.; Carvalho, A.S.; Roboam, X.; Meynard, T.A. Evolution of induction motor control methods and related voltage-source inverter topologies. AMC '98,1998,15-20.
    [56] Mendes, E.; Tijerina-Araiza, A. Experimental comparison between field oriented control and passivity based control of induction motors. ISIE '97. 1997 ,(1) : SS84-SS88
    [57] Toshihiko Noguchi; Seiji Kondo; Isao Takahashi. Field-oriented control of an induction motor with robust on-line tuning of its parameters. IEEE Trans on Ind.Appl, 1997, 33(1) 55-42
    [58] Jacobina, C.B.; Lima, A.M.N.; Salvadori, F. Flux and torque control of an induction machine using linear discrete state space approach. IECON 97. (2) : 511-516
    [59] Yang Xia; Oghanna, W. Fuzzy direct torque control of induction motor with stator flux estimation compensation. IECON 97. (2) : 505-510
    [60] Noguchi, T.; Yamamoto, M; Kondo, S.; Takahashi, I. High frequency switching operation of PWM inverter for direct torque control of induction motor. IAS '97. (1) : 775-780
    [61] Matsuse, K.; Yoshizumi, T.; Katsuta, S. High-response flux control of direct-field-oriented induction motor with high efficiency taking core loss into account. IAS'97. (1) : 410-417
    [62] Wang, L.; Funato, H.; Kamiyama, K. High-torque and high-efficiency control induction motor drives. Proceedings of the Power Conversion Conference, 1997,(1) : 103-106 vol.1
    [63] Ohmori, Y.; Takagi, M.; Kiriya, T. Improvement of lower side speed control characteristics of an induction motor without a speed sensor. Proceedings of the Power Conversion Conference, 1997,(2) : 531-534
    [64] Wade, S.; Dunnigan, M.W.; Williams, B.W. Improving the accuracy of the rotor resistance estimate for vector-controlled induction machines. IEE Proceedings-Electric Power Applications, 1997,144(5) : 285-294
    [65] Benhaddadi, M.; Touhami, O.; Moulahoum, S.; Olivier, G. Iron core losses: measurement and impact in induction motor vector control. IMTC/98,(2) : 723-727
    [66] Joe Ho Chang; Byung Kook Kim. Minimum-time minimum-loss speed control of induction motors under field-oriented control. IEEE Trans on Ind. Elec, 1997 , 44(6) : 809-815
    [67] Wade, S.; Dunnigan, M.W.; Williams, B.W. Modeling and simulation of induction machine vector control with rotor resistance identification. IEEE Transactions on Pow. Elec, 1997,12(3) : 495-506
    [68] Rafajlovski, G.; Nikoloski, L. Motor parameter variation in vector controlled induction motor. 9th Mediterranean Electrotechnical Conference, 1998 , Page(2) : 1057-1061
    
    
    [69] Chis, M.; Jayaram, S.; Rajashekara, K.Neural network-based efficiency optimization of EV drive. IEEE 1997 Canadian Conference on Electrical and Computer Engineering, 1997,(2) :454-461
    [70] Sng, E.K.K.; Ah-Choy Liew; Lipo, T.A. New observer-based DFO scheme for speed sensorless field-oriented drives for low-zero-speed operation. IEEE Trans on Pow. Elec, 1994,13(5) : 959-968
    [71] Hsin-Jang Shieh; Kuo-Kai Shyu. Nonlinear sliding-mode torque control with adaptive backstepping approach for induction motor drive. IEEE Trans on Ind. Elec, 1999,46(2) : 380-389
    [72] Aanudas de Wit, C.; Ramirez, J. Optimal torque control for current-fed induction motors. Proceedings of the 1997 American Control Conference, (1) : 629-630
    [73] Canudas de Wit, C.; Ramirez, J. Optimal torque control for current-fed induction motors. IEEE Transactions on Automatic Control, 1999,44(5) : 1084-1089
    [74] Dunnigan, M.W.; Wade, S.; Williams, B.W.; Yu, X. Position control of a vector controlled induction machine using Slotine's sliding mode control approach. IEE Proceedings-Electric Power Applications, 1998,145(3) : 231-238
    [75] Noguchi, T.; Nakmahachalasint, P.; Watanakul, N. Precise torque control of induction motor with on-line parameter identification in consideration of core loss. Proceedings of the Power Conversion Conference, 1997,(1) :113-118
    [76] Chakrabarti, S.; Ramamoorty, M.; Kanetkar, V.R. Reduction of torque ripple in direct torque control of induction motor drives using space vector modulation based pulse width modulation, International Conference on Power Electronics and Drive Systems, (1) : 117-121
    [77] Kuo-Kai Shyu; Hsin-Jang Shieh. Robust nonlinear torque control for induction motor drive. 23rd International Conference on Industrial Electronics, Control and Instrumentation, 1997, (1) : 170-174
    [78] Faa-Jeng Lin; Rong-Jong Wai; Pao-Chuan Lin. Robust speed sensorless induction motor drive. IEEE Transactions on Aerospace and Electronic Systems, 1999,35(2) : 566-578
    [79] Jezernik, K.; Drevensek, D. Robust torque control of induction motor for electric vehicle. AMC'98,1998(1) : 36-41
    [80] Bottura, C.P.; Filho, S.A.A. Robust torque tracking control for the induction machine. IECON'98. (3) :1533-1537
    [81] Jezernik, K.; Drevensek, D.; Korelic, J. Robust VSS IM control for Evs. International Conference on Power Electronics and Drive Systems, 1997,(2) : 804-809
    [82] Yang Xia; Oghanna, W. Study on fuzzy control of induction machine with direct torque control approach. ISIE'97. Page(s): 625-630 vol.2.
    [83] Takahashi, I.; Noguchi, T. Take a look back upon the past decade of direct torque control of induction motors. 23rd International Conference on Industrial Electronics, Control and Instrumentation, 1997,(2) : 546-551
    
    
    [84] Cabrera, L.A.; Elbuluk, M.E.; Husain, I. Tuning the stator resistance of induction motors using artificial neural network. IEEE Trans on Pow. Elect, Sept. 1997,12(5) : 779-787
    [85] Attaianese, C.; Nardi, V.; Tomasso, G.; Perfetto, A. Vectorial torque control (VTC): a novel approach to torque and flux control of induction motor drives. Fourteenth Annual Applied Power Electronics Conference and Exposition, 1999,(1) : 257-263
    [86] Griva, G.; Profumo, F.; Abrate, M.; Tenconi, A.; Berruti, D. Wide speed range DTC drive performance with new flux weakening control [for induction motor drives]. 29th Annual IEEE Power Electronics Specialists Conference, 1998,(2) : 1599-1604
    [87] Hurst, K.D.; Habetler, T.G.; Griva, G.; Profumo, F, Zero-speed tacho-less IM torque control: simply a matter of stator voltage integration. Twelfth Annual Applied Power Electronics Conference and Exposition, 1997,(2) : 749-753
    [88] Jung-Woo Park; Dae-Hyun Koo; Jong-Moo Kim; Heung-Geun Kim. High performance drive unit for 2-motor driven electric vehicle. Fourteenth Annual Applied Power Electronics Conference and Exposition, 1999,(1) : 443-449
    [89] Pappano, V.; Lyshevski, S.E.; Friedland, B. Identification of induction motor parameters. Proceedings of the 37th IEEE Conference on Decision and Control, 1998,(1) : 989-994
    [90] Jul-Ki Seok; Seung-Ki Sul. Induction motor parameter tuning for high performance drives. Thirty-Third IAS Annual Meeting,1998,(1) : 633-639
    [91] Cecati, C.; Rotondale, N. On-line identification of electrical parameters of the induction motor using RLS estimation. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, 1998,(4) : 2263-2268.
    [92] Pappano, V.; Lyshevski, S.E.; Friedland .Parameter identification of induction motors. 1. The mode-based concept. Proceedings of the 1998 IEEE International Conference on Control Applications, 1998,(1)
    [93] Pappano, V.; Lyshevski, S.E.; Friedland, B. Parameter identification of induction motors. 2. Parameter subset identification. Proceedings of the 1998 IEEE International Conference on Control Applications, 1998, (1) : 470-474
    [94] Alonge, F.; D'Ippolito, F.; La Barbera, S.; Raimondi, F.M. Parameter identification of a mathematical model of induction motors via least squares techniques. Proceedings of the 1998 IEEE International Conference on Control Applications, 1998, (1) : 491-496
    [95] Rabelo, B.C., Jr.; Silvino, J.L. Alternative methods of estimating the magnetising characteristics and the rotor time constant for the induction machine vector control. 29th Annual IEEE Power Electronics Specialists Conference, 1998,(2) : 973-978.
    [96] Tsuji, M.; Shuo Chen; Izumi, K.; Yamada, E. Stability improvement of speed sensorless induction motor vector control system using q-axis flux with stator resistance identification. 29th Annual IEEE Power Electronics Specialists Conference, 1998,(2) : 1587-1592
    [97] Taeg-Jeon Kweon; Dong-Seok Hyun. High performance speed control of electric machine using Kalman filter and self-tuning regulator. 29th Annual IEEE Power
    
    Electronics Specialists Conference, 1998,(1): 280~286
    [98] Couto, E.B.; de Aguiar, M.L. Parameter identification of induction motors using DC step excitation at standstill. IEEE International Symposium on Industrial Electronics, 1998. (2): 468~471
    [99] Alonge, F.; D.Ippolito, F.; Ferrante, G.; Raimondi, F.M. Parameter identification of induction motor model using genetic algorithms. IEE Proceedings-Control Theory and Applications, 145(6): 587~593
    [100] Shaw, S.R.; Leeb, S.B. Identification of induction motor parameters from transient stator current measurements. IEEE Transactions on Ind. Elect, 1999,46(1): 139~149
    [101] 许镇琳,何启莲.异步机矢量控制系统的电参数自设定,电工技术学报,1995,(1):44~47
    [102] 刘志刚,郝荣泰.一种简单有效的感应电机转子参数辨识方案,电气传动自动化,1997,(5):5-7
    [103] 杨辉,万淑芸,孙晓鹏.鼠笼式异步电动机转子时间常数单相电流测定法研究,电气传动,1997,(3):25~27
    [104] 谢运祥,王新建,薛峰.感应电机磁通轨迹控制法的研究,华南理工大学学报,1997,25,(6):58~64
    [105] 谢运祥,陈少华.IGBT实现的转矩控制调速系统,华南理工大学学报,1997,25(7):95~97
    [106] 谢运祥,蒋思梅,徐文宪.异步电机变频调速的高动态响应,华南理工大学学报,1995,23(5):134~141
    [107] 孙泽昌,魏学哲,陈辉堂.感应电机转差变频调速系统的稳态矢量控制方法,电气自动化,1997,(2):4~7
    [108] 孙泽昌,黎燕航,陈辉堂.一种基于稳态数学模型的感应电机转差型矢量控制方法的仿真研究,电气自动化,1997,(3):4~7
    [109] 罗玉涛,廖权来.EV6630电动轻型客车的研制,华南理工大学学报,1997,25(11):80~83
    [110] 朱典旭,张锦生等.电压空间矢量控制的大容量变频调速装置研究,电工技术学报,1996,11(3)
    [111] 王建辉,顾树生.模糊控制技术在异步机直接转矩控制中的应用,东北大学学报,1997,18(6):640~643
    [112] 覃正清,黄斐梨等.用MCS~8097BH实现得异步电动机全数字矢量控制系统,清华大学学报,1996,36,72~77
    [113] 孔慧芳,姜虎.智能型状态观测器的研究,安徽工学院学报,1997.16(2)92~97
    [114] 竺伟,陈伯时.基于串联双模型观测器的异步电机无速度传感器矢量控制系统,电
    
    气传动,1997,(3):9~11
    [115] 杨耕,曾光等.用于电动机控制的几种新型单片微处理器,电气传动,1995,(1):23~26
    [116] 吴峻,李圣怡,任永益,单庆晓.感应电机直接转矩控制系统实验性能的研究。中小型电机,1999,26(6)47~50
    [117] 吴峻,李圣怡,潘孟春,任永益.鼠笼电机再生制动状态分析与控制。微电机,2000,27(5)
    [118] 吴峻,李圣怡,任永益,潘孟春.定子磁链直接控制的新型PWM法,电气自动化,2000,30(4)
    [119] 吴峻,潘孟春,李圣怡.直接转矩控制系统低速性能的分析与控制,电气传动(已录用)
    [120] Kulka, D.; Gens, W.; Berger, G. Direct torque controlling technique with synchronous optimized pulse pattern. IEEE Annual Power Electronics Specialists Conference 1993.245~250
    [121] Griva, Giovanni; Habetler, Thomas G.; Profumo, Francesco; Pastorelli, Michelle. Performance evaluation of a direct torque controlled drive in the continuous PWM-square wave transition region. PESC Record ~ IEEE Annual Power Electronics Specialists Conference 1993.237~244
    [122] Kasprowicz, A.B.; Kazmierkowski, M.P.; Kanoza, S. Speed sensorless direct torque vector control of DC link resonant inverter~fed induction motor drive. IEEE International Symposium on Industrial Electronics 1996,1,186~189
    [123] Attaianese, C.; Perfetto, A.; Damiano, A.; Marongiu, ~Ⅰ. Direct torque control algorithm imposing the mechanical response of speed controlled induction motor drives. IEEE International Symposium on Industrial Electronics, 1996,1,157~162
    [124] Kandianis, A.; Griva, G.; Profumo, F.; Manias, S.N. New direct torque control scheme for induction motors using linear state feedback. Proceedings of the IEEE International Conference on Power Electronics, Drives & Energy Systems for Industrial Growth, 1996,2,876~882
    [125] Nash, James N. Direct torque control induction motor vector control without an encoder. IEEE Conference Record of Annual Pulp and Paper Industry Technical Conference 1996, 86~93
    [126] Chapuis, Y.A.; Pelissou, C.; Roye, D. Direct torque control of induction machine under square wave conditions. Conference Record-IAS Annual Meeting, 1995,1,343~349
    [127] Casadei, D.; Serra, G.; Tani, A. Direct flux and torque control of induction machine for electric vehicle applications. IEE Conference Publication, 1995,412,349~353
    [128] Griva, Giovanni; Habetler, Thomas G.; Profumo, Francesco; Pastorelli, Michele. Performance evaluation of a direct torque controlled drive in the continuous PWM~square
    
    wave transition region. IEEE Trans on Pow. Elect, 1995,10(4) : 464-471
    [129] Mir, Sayeed; Zinger, Donald S.; Elbuluk, Malik E. PI and fuzzy estimators for tuning the stator resistance in direct torque control of induction n achines. PESC Record-IEEE Annual Power Electronics Specialists Conference, 1994,1, 744-751
    [130] Hori, Yoichi; Toyoda, Yasushi; Tsuruoka, Yoshimasa. Traction control of electric vehicle: basic experimental results using the test EV 'UOT Electric March'. IEEE Transon Ind. Appl, 1998,34(5) :1131-1138
    [131] Lee, Hyeoun-Dong; Sul, Seung-Ki. Fuzzy-logic-base J torque control strategy for parallel-type hybrid electric vehicle. IEEE Trans on Ind. Elect, 1998,45(4) : 625-632
    [132] Patterson, D.J.High efficiency permanent magnet drive systems for electric vehicles. IECON Proceedings (Industrial Electronics Conference), 1997,2, 3 91-396
    [133] Sudhoff, S.D.; Corzine, K.A.; Glover, S.F.; Hegner, H.J.; Robey, H.N. Jr. DC link stabilized field oriented control of electric propulsion systems. IEEE Trans on Ener. Conv,1998,13(1) : 27-33
    [134] Habetler, Thomas G.; Profumo, Francesco; Griva, Giovanni; Pastorelli, Michele; Bettini, Alberto. Stator resistance tuning in a stator-flux field-oriented drive using an instantaneous hybrid flux estimator. IEEE Transactions on Pow. Elect,1998,13(1) : 125-133
    [135] Jul-Ki Seok; Seung-Ki Sul. A new overmodulation strategy for induction motor drive using space vector PWM. APEC '95,1995, (1) : 211-216
    [136] Dae-Woong Chung; Seung-Ki Sul. A new dynamic overmodulation strategy for high performance torque control of induction motor. APEC'99,1, 264-270
    [137] Dong-Choon Lee; G-Myoung Lee. A novel overmodulation technique for space-vector PWM inverters. IEEE Trans on Pow. Elect, 1998,13(6) : 1144-1151.
    [138] Hava, A.M.; Kerkman, R.J.; Lipo, T.A. Carrier-based PWM-VSI overmodulation strategies: analysis, comparison, and design. IEEE Trans on Pow. Elect, 1998,13(4) : 674-689.
    [139] Jinhwan Jung; Kwanghee Nam. A dynamic decoupling control scheme for high-speed operation of induction motors. IEEE Trans on Ind. Elect, 1999,46(1) : 100-110.
    [140] Undeland, T.M.; Mohan, N. Overmodulation and loss considerations in high-frequency modulated transistorized induction motor drives. IEEE Trans on Pow. Elect. 1988,3(4) : 447-452
    [141] Bolognani, S.; Zigliotto, M. Novel digital continuous control of SVM inverters in the overmodulation range. IEEE Trans on Ind. Appl, 1997,33(2) : 525-530.
    [142] Griva, G.; Profumo, F.; Abrate, M.; Tenconi, A.; Berrnti, D.Wide speed range DTC drive performance with new flux weakening control [for induction motor drives] PESC 98,2,1599-1604
    [143] Seibel, B.J.; Rowan, T.M.; Kerkman, R.J. Field-orionted control of an induction
    
    machine in the field-weakening region with DC-link and load disturbante rejection.IEEE Trans on Ind.Appl,1997,33(6):1578~1584
    [144] Cabrera,Luis A.;Elbuluk, Malik E.;zinger,Donald S.Learning techniques to train neural networks as a state selector for inverter-fed induction machines using direct torque control. IEEE Transactions on Pow. Elect,1997,12(5):788~799.
    [145] Cabrera,Luis A.;Elbuluk, Malik E.;Husain, Iqbal. [uning the stator resistance of induction motors using artificial neural network. IEEE Trans on Pow. Elect, 1997, 12(5): 779~787
    [146] Chakrabarti, S.; Ramamoorty, M.; Kanetkar, V.R.Reduction of torque ripple in direct torclue control of induction motor drives using space vector modulation based pulse width modulation.Proceedings of the International Conference on Power Electronics and Drive Systems, 1997,117~121
    [147] Zhong,L.; Rahman,M.F.;Lim, K.W.;Hu,Y,W.;Xu,Y.Fuzzy observer for induction motor stator resistance for application in direct torque control. Proceedings of the International Conference on Power Electronics and Drive Systems,1997,1,91~96.
    [148] Chis,M.;Jayaram,S.;Rajashekara,K. Neural network based efficiency optimization of EV drive.Canadian Conference on Electrical and Computer Engineering, 1997 2,454~457.
    [149] Nash,James N. Direct torque control,induction mo or vector control without an encoder.IEEE Trans on Ind.Appl,1997,33(2):333~341.
    [150] Wang,Xiufeng;Elbuluk,Malik. Neural network control of induction machines using genetic algorithm training.31th IAS Annual Meeting.Part 3(of 4)
    [151] Vas,P.; Drury,W. Electrical machines and drives:present and future.Proceedings of the 1996 8th Mediterranean Electrotechnical Conference,Part 1(of 3).
    [152] 诸静等.模糊控制原理与应用,北京:机械工业出版社,1996.4
    [153] 许强.全数字交流伺服系统及其自适应控制的研究,华中理工大学博士学位论文,1997
    [154] 16th international electric vehicle symposium. Beijing.Oct. 1999.
    [155] 冯江华,陈高华,黄松涛.异步电动机的直接转矩控制,电工技术学报,1999,14(3)
    [156] 孙晓鹏,万淑芸.无速度传感器矢量控制系统速度估算新方法,电气自动化,1996,18(3),4~6
    [157] 高为炳.变结构控制理论及设计方法,北京:科学出版社,1998.1
    [158] 路易斯.汉格曼.实用迭代法,北京:清华大学出版社,1984.8
    [159] Kaku, B.; Miyashita, I.; Sone, S. A novel prediction method of acoustic magnetic noise based on induction motor's NHCC function. IEEE Trans on Ind. Elect. 1998,46(2):398 -406
    [160] Thunes, J.; Kerkman, R.; Schlegel, D.; Rowan, T. Current regulator instabilities on parallel voltage-source inverters. IEEE Trans on Ind. Appl, 1997,35(1):70~77
    
    
    [161] Cacciato, M.; Consoli, A.; Scarcella, G.; Testa, A. Reduction of common~mode currents in PWM inverter motor drives. IEEE Trans on Ind. Appl,1999,35(2): 469~476
    [162] 孙泽昌,史幼迪等.感应电机转差变频调速系统的稳态矢量控制方法.电气自动化.1997(2),p4~6
    [163] 周缄,万淑芸等.转子电阻变化对矢量控制的影响.电气自动化.1998,20(3):18~20
    [164] 陈国呈,PWM变频调速技术,北京:机械工业出版社,1998.7
    [165] 程善美.笼型异步电机新型直接转矩控制研究.电气自动化.1997,19(6):7~10
    [166] 李艳.采用遗传算法改善模糊直接转矩控制性能.电气自动化.1997,19(6):19~21
    [167] 夏雷,周国兴.直接转矩控制的谐波分析与改进方法.电气自动化.1999,21(2):19~20
    [168] 薛峰,谢运祥等.直接转矩控制系统的转速估算模型及其参数补偿方法.电工技术学报.1998,13(5):26~30
    [169] 冯培悌.模糊控制器在异步电动机直接转矩控制中的应用.电工技术学报.1997,12(6):10~14
    [170] Jung, Jinhwan; Nam, Kwanghee. Dynamic decoupling control scheme for high~speed operation of induction motors. IEEE Trans on Ind. Elect, 1999,46(1): 100~110
    [171] Attaianese, Ciro; Damiano, Alfonso; Gatto, Gianluca; Marongiu, Ignazio; Perfetto, Aldo. Induction motor drive parameters identification. IEEE Trans on Pow. Elect, 1998,13(6): 1112~1121
    [172] Wang, Wen-Jieh; Wang, Chun-Chieh. New composite adaptive speed controller for induction motor based on feedback linearization. IEEE Trans on Energy Conversion, 1998,13 (1): 1~6
    [173] Wang, Wen-Jieh; Wang, Chun-Chieh. Rotor-flux-observer-based composite adaptive speed controller for an induction motor. IEEE Trans on Energy Conversion,1997,12(4): 323~329
    [174] Chu, A.; Nowicki, E.P.; Chen, T. Design of a robust speed controller for a compressor driven by a field oriented controlled induction motor. IEEE Canadian Conference, 1998,2, 481~484
    [175] Byung-Do Yoon; Yoon-Ho Kim; Chan-Ki Kim; Choon-Sam Kim. Robust control of induction motor using fuzzy sliding adaptive controller with sliding mode torque observer. Proceedings of the 1995 IEEE IECON 21 st International Conference, 1995,1, 518~523
    [176] Kuo-Kai Shyu; Hsin-Jang Shieh. Robust nonlinear torque control for induction motor drive. IECON 97. 1997,1,170 ~174 vol.1
    [177] Monti, A.; Pironi, F.; Sartogo, F.; Vas, P. A new state observer for sensorless DTC control. Seventh International Conference on Power Electronics and Variable Speed Drives, 1998,311 -317
    [178] Attaianese, C.; Parillo, F.; Perfetto, A.; Tomasso, G. A SVM algorithm for torque
    
    control of inverter fed induction motor drive. IEMD '99,1999,454-456
    [179] Noguchi, T.; Yamamoto, M.; Kondo, S.; Takahashi, I. High frequency switching operation of PWM inverter for direct torque control of induction motor. IAS '97, 1997,1, 775~780
    [180] Noguchi, T.; Nakmahachalasint, P.; Watanakul, N. Precise torque control of induction motor with on-line parameter identification in consideration of core loss. Power Conversion Conference, 1997, 1,113~118
    [181] Joong-Ho Song; Kwang-Bae Kim; Myung-oong Youn. Eigenvalue sensitivity of a speed-sensorless CSI-fed induction motor system. Proceedings of the IECON '93,1993, (2): 987~991
    [182] Cecati, C.; Rotondale, N. High performance AC orives using passivity based controllers. IECON 97,1997,2,575~580
    [183] Jun Wu, Shengyi Li, Mengchun. Pan, Yongyi Ren ,Qingxiao Shah. A new PWM method for electric bicycle driven by AC motors. The16th international electric vehicle symposium (EVS~16). A5 session. Beijing. 1999.10.
    [184] 苏开才,毛宗源.现代功率电子技术,北京:国防工业出版社,1995
    [185] 孙逢春等.电动汽车—21世纪的重要交通工具,北京理工大学出版社,1997.1
    [186] 军民两用大功率交流驱动系统的研究论证报告,国防科技大学机电工程系,1997.8
    [187] 湘谭电机厂科技信息室.电工技术交流.电动汽车译文集 1995.1
    [188] 湘谭电机厂科技信息室.电工技术交流.电动汽车译文集 1993.2
    [189] Semikron产品说明书,1998.9
    [190] Ahmad M. Nasser, Comparison of induction, PM, and SR motor technologies in EV traction systems application. EVS 16.1999
    [191] Ying Wang, Wenlong Qu, Quanshi Chen, Jingguang Lun.A new fuzzy torque control system for electric vehicles,Evs 15,1998
    [192] Karel.Jezernik. Robust direct torque and flux vector control of induction motor.EVS 15.1998
    [193] H.Q.Wang.etc. A robust decoupling control method for induction motor drives of electric vehicles,EVS 15,1998
    [194] H.Q.Wang.etc. A robust decoupling control method for induction motor drives of electric vehicles,EVS 15,1998
    [195] Consoli, W. Cardaci, G. Scarcella, A test .Efficiency optimization techniques in induction motor drives for electric vehicles application,,Evs15, 1998
    [196] Marcus Menne, Jürgen Reinert, Rik W. De Doncker.energy~efficiency evaluation of traction drives for electric vehicles,,Evs 15,1998
    [197] Jinhwan Jung.etc. A vector control scheme for EV induction motors with a series iron loss model. IEEE Trans on IE, 1998,45(4)
    
    
    [198] Blue Bird BIT NORTHOPGRUM Co., 1996
    [199] TCE 2000 ELECTRIC SCHOOL BUS Operator's Guide Supplement Westinghouse Electric Corporation ,Feb 1995
    [200] 冯雍明.电机的工业试验,北京:机械工业出版,1990.4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700