金属配合物及金属胶束模拟水解酶催化酯水解剪切的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属配合物特别是由金属配合物与表面活性剂形成的金属胶束作为一类模拟水解酶被广泛地应用在酯的催化水解领域。本论文系统地研究了冠醚化的单(双)Schiff碱配合物与双子表面活性剂和双长链表面活性剂形成的金属胶束对α-吡啶甲酸对硝基苯基酯(PNPP)和二(对硝基苯酚基)磷酸酯(BNPP)水解的促进作用。同时,也考察了冠醚化的单(双)Schiff碱配合物结构对羧酸酯和磷酸酯水解速率的影响。并首次将胶束概念引入到HPNP(RNA的模型底物)的水解剪切反应中,并获得了一些有趣的信息。
     本文合成了一系列对称的、非对称的单(或双)Schiff碱金属配合物,并分别考察了它们与双子表面活性剂和传统的表面活性剂形成的金属胶束对羧酸酯PNPP和磷酸二酯BNPP水解的催化性能。研究结果表明,被Schiff碱金属配合物与双子表面活性剂形成的新型金属胶束催化的PNPP和BNPP的水解速度均比传统的表面活性剂胶束中更快,这可能与双子表面活性剂本身独特的结构有关。另外,两种非对称Salen-Mn(Ⅲ)和Salen-Co(Ⅱ)配合物与双长链表面活性剂DHAB形成的金属胶束催化BNPP的水解也达到7个数量级的速率增加。实验表明,双子和双长链表面活性剂胶束都是比较理想的反应介质,这为人工模拟水解酶的开发和利用提供了有用的信息。
     本论文对配合物本身的结构与其催化性能之间的关系进行了深入的讨论。研究发现,配体中取代基的吸(或排)电子性对中心金属Lewis酸性的影响除与其吸(或排)电子性本身的强弱有关之外,与取代基所键连位点离中心金属的距离远近也有着密切关系,这与经典的诱导效应规律是一致的。另外,催化剂的活性也受到催化剂活性中心的开放程度的制约。同时也观察到,即使为相同的挂接取代基团(冠醚或吗啉),在不同骨架的配合物中其对催化剂活性的影响可能相差甚远,甚至涉及到影响因素的主次转换。考察了不同的中心金属对催化剂活性的影响,发现金属离子的荷径比是影响催化剂性能的重要因素之一。
     首次将胶束概念引入到RNA模型底物HPNP的水解剪切反应体系中。本文初步研究了一种咪唑衍生物为配体的锌(Ⅱ)配合物分别在双子表面活性剂16-2-16胶束和CTAB胶束中催化HPNP水解的反应性。结果表明,双子表面活性剂16-2-16胶束中HPNP水解速率比在CTAB胶束中高出1.5倍。同时还发现,在催化剂和底物HPNP的水溶性都十分优良的均相水体系中加入阳离子表面活性剂,可大大提高HPNP水解的速率。并尝试提出了“胶束-HPNP-催化剂”的“三明治吸附模式”,并运用此“三明治吸附模式”合理地解释了本实验中有趣的实验结果。突破了表面活性剂通常作为添加剂提高两相反应传质速度以加快催化反应速度的经典理论,拓展了表面活性剂的应用范围。
Metal complexes, especially metallomicelles formed by metal complex and micelles are widely employed as artificial hydrolases to catalyze the hydrolytic cleavage of carboxylic acid esters and phosphate esters. The cleavage of p-nitrophenyl picolinate (PNPP) and bis(p-nitrophenyl) phosphate (BNPP) catalyzed by metalomicelles, which is formed by crowned Schiff base metal complexes and Gemini (or double long-chain) surfactant micelles, has been studied systematically in this dissertation. Moreover, the effects of structure of complex on the hydrolytic rate of carboxylic acid esters and phosphate esters have been studied. Especially, micelle-catalyzed hydrolysis of HPNP (a RNA model) has firstly been investigated and some interesting information has been gained.
     A series of symmetrical (or unsymmetrical) single (or double) Schiff base metal complexes have been synthesized. And, their catalytic activities for the hydrolysis of PNPP and BNPP in Gemini surfactant micelles and conventional CTAB micelles have been investigated, respectively. The results show that the hydrolytic rates of PNPP and BNPP in Gemini micelles are greater than that in CTAB micelles, which may be due to the unique structure of Gemini surfactant. In addition, a seven-orders of magnitude rate acceleration has been observed in the hydrolysis of BNPP catalyzed by the two metallomicelles formed by the double long-chain surfactant DHAB and the unsymmetrical Salen-Mn(III) (or Salen-Co(II)). Observations imply that both Gemini and double long-chain surfactant micelle are the ideal reaction media, which provides useful information for the design of effective artificial hydrolases.
     The relationship between the catalytic activity and structure of complexes has been deeply discussed in the dissertation. The experimental results reveal that the key effect of the substitutes of ligand on the Lewis acidity of central metal is not only depend on the intrinsic electron-withdrawing (or -donating) property of substitute but also on the linked site of substitutes, which is accordance with the classic inductive effect theory. In addition, the catalytic activity of catalyst is also correlative to the coordinating sphere of the active site. Interestingly, the effects of the same pendant group inside different complexes with different backbones on the catalytic activity of catalysts may be apparently different, so far as to involve the transformation of the major and minor influencing-factors. Moreover, the effect of the center metal on the reactivity of catalyst has been evaluated, and it is found that the ratio of charge and radius of the metal is one of the important factors.
     The micellar system has firstly been introduced to the hydrolytic cleavage of HPNP as a RNA model substrate. Initially, the hydrolytic cleavage of HPNP induced by an imidazole derivative Zn(II) complex has been investigated in Gemini 16-2-16 micellar solution and traditional CTAB micelles, respectively. The results obtained show that the rate of HPNP catalytic cleavage in Gemini 16-2-16 micelles exhibited about 2.5-fold kinetic advantage compared to that in CTAB system. Furthermore, it is found that the addition of cationic surfactants in the homogenous system containing catalyst and HPNP with good water-solubility dramatically accelerated the hydrolytic cleavage of HPNP. A "sandwich absorptive mode (micelle-HPNP-catalyst)" is proposed to explain the interesting results. In general, to accelerate the mass transfer process in a heterogeneous reaction, surfactants are added to the catalytic system, in which the substrate and catalyst distributed in different pseudo-phases. Thus, our study extends the usage of cationic surfactants.
引文
1.(a) 张洪渊,生物化学教程,第二版,四川大学出版社,1994.
    (b) 吴赛玉,简明生物化学,中国科技大学出版社,1999.
    2.郭奇珍、陈明德(编著),仿生化学,化学工业出版社,北京,1990.
    3.陈淑华、罗光荣(编译),生物有机化学,四川大学出版社,成都,1991.
    4. Ibers J. A., Holm R. H., Science, 1980, 209:4463.
    5. Schimizu M., Watanabe Y., Takehira K., Bull. Chem. Soc. Jpn, 1992, 65, 1552.
    6.谢如刚,化学研究与应用,1999,11,344.
    7. Dugas H., Penny C., Bioorganic Chemistry, Springer-Verlay, New York, 1981.
    8. (a) Breslow R., Overman L E., J. Am. Chem. Soc., 1970, 92(4), 1075.;
    (b) Breslow R. Chem. Soc. Rev., 1972, 1,553;
    (c) Breslow R., Chem. Ber., 1983, 19, 126;
    (d) Breslow R., Acc. Chem. Res. 1995, 28,146.
    9. (a) Blasko A., Bruice T C., Acc. Chem. Res., 1999, 32, 475;
    (b) 戴秋云,邓云度,化学通报,1998, 6, 1.
    (c) Bruice T C., Tsubonchi A., Dempacy R O., Olson P., J. Am. Chem. Soc., 1996, 118, 9867.
    10. (a) Cacciapagla R., Casnati A., Mandolini L., Ungaro R., J. Am. Chem. Soc., 1992, 114,10956.
    (b) Matsuda S., Ishikubo A., Kuzuya A., Yashiro M., Komiyama M., Angew Chem. Int. Ed. Engl., 1998, 37, 3284.
    (c) Moleveld P., Engbersen J F., Reinhoudt D N., Angew Chem. Int. Ed. Engl., 1999, 38, 3189.
    11. (a) Breslow R., Greenspoon N., Guo T., Zarzyld R., J. Am. Chem. Soc., 1989, 111, 8296;
    (b) Breslow R., Kool E., Tetrahedron Lett., 1988, 29, 1635;
    (c) Hilvert D., Breslow R., Bioorg. Chem., 1984, 12, 206;
    (d) Breslow R.,PureAppl. Chem., 1990, 10(62), 1859.
    12.(a)戴秋云,黄启斌,邓云度,科学通报,1998,9(43),949;
    (b) Suh J., Ace. Chem. Res.,1992, 25, 7;
    (c) Sub J., Cho Y., Lee K J., J. Am. Chem. Soc., 1991, 113, 4198;
    (d) Kim N.,Sub J., J. Org. Chem., 1994, 59, 1561;
    (e) 黄启斌,邓云度,中国科学(B辑),1993,36(12),1409;
    (f) Kunitake T., Shamoto T., Bull Chem. Soc. Jpn., 1979, 52(8), 2402.
    13. (a) Tramontano A., Ammann A A., Lemer R A., J. Am. Chem. Soc., 1988, 110, 2282;
    (b) Napper A. D., Benkovic S. J., Tramontano A., Lerner R. A., Science, 1987, 237, 1041.
    14. (a) Melhado L L., Gutsche C D., J. Am. Chem. Soc., 1978, 15, 1859.
    (b) Lau H P., Gutsche C D.,J. Am. Chem. Soc., 1978, 15, 1857.
    15. Wagner-Jauregg T., Hackley B E., Lies T A et al., J. Am. Chem. Soc., 1955, 77(4), 922.
    16. Breslow R, Overman L E., J. Am. Chem. Soc., 1970, 92 (4), 1075.
    17. Suh J., Hwang B K., Koh YH., Bioorg. Chem., 1990, 18(2), 207.
    18. Suh J., Kim J., Lee C S., J. Org. Chem., 1991, 56(14), 4364.
    19. Chin J.,Acc. Chem. Res., 1991, 24(5), 145.
    20. Zimmerman S. C., Breslow R., J. Am. Chem. Soc., 1984, 106, 1490.
    21. (a) Kimara E., Shiota T., Koike T., Shiro M., Kodama M., J. Am. Chem. Soc., 1990, 112,5805;
    (b) Chim J. Zou X., J. Am. Chem. Soc.,1984, 106, 3687;
    (c) Kimara B., Nakamura I., Koike T., Shionoya M., kodama M., Ikeda T., Shiro M., J. Am. Chem. Soc., 1994, 116, 4764;
    (d) Ruf M. Weis L., Vahrenkamp H., J. Chem. Soc., Chem. Commun., 1994, 135.
    22. (a) Kimara E., Tetrahedron, 48, 6175.
    (b) 吴成泰,冠醚化学,科学出版社,1992.
    23. Trawick B. N., Daniher A. T., Baskin J. K., Chem.Rev., 1998, 98,939.
    24. Kimura E, Shiotu T.., Koike T., Shiro M., Kodama M., J. Am. Chem. Soc., 1990, 112, 5805.
    25. (a) Pocker Y., Stone J. T., J. Am. Chem. Soc., 1965, 87, 5497.
    (b) Pocker Y., Sarkanen S., Adv. Enzymol., 1987, 47, 149.
    26. Kimura E., Nakamura I., Koike T., Shionoya M., Kodama Y., Ikeda T., Shiro M., J. Am. Chem. Soc., 1994, 116, 4764.
    27. Carla Bazzicalupi, Inorg. Chim. Acta, 2005, 358: 77-92.
    28.寇兴明,胡艳,田玉华,孟祥光,胡常伟,曾宪诚,无机化学学报,2005,21,51-58.
    29.刘绪良,陈万东,朱守荣,林华宽,陈荣悌,无机化学学报,2001,17,234.
    30.陈万东,朱守荣,林华宽,寇福平,林美荣,陈荣悌,化学学报,1997,55,1097.
    31.解永树,寇福平,林瑞森,刘清亮,无机化学学报,2000,16,461.
    32. Koike T., Kimura E., Nakamura I., Hashimoto Y., Shiro M., J. Am. Chem. Soc., 1992, 114, 7338,
    33. (a) Szejtli J., "Cyclodextrins and Theier Inclusion Complexes", Academiai Kiado, Budapest, 1982;
    (b) Bender M. L., Komiyama M., "Cyclodextrin Chemistry", Springer-Verlag, Belin,1978;
    (c) Pagington J. S., Chem. Britain, 1987, 455.
    34. (a) Tabushi I., Acc. Chem. Res., 1982, 15, 66;
    (b) Tabushi I., Pure Appl. Chem., 1986, 58,1529;
    (c) 袁德其,谢如刚,赵华明,有机化学,1992,12,126.
    35. Engin U., A KKaya, Anthony W., Czamik. J. Am. Chem. Soc., 1988, 110: 85531.
    36. Hiro sh i I Keda, Ryo ich i Ko jin, Chul2Joong Yoon, T sukasa I. Keda. J. Inclusion Phenomena and Molecular Recognit ion in Chemistry, 1989, 1 (1), 117.
    37. Breslow R., Dong S. T., Chem. Rev., 1998, 98, 1997, and references therein.
    38. [a]Guo. S. J., Luo M. M., Gu X. R., Xie R. G., Zhao H. M., Chin. Chem. Lett., 1995, 6, 293;
    [b] Luo M. M., Xie R. G., Lu W., Xia P. F., Zhao H. M., Chin. Chem. Lett., 1998, 9, 135;
    [c] Luo M. M., Xie R. G., Yuan D. Q., Lu W., Xia P. F., Zhao H. M., Chin. J. Chem., 1999, 17 (4), 384.
    39. Breslow, R. Enzyme Models Related to Inclusion Compounds in Inclusion Compounds, Vol. 3, Academic Press, Orland, FL, 1984, pp. 473~508.
    40. Breslow R., Nesnas N., Tetrahedron Lett., 1999, 40, 3335.
    41. Bazzicalupi C., Bencini A., Berni E., Bianchi A., et al., Inorg. Chem., 1999, 38, 4115.
    42. (a) Koike T., Kajitani S., Nakamura I., Kimura E., Shiro M., J. Am. Chem. Soc., 1995, 117, 1210;
    (b) Koike T., Kimura E., Kodama Y., Shiro M., J. Am. Chem. Soc., 1995, 117, 8304;
    (c) Kimura E., Koike T., J. Chem. Soc., Chem. Commun., 1998, 1495.
    43. Li S A., Xia J., Yang D X., Tang W X., et al., Inorg. Chem., 2002, 41, 1807.
    44. (a) Strater N., Lipscomb W. N., Klabunde T., Krebs B., Angew.Chem., Int. Ed. Engl., 1996, 35, 2024;
    (b) Wilcox D. E., Chem. Rev. 1996, 96, 2435;
    (c) Cowan J. A., Chem. Rev., 1998,98, 1067;
    (d) Jedrzejas M. J., Setlow P., Chem. Rev., 2001, 101,608.
    45. Williams N. H., Takasaki B., Wall M., Chin J.,Acc. Chem. Res., 1999, 32, 485.
    46. Kimiyama M., J. Biochem., 1995, 118,665.
    47. Williams R. J. P., Polyhedron, 1987, 6, 61.
    48. Jencks W P., Catalysis in Chemistry and Enzymology, Dover, New York, 1969, chs. 1-3, 5.
    49. (a) Chin J., Banaszczyk M., Jubian V., Zhou X., J. Am. Chem. Soc., 1989, 111, 186.
    (b) Hendry P., Sargeson A M., J. Am. Chem. Soc., 1989, 111,2521.
    (c) Kimura E., Hsshimoto H., Koike T., J. Am. Chem. Soc, 1996,118,10963.
    50. Young M. J., Waphne D., Hynes R C, Chin J., J. Am. Chem. Soc, 1995,117,9441.
    51. Williams N H., Takasaki B., Wall M., Chin J., Acc. Chem. Res., 1999,32,485.
    52. R. Breslow, S. Singh, Bioorg. Chem., 1988, 16,408.
    53. Bazzicalupi C, Bencini A., Bianch A., Inorg. Chem., 1997, 36,2784.
    54. Gajda T., Kramer R., Jancso A., Eur. J. Inorg. Chem., 2000, 1635.
    55. Vichard C, Kaden T A., Inorg. Chim. Acta, 2002, 337, 173.
    56. (a) Parkin, G. Chem. Rev., 2004, 104, 699 and references therein; (b) Lipscomb, W. N.; Stra¨ter, N. Chem. Rev., 1996, 96, 2375; (c) Takagi, Y.; Warashina, M.; Stec, W. J.; Yoshinari, K.; Taira, K. Nucleic Acids Res., 2001, 29, 1815; (d) Horton, N. C; Perona, J. J. Nat. Struct. Biol., 2001, 8, 290; (e) Bauer-Siebenlist, B.; Meyer, F.; Farkas, E.; Vidovic,D.; Cuesta-Seijo, J. A.; Herbst-Irmer, R.; Pritzkow, H. Inorg. Chem., 2004,43,4189.
    57. Kim, E. E.; Wyckoff, H. W. J. Mol. Biol, 1991,218,449-464.
    58. Jingwen Chen, Xiaoyong Wang, Yangguang Zhu, Jun Lin, Xiaoliang Yang,Yizhi Li, Yi Lu, Zijian Guo, Inorganic Chemistry, 2005,44(10), 3422,.
    59. Chapman W H Jr., Breslow R., J. Am. Chem. Soc, 1995,117, 5462.
    60. (a) Amin S., Voss D A Jr., Horrocks W D Jr., Morrow J R., Inorg. Chem., 1996, 35, 7466; (b) Amin S., Voss D A Jr., Lake C H., Morrow J R. et al., Inorg. Chem., 1995, 34, 6394; (c) Chin K O A., Morrow J R., Inorg. Chem., 1994, 33, 5036.
    61. (a) Taksaki B K., Chin J., J. Am. Chem. Soc, 1995, 117, 8582; (b) Radillo Y M., Yatsimirsky A K., Inorg. Chem. Acta., 2002, 328,241.
    62. Olga Iranzo, Andrey Y. Kovalevsky, Janet R. Morrow, John P. Richard, J. Am. Chem. Soc, 2003, 125, 1988-1993.
    63. Olga Iranzo, Terry Elmer, John P. Richard, Janet R. Morrow, Inorganic Chemistry, 2003, 42(24), 7737.
    64. Tamas Gajda, Attila Jancso, Satu Mikkola, Harri Lonnberg, Holger Sirges, J. Chem. Soc, Dalton Trans., 2002, 1757.
    
    65. Hakan Carlsson, Matti Haukka, Ebbe Nordlander, Inorg. Chem., 2004,43 (18), 5681.
    66. (a)Thorfinnur Gunnlaugsson, R. Jeremy H. Davies, Mark Nieuwenhuyzen, Clarke S. Stevenson, Romain Viguier,Sinead Mulready, Chem. Commun., 2002, 2136; (b) Thorfinnur Gunnlaugsson, R. Jeremy H. Davies, Mark Nieuwenhuyzen, John E. O'Brien, Clarke S. Stevenson, Sine'ad Mulready, Polyhedron, 2003, 22, 711; (c)Thorfinnur Gunnlaugsson, R. Jeremy H. Davies,Paul E. Kruger, Paul Jensen, Thomas McCabe, Sinead Mulready, John E. O'Brien, Clarke S. Stevenson, Ann-Marie Fanning, Tetrahedron Letters, 2005, 46, 3761-3766.
    67. Peter Molenveld, Johan F. J. Engbersen, David N. Reinhoudt, Chem. Soc. Rev., 2000, 29, 75-86.
    68. (a)P. Molenveld, S. Kapsabelis, J. F. J. Engbersen, D. N. Reinhoudt, J. Am. Chem. Soc.,1997, 119, 2948;
    (b) P. Molenveld, W. M. G. Stikvoort, H. Kooijman; A. L. Spek, J. F. J. Engbersen, D. N. Reinhoudt, J. Org. Chem., 1999, 64, 3896.
    69. (a) T. Tsumaki, Bull. Chem. Soc. Jpn., 1938, 13, 252;
    (b) D. Chen, A. E. Martell, Inorg. Chem., 1987, 26, 1026;
    (c) E. G. Samsel, K. Srinivasan, J. K. Kochi, J. Am. Chem. Soc., 1985, 107, 7606;
    (d) K. Srinivasan, J. K. Kochi, Inorg. Chem., 1985, 24, 4671;
    (e) 杜向东,余贤达,高等学校化学学报,1997,18,567;
    (f) T. Takai, E. Hata, K. Yorozu, W. Mukaiyama, Chem. Lett., 1992, 2077;
    (g) W. Zhang, J. L. Loebach, S. R. Wilson, E. N. Jacobsen, J. Am. Chem. Soc., 1990, 112, 2801;
    (h) E. N. Jacobsen, L. Deng, Tetrahedron, 1994, 50, 4323;
    (l) T. Yamada, K. Inagawa, T. Nagata, T. Mukaiyama, Chem. Lett., 1992, 2231.
    70. Zhisheng Zhang, Xiaoming Yu, Larry K. Fong, Lawrence D. Margerum, Inorganica Chimica Acta, 2001, 317, 72.
    71. Xingming Kou, Xiangguang Meng, Jiaqing Xie, Xiancheng Zeng, Transition Metal Chemistry, 2003, 28,777.
    72. J. Zhang, J. Q. Xie, Y. Tang, J. Li, J. Z. Li, W. Zeng, Ch. W. Hu, J. Chem. Res., 2005, 2, 130.
    73. Jian-zhang Li, Jia-qing Xie, Wei Zeng, Xiao-yao Wei, Bo Zhou, Xian-cheng Zeng, Sheng-ying Qin, Transition Metal Chemistry, 2004, 29, 488-494.
    74. Cerichelli, G., Mancini, G., Luchetti, L., Savelli, G, Bunton, C. A., J. Phys. Org. Chem., 1991, 4, 71.
    75. Mcbain J W., Richards P H., Ind. Eng. Chem., 1946, 38,642.
    76. Klevens H B., Chem Rev., 1950, 47, 1.
    77. Myers D., Surfactants Science and Technology, VCH, New York, 1988, pp.156.
    78. Saito S., J. Colloid Interface Sci., 1967, 24,227.
    79. Rhode O., Raths H C (Henkel K G a A)., DE-B 19645189,1998, [CA 1998,128, 323164n].
    80. (a) Kuramoto N., Seki T., Katoh K., HayamaS., J. Colloid Inter. Sci., 1987, 115, 595; (b) Kunitake T., Okahata Y., Sakamoto T., J. Am. Chem. Soc., 1976, 98, 7799; (c) Tagaki W., Fukushima D., Eiki T., Yano Y, J. Org. Chem., 1979, 44, 555; (d) Connolly T J., Reinsborough V C, Can J. Chem., 1992, 70, 1581; (e) Fornasier R., Scrimin P., Tecilla P., Tonellato V., J. Am. Chem. Soc, 1989, 111, 224; (f)Ogino K., Kashihara N., Ueda T., Isaka T., Bull. Chem. Soc. Jpn., 1992, 65, 373.
    81. Scrimin P., Tellica P., Tonellato U., J. Phys. Org. Chem., 1992, 5, 619.
    82. Ogino K, Shindo K, Minami T, Tagaki W, Eiki T. Bull. Chem.Soc. Jpn., 1983, 56, 1101
    83. Tagaki W., Ogino K., Tanaka O., Machiyak., Kashihara N., Yoshida T., Bull. Chem. Soc. Jpn., 1991,64,74.
    84. Gino K., Kashihara N., Fujita T., Veda T., Isaka T., Tagaki W., Chem. Lett., 1987,1303.
    85. Cheng S.Q., Zeng X. C.. Meng X. G., Yu X. Q.., J.Colloid. Interf. Sci.2000,224, 333.
    86. Cheng S.Q., Zeng X.C., J. Disper. Sci. Tech., 2000,21, 655.
    87. Mancin F, Tecilla P, Tonellato U., Langmuir, 2000,16: 227.
    88. Mei G C, Gutsche C D., J. Am. Chem.Soc, 1978,100: 1850
    89. Fornasier R., Scrimin P., Tecilla P., Tonellato U., J. Am. Chem. Soc, 1989, 111, 224.
    90. Xiang Y., Zeng X. C.,Cheng S. Q., Li Y.T., Xie J. Q., Int. J. Chem. Kine., 2002, 34, 345.
    91. Xiang,Y.,Jiang,BY.,Zeng,XC.,Xie,JQ., J.Colloid. Interf. Sci., 2002,247, 366.
    92. Menger F M, Gan L H, Johnson E, Durst D H., J. Am.Chem. Soc., 1987, 109,2800.
    93. Bunton C A, Scrimin P, Tecilla P., J. Chem. Soc, Perkin Trans. II, 1996,419.
    94. Kimura E., Hashimoto H., Koike T., J. Am. Chem. Soc, 1996,118,10963.
    95. Koike T, Kimura E., J. Am. Chem. Soc, 1991, 113, 8935
    96. Williams N. H., Cheung W., Chin J., J. Am. Chem. Soc, 1998, 120, 8079
    97. Gellman S. H., Russell P., Breslow R., J. Am. Chem. Soc, 1986, 108: 2388
    98. Weijnen J.G. J., Engbersen J. F. J., Recl.Trav.Chim.Pays-Bas, 1993, 112, 351.
    99. (a) Komiyama M., Matsumura K., Matsumoto Y, J. Chem. Soc, Chem. Commun., 1992, 640.
    (b) Morrow J. R., Buttorey K., Berback K.A., Inorg. Chem., 1992, 31, 16.
    (c) Roig K.A., Hettich R., Schreider H-J., Inorg. Chem., 1998, 37, 751.
    (d) Scrimin P., Tecilla P., Moss R. A., Bracken K., J. Am. Chem. Soc., 1998, 120, 1179.
    (e) Moss R. A., Jian W., Langmuir, 2000, 16, 49.
    100. Bracken K., Moss R. A., Ragunathan K. G., J. Am. Chem. Soc.,1997, 119, 9323.
    101. Moss RA, Park B P, Scrimin P, Ghirlanda G., J. Chem. Soc., Chem.Commun., 1995, 1627.
    102. Bunton C A, Robinson L., J. Org. Chem, 1971, 36, 2346-2352.
    103. Deinega Y., Berg Z. R., Marachkol G., Rudi V. P., Denisenko V. P., Kolloidn. Zh. 1974, (36), 649-653.
    104. (a) Zhu Y P, Masuyana A, Okahora M., J. Am.Oil Chem.Soc., 1990, 67(7), 459-463.
    (b) Zhu Y P, Masuyama A, Okahara M, J.Am..Oil Chem.Soc., 1991, 68, 268-271.
    105. Menger T M, Littan C A., J. Am.Chem.Soc., 1991, 113, 1451-1452.
    106. Rosen M J. Chemtech. 1993, 3, 20-33.
    107. (a) Zana R, In M, Levy H, Duportail G., Langmuir, 1997, 130, 5552-5557;
    (b) Frindi M, Michels B, Levy H, Zana R, Langmuir, 1994, 10, 1140.
    108. Renouf P, Mioshowski C, Lebeau L., Tetrahedron Lett., 1998, 39, 1357.
    109. (a) Tanford C, The Hydrophilic Effect: Formation of Micelles and Biological Membrance, Wiley-Intersciece: New York, 1973:12;
    (b) Stein T M, Gellman S H, J. Am. Chem. Soc., 1992, 114, 3943.
    110. (a) Menger F M, Littau C A, J. Am.Chem.Soc, 1993, 115, 10083.
    (b) Menger F M, Keiper J S, Angew. Chem. Int. Ed, 2000, 39, 1906.
    (c) Song L D, Rosen M. J, Langmuir, 1996, 12(5), 1149.
    111. (a) Alami E, Beinert G, Marie P, Zana R, Langmuir, 1993, 9, 1465.
    (b) Danino D, Talmon Y, Zana R., Langmuir, 1995, 11, 1448.
    (c) Karaborni S, Esselink K, Hilbers P A, Smit B, Karthauser J, Van N M, Zana R., Science, 1994, 266(14), 254-255.
    112. (a) Seret A, Van de Vorst A, J Phys Chem, 1990, 94, 5293.
    (b) Bury R, Souhalia E, Treiner C, J Phys Chem, 1991, 95, 3824.
    113. Mecozzi S., Weat A P., Dougherty D A., J. Am. Chem. Soc., 1996, 118, 2307.
    114. Christian Reichardt, "Solvents and solvent effects on organic chemistry" (2nd ed.), 1988.
    115. Paolo Scrimin, Paolo Tecilla, Umberto Tonellato, J. Am. Chem. Soc., 1992, 114, 5086.
    116. Lucia Brinchi, Raimondo Germani, Laura Goracci, Gianfranco Savelli, Clifford A. Bunton, Langmuir, 2002, 18, 7821-7825.
    117. Santanu Bhattacharya, V. Praveen Kumar, J. Org. Chem. 2004, 69, 559-562.
    118. Santanu Bhattacharya, V. Praveen Kumar, Langmuir, 2005, 21, 71-78.
    119.裘灵光,王立,刘卉,谢安建,沈玉华,化学通报,2004,11,855-858.
    120. Ling-Guang Qiu, An-Jian Xie, Yu-Hua Shen, Journal of Molecular Catalysis A: Chemical 2006, 244, 58-63.
    1. Gu Lianquan, Ma Lin, Bioinorganic Chemistry (in Chinese), Ed. Qin F. Y., China Higher Education Press Beijing and Springer-Verlag Heidelberg, 2001, Ch. 5, pp 168-213.
    2. Jiang F. B., Jiang B. Y., Yu X. Q., Zeng X. C., Langmuir, 2002, 18, 6769.
    3. Chapman W. H., Breslow R., J. Am. Chem. Soc., 1995, 117, 5462.
    4. a) Carla Bazziealupi, Andrea Bencini, Emanuela Berni, Massimo Di Vaira., Inorg. Chim. Acta, 2005, 358, 77;
    b) Bazzicalupi, C.; Bencini, A.; Berni, E.; Bianchi, A.; Fedi, V.; Fusi, V.; Giorgi, C.; Paoletti, P.; Valtancoli, B., Inorg. Chem., 1999, 38, 4115;
    c) Chavez, F. A.; Olmstead, M. M.; Mascharak, P. K., Inorg. Chem., 1999, 36, 6323.
    5. Ana L, Maldonado, Anatoly K. yatsimirsky, Org. Biomol. Chem., 2005, 3, 2859.
    6. Breslow. R.,Acc. Chem. Res., 1995, 28, 146.
    7. Hampl, F.; Liska, F.; Mancin, F.; Tecilla, P.; Tonellato, U., Langmuir, 2000, 15, 405.
    8. R. Jairam, M. L. Lau, J. Adorante, Inorg. Biochem., 2001, 84, 113.
    9. S. Paolo, T. Paolo, T. Umberto, Colloids and Surfaces A: Physicochem. Eng. Aspects, 1998, 144, 71.
    10. Gulnar H. Rawji, Mayumi Yamada, Novelette P. Sadler, Ronald M. Milburn, Inorganica Chimica Acta,, 2000, 303, 168.
    11. J. S. You, X. Q. Yu and K. Liu, Tetrahedron: Asymmetry, 1999, 10, 243.
    12. C. M. Hartshorn, J. R. Deschamps, A. Singh, Reactive & Functional Poly., 2003, 55,219.
    13. J. S. You, X.Q.Yu, X.Y.Su, J. Mol. Catal. A: Chem., 2003, 202, 17.
    14. S.Negi, H. J. Schneider, Tetrahedron Lett., 2002, 43, 411.
    15. Xingming Kou, Siqing Cheng, Juan Du, Xiaoqi Yu, Xiancheng Zeng, J. Mol. Cata. A: Chemical, 2004, 210, 23.
    16. Zhang Jin, Xie Jia-qing, Tang Y., Li J., Li J. Z., Zeng W, Hu C. W., Journal of Chemical Research, 2005, 2, 130.
    17. a) Li Jian-zhang, Xie Jia-qing, Zeng Wei, Wei Xing-yao, Zhou Bo, Zeng Xian-cheng, Qin Sheng-ying, Transit. Met. Chem., 2004, 29, 488;
    b) Jian-zhang Li, Hong-bo Li, Bo Zhou, Sheng-ying Qin, Shen-xin Li, Jia-qingXie, Transit. Met. Chem., 2005, 30, 278;
    c) Jian-zhang Li, Bin Xu, Shen-xin Li, Wei Zeng, Sheng-ying Qin, Transit. Met. Chem., 2005, 30, 669.
    18. Osvaldo dos Sandtos, Ajay R. Lajmi, James W. Canary, Tetrahedron Letters, 1997, 38, 4383.
    19. Katalin Selmeczi, Michel Giorgi, Gábor Speier, Etelka Farkas, Marius Réglier, European Journal of Inorganic Chemistry, 2006, 2006, 1022.
    20. Zhang Yuanqin, Liu Fan, Xiang Qingxiang, Xiong Junru, International Journal of Chemical Kinetics, 2004, 36, 687.
    21. Ekaterina Yu. Bezsoudnova, Alexander D. Ryabov, Journal of Organometallic Chemistry, 2001, 622, 38.
    22. a) S. L. Johnson, Adv. Phys. Org. Chem., 1967, 5,237;
    b) W. P. Jencks, Chem. Rev., 1972, 72, 705.
    23. Breslow R., Chipman D., J. Am. Chem. Soc., 1965, 87, 4195.
    24. Ronald Breslow, Michael F. Czarniecki, Jack Emert, Hiroshi Hamaguchi, J. Am. Chem. Soc., 1980, 102, 762.
    25. Tabushi, I., Acc. Chem. Res., 1982, 15, 66.
    26. Shinkai, S., Pure Appl. Chem., 1986, 58, 1523.
    27. Jie Yan, Jianzhang Li, Kebin Li, Bo Zhou, Wei Zeng, Shengying Qin, Transition Metal Chemistry, 2006, 31,286.
    28. D. S. Sigman, C. T. Jorgensen, J. Am. Chem. Soc., 1972, 94, 1724.
    29. Kenju Ogino, Katsuhiko Shindo, Tooru Minami, Waichiro Tagaki, Toshio Eiki, Bull. Chem. Soc. Jpn., 1983, 56, 1101.
    30. Roberto Fornasier, Daria Milani, Paolo Scrimin, Umberto Tonellato, J. Chem. Soc., Perkin Trans. Ⅱ, 1986, 233.
    31. B. Q. Capon, Rev. Chem. Soc., 1964, 18, 45.
    32. R. M. Daniel, Enzyme Microb. Technol., 1996, 19, 74.
    33. 王镜岩,朱对庚,徐长法,生物化学(第三版),高等教育出版社,2004,第10章,pp.378.
    34. Alvaro Olivera-Nappa, Barbara A. Andrews, Juan A. Asenjo, Biotechnology and Bioengineering, 2004, 86, 573.
    35. a) R. H. Hoff, P. Mertz, F. Rusnak, A. C. Hengge, J. Am. Chem. Soc., 1999, 121, 6382;
    b) J. T. Groves, R. R. Chambers, J. Am. Chem. Soc., 1984, 106, 630;
    c) T. H. Fife, T. J. Przystas, J. Am. Chem. Soc., 1985, 107, 1041;
    d) D. R. Jones, L. F. Lindoy, A. M. Sargeson, J. Am. Chem. Soc., 1983, 105, 7327;
    e) Y. Pocker, N. Janjic, J. Am. Chem. Soc., 1989, 111,731.
    36. Yan J. M., Atsumi M., Yuan D. Q., Fujita K., Helv. Chim. Acta, 2002, 85, 1496.
    37. Hiroshi Sakiyama, Yasuhiro Igarashi, Yuuki Nakayama, Md. Jamil Hossain, Kei Unoura, Yuzo Nishida, Inorg. Chim. Acta, 2003, 351,256.
    1. D.S. Auld, "Enzyme Mechanism" (M. I. Page and A. Williams, Eds.), Royal Chem. Soc., London, Ch. 14, 1987.
    2. W.Tagaki, K. ogino, O. et al., Bull. Chem. Soc. Jpn, 1991, 64 (1), 74-80.
    3. S.J. Lippard, Principles of Bioinorganic Chemistry, University Science Books, Mill Valley, CA, 1994.
    4. Shu-an, Li; Jiang Xia, De-xi Yang, Yan Xu, Dong-feng Li, Mei-fang Wu, Wen-xia Tang, Inog. Chem., 2002, 41(7), 1807-1815.
    5. Xingming Kou, Siqing Cheng, Juan Du, Xiaoqi Yu, Xiancheng Zeng, J. Mol. Cata. A. Chemical, 2004, 210(1), 23-29.
    6. Breslow. R.,Acc. Chem. Res., 1995, 28(3), 146-153.
    7. Couderc S., Toullec J., Langmuir, 2001, 17(13), 3819-3828.
    8. Hampl, F.; Liska, F.;Mancin,F., Tecilla, P.; Tonellato, U., Langmuir, 2000, 15(2), 405-412.
    9. Mancin, F.; Tecilla, P.; Tonellato, U., Langmuir, 2000, 16(1), 227-230.
    10. Hegg, E. L.; Mortimore, S.H.; Cheung, C. L.; Huyett, J. E.; Powell, D. R.; Burstyn, J. N., Inorg. Chem., 1999, 38(12), 2961-2968.
    11. Carla Bazzicalupi, Andrea Bencini, Emanuela Berni, Antonio Bianchi, Valentina Fedi, Vieri Fusi, Claudia Giorgi, Piero Paoletti, Barbara Valtancoli, Inorg. Chem., 1999, 38(18), 4115-4122.
    12. B. Y. Jiang, Zang Rong-rong, Xie jia-qing, Du Juan, Meng Xiang-guang, Zeng Xian-cheng, J. Disper. Sci. Tech., 2005, 26(1), 105-110.
    13. Jiang Fubin, Jiang Binying, Yu Xiaoqi, Zeng Xiancheng, Langmuir, 2002, 18(18), 6769-6774.
    14. Yan Xiang, Xiancheng Zeng, Bingying Jiang, Jiaqing Xie, J. Disper. Sci. Tech., 2001, 22(5), 453-459.
    15. Du Juan, Jiang Bingying, Kou Xingming, Zeng Xiancheng, Xiang Qingxiang, J.Colloid Interf. Sci., 2002, 256(2), 428-434.
    16. J. Z. Li, H.B. Li, et al., Transition Met. Chem., 2004, 29(8), 823-829.
    17. J. Z. Li, J. Q. Xie, W. Zeng, S.Y. Qin, Transition Met. Chem., 2004, 29(5), 488-494.
    18. W. Zeng, Synthesis, Biomimetic Catalytic Oxidation and Selective Coloration of Novel N-Pivot Lariat Ethers, Ph.D. Dissertation, Sichuan University, 2003.
    19. D. S. Sigman, C. T. Jorgensen, J. Am. Chem. Soc., 1972, 94(5), 1724-1730.
    20. Xiang, Y.; Jiang, B.Y.; Zeng, X. C.; Xie, J.Q., J. Colloid Interf Sci., 2002, 247(2), 366-371.
    21. Daniel R. M., Enzyme Microb. Technol., 1996, 19(1), 74-79.
    22.王镜岩,朱圣庚,徐长法,生物化学(第三版),高等教育出版社,2004,第10章,pp.378.
    1. Bamford C. H., Tipper C. F. H. (Eds.), Ester Formation and Hydrolysis, vol.10, Elsevier, Amsterdam, 1972.
    2. Williams A., in: M.I. Page, A. Williams (Eds.), Enzyme Mechanism, Burlington, London, 1987, 123.
    3. Nieoll A. J., Allemann R. K., Org. BiomoL Chem., 2004, 2, 2175.
    4. Fomasier R., Milani D., Serimin P., Tonellato U., J. Chem. Soc. Perkin Trans. Ⅱ, 1986, 233.
    5. Li S. A., Xia J., Yang D. X., Xu Y., Li D. F., Wu M. F., Tang W. X., Inog. Chem., 2002, 41, 1807.
    6. Tagaki W., K. ogino O., Tanaka O., Machiya K., Kashihara N., Yoshida T., Bull. Chem. Soc. Jpn., 1991, 64, 74.
    7. Chin J., Jubian V., J. Chem. Soc, Chem. Commun., 1989, 839.
    8. Weijnen J. G. J., Koudijs A., Schellekens G. A., Engbersen J. F. J., J. Chem. Soc. Perkin Trans. Ⅱ, 1992, 829-834.
    9. Nomura A., Sugiura Y., Inorg. Chem., 2004, 43, 1708.
    10. Zeng X. C., Zang Y. Q.,Yu X. Q., Tian A. M., Langmuir, 1999, 15, 1621.
    11. Jiang F. B., Jiang B.Y., Chen Y., Yu X.Q., Zeng X. C., J. Mol. Catal. A-Chem., 2004, 210, 9.
    12. Du J., Jiang B.Y., Kou X. M., Zeng X. C., Xiang Q. X., J. Colloid Interf Sci., 2002, 256: 428.
    13. Jiang B. Y., Xiang Y., Du J., Xie J. Q., Hu C. W., Zeng X. C., Colloid Surf A-Physicochem. Eng. Asp., 2004, 235: 145.
    14. Krishnan R., Vancheesan S., J. Mol. Catal. A-Chem., 1999, 142, 377.
    15. Zeng W., Li J. Z., Mao Z. H., Hong Z., Qin S. Y., Adv. Synth. Catal., 2004, 346, 1385.
    16. Li J. Z., Xie J. Q., Zeng W., Qin S.Y., Transit. Met. Chem., 2004, 29, 488.
    17. Li J. Z., Li H. B., Xie J. Q., Li S. X., Zeng W., Zhou B., Qin S. Y., Transit. Met. Chem., 2004, 29, 823.
    18. Fornasier R., Serimin P., Teeilla P., Tonellato U., J. Am. Chem. Soc., 1989, 111,224.
    19. Serimin P., Tecilla P., Tonellato U., J. Org. Chem., 1994, 59, 4194.
    20. Tagaki W., Ogino K., Fujita T., Yosbida T., Bull. Chem. Soc. Jpn., 1993, 66, 140.
    21. Mancin P., Tecilla P., Tonellato U., Langmuir, 2000, 16, 227.
    22. Qiu L.G., Cheng M.J., Xie A.J., Shen Y.H., J. Colloid Interface Sci., 2004, 278, 40.
    23. Qiu L. G., Xie A. J., Shen Y. H., J. Mol. Catal. A-Chem., 2006, 244, 58.
    24. Jiang B. Y., Zang R. R., Xie J. Q., Du J., Meng X. G., Zeng X. C., J. Dis. Sci. Tech., 2005, 26: 105.
    25. Rosen M. J., Chemtech., 1993, 23, 30.
    26. Menger F.M., Keiper J. S., Angew. Chem. Int. Ed., 2000, 39, 1906.
    27. A Groswasser. B., Zana R., Talmon Y., J. Phys. Chem. B, 2000, 104, 4005.
    28. D., Y Danino. Talmon, R. Zana, Langmuir, 1995, 11, 1448.
    29. In M., Bec V., Chariol O. A., Zana R., Langmuir, 2000, 16, 141.
    30. De S., Aswal V. K., Goyal P. S., Bhattacharya S., J. Phys. Chem., 1996, 100, 11664.
    31. Ronsin G., Perrin C., Guedat P., Kremer A., Camilleri P., Kirby A. J., Chem. Commun., 2001, 2234.
    32. Fielden M. L., Perrin C., Kremer A., Bergsma P., Smart M. C., Camilleri P., Engberts J. B. F. N., Eur. J. Biochem., 2001, 268, 1269.
    33. Brinchi L., Germani R., Goracci L., Savelli G., Bunton C. A., Langmuir, 2002, 18, 7821.
    34. Li J. Z., Li S. X., Xie J. Q., Zeng W., Zhou B., Qin S. Y., J. Chem. Res.-S, 2004, 654.
    35. Sigman D. S., Jorgensen C. T., J. Am. Chem. Soc., 1972, 94, 1724.
    36. Zana R., Benrraou M., R. Rueff, Langmuir, 1991, 7, 1072.
    37. Basolo F., Pearson R. G., Mechanisms of Inorganic Reactions, 2nd. Ed., Wiley, New York, 1967, 32.
    38. Capon B.Q., Rev. Chem. Soc., 1964, 18, 45.
    39. Kou X. M., Cheng S. Q., Du J., Yu X.Q., Zeng X. C., J. Mol. Catal. A-Chem., 2004, 210, 23.
    40. Olivera-Nappa A., Andrews B. A., Asenjo J. A., Biotechnol. Bioeng., 2004, 86, 573.
    41. Cantarella M., Cantarellat L., Alfani F., Enzyme Microb. Technol., 1991, 13,547.
    42. Esposito A, Delort E, Lagnoux D, Djojo F., Reymond J L, Angew. Chem.-Int. Edit., 2003, 42, 1381.
    43. Isaacs N. S., Acid and base catalysis. In Physical Organic Chemistry, Longman Scientific & Technical, Harlow, Essex, U.K, 1987, 331.
    44. Liu C L, Wang M, Zhang T L, Sun H Z, Coord. Chem. Rev., 2004, 248, 147.
    45. Khuwijitjaru P., Fujii T., Adachi S., Kimura Y., Matsuno R., Chem. Eng. J.., 2004, 99, 1.
    46. Choi T. S., Shimizu Y., Shirai H., Hamada K., Dyes Pigment, 2000, 45, 145.
    47. Menger F. M., Littau C. A., J. Am. Chem. Soc., 1991, 113, 1451.
    48. Dreja M., Tieke B., Langmuir, 1998, 14, 800.
    1. William H. Chapman, Jr. and Ronald Breslow, J. Am. Chem. Soc., 1995, 117(20), 5462-5469.
    2. Paola Gomez-Tagle, Anatoly K. Yatsimirsky, J. Chem. Soc., Dalton Trans., 2001, (18), 2663-2670.
    3. Christopher M. Hartshorn, Jeffrey R.Deschamps, et al., 2003, 55(2), 219-229.
    4. P. Jurek, A. E. Martell, Inorganica Chimica Acta, 1999, 287(1), 47-51.
    5. A.L. Abuhijleh, Polyhedron, 1997, 16(4), 733-740.
    6. (a) P. Hendry, A. M. Sargeson, Inorg. Chem., 1990, 29(1), 92-97.
    (b) P. Hendry, A. M. Sargeson, J. Am. Chem. Soc., 1989, 111(7), 2521-2527.
    7. D.E. Wilcox, Binuclear Metallohydrolases, Chem. Rev., 1996, 96(7), 2435-2458.
    8. K.D. Karlin, Science, 1993, 261(5122), 701-708.
    9. Jik Chin, Current Opinion in Chemical Biology, 1997, 1(4), 514-521.
    10. M.A. Rosch, W. C. Trogler, Inorg. Chem., 1990, 29(13), 2409-2416.
    11. I.O. Kady, B. Tan, Tetrahedron Lett., 1995, 36(23), 4031-4034.
    12. F.M. Menger, L. H. Gan, et al., J. Am. Chem. Soc., 1987, 109(10), 2800-2803.
    13. Robert A. Moss, Kaliappa G. Ragunathan, Langrnuir, 1999, 15(1), 107-110.
    14. Robert A. Moss, Weiguo Jiang, Langmuir, 2000, 16(1), 49-51.
    15. Fabrizio Mancin, Paolo Tecilla, Umberto Tonellato, Langmuir, 2000, 16(1), 227-233.
    16. L.D. Song, M. J. Rosen, Surface Properties, Langmuir, 1996, 12(5), 1149-1153.
    17. Hamoudi, S.; Yang, Y., et al., J. Phys. Chem. B., 2001, 105(38), 9118-9123.
    18. Dejugnat,C.; Al Ali, F., et al., Langmuir, 2002, 18(26), 10168-10175.
    19. Li Jian-zhang, Xie Jia-qing, et al., Acta Chimica Sinica, 2005, 63(2), 114-120.
    20. Xie Jia-qing, Chen Yong, et al., Journal of Dispersion Science and Technology, 2005, 26(6), 693-699.
    21. Ueoka R., Matsumoto Y., J. org. Chem., 1984, 49(20), 3774-3778.
    22. Li Jian-zhang, Study of Oxygenase-mimic and Hydrolase-mimic of Crowned Schiff Bases and Crowned Hydroxamic Acids, Ph.D. Dissertation, Sichuan University, 2005.
    23. W.J. Geary, Coord. Chem. Rev., 1971, 7(1), 81-122.
    24. M.R. Wanger, F. A. Walker, Inorg. Chem., 1983, 22(21), 3021-3028.
    25. T. Itoh, H. Hisada, Y. Usui, Inorg. Chim. Acta., 1998, 283(1), 51-60.
    26. Mary Jane Young, Daphne Wahnon, Rosemary C. Hynes, Jik Chin, J. Am. Chem. Soc., 1995, 117(37), 9441-9447.
    27. Q. X. Qiang, X.Q. Yu, J. S. You, R. G. Xie, J. Mol. Catal. A: Chemical, 2002, 187(2), 195-200.
    28. E. Kimura, H. Hashimoto, T. Koike, J. Am. Chem. Soc., 1996, 118(45), 10963-10970.
    29. X. M. Kou, X. G. Meng, J. Q. Xie, X. C. Zeng, Transition Met. Chem., 2003, 28(7), 777-781.
    30. (a) D. P. N. Satchell, R. S. Satchell, Annu. Rev. Prog. Chem., Sect. A, 1979, 75, 25;
    (b) F. B. Jiang, J. Du, X. Q. Yu, J. K. Bao, X. C. Zeng, J. Colloid interface Sci. 2004, 273,497.
    31. Alvaro Olivera-Nappa, Barbara A. Andrews, Juan A. Asenjo, Biotechnology and Bioengineering, 2004, 86, 573.
    32. Morrison, J. F.; Heyde, E.,Annu. Reo. Biochem., 1972, 41(10), 29-54.
    33. (a) J. Sub, E. Lee, E.S. Jang, Inorg. Chem., 1981, 20, 1932;
    (b) J. Suh, M. cheong, M. P. Suh, J. Am. Chem. Soc., 1982, 104, 1654;
    (c) J. Sub, K. H. Chun, J. Am. Chem. Soc. 1986, 108, 3057;
    (d) J. Sub, D. W. Min, J. Org. Chem., 1991, 56, 4364;
    (e) R. W. Hay, In Comprehensive Coordination Chemistry, G. Wilkinson (Ed.), Pergamon: Oxford, 1987, 6, pp.412.
    34. L.D. Song, M. J. Rosen, Langmuir, 1996, 12(5), 1149-1153.
    35. Fendler J H, Fendler E J., Catalysis in Micellar and Macromoleμlar Systems, New York: Academic Press, 1975.
    1. (a) F. H. Westheimer, Science, 1987, 235: 1173-1178;
    (b) A. Tsubouchi, T. C. Bruice, J. Am. Chem. Soc., 1995, 117, 7399-7407.
    2. (a) P. E. Jurek, A. M. Jurek, A. E. Martell, Inorg. Chem., 2000, 39, 1016-1020;
    (b) S. H. Gellman, R. Petter, R. Breslow, J. Am. Chem. Soc., 1986, 108, 2388-2394;
    (c) C. M. Hartshorn, J. R. Deschamps, A. Singh, E. L. Chang, Reactive Functional Polymers, 2003, 55, 219-229;
    (d) R. Breslow, Acc. Chem. Res., 1995, 28, 146-153;
    (e) J. Chin, Curr. Opin. Chem. Biol., 1997, 1,514 -521;
    (f) J. A. Cowan, Curr. Opin. Chem. Biol., 2001, 5,634-642.
    3. (a) J. Z. Li, J. Q. Xie, S. X. Li, W. Zeng, X. C. Zeng, S. Y. Qin, Acta Chim. Sinica, 2005, 63, 114-120;
    (b) B. Y. Jiang, Y. S. Cao, J. Du, C. W. Hu, X. C. Zeng, Transition Met. Chem., 2004, 29, 361-367;
    (c) J. Q. Xie, B. Y. Jiang, X. M. Kou, C. W. Hu, X. C. Zeng, Transition Met. Chem., 2003, 28: 782-787,
    (d) W. D. Jiang, B. Xu, J. Z. Li, J. Q. Xie, H. Y. Fu, H. Chen, X. C. Zeng, J. Disper Sci. Tech., 2006, 27, 869-877.
    4. (a) R. W. Hay, N. Govan, K. E. Parchment, Inorg. Chem. Commun., 1998, 1,228-231;
    (b) S. Q. Cheng, Y. R. Wang, J. F. Yan, X. C. Zeng, Coll. Surf. A: Physicochem. Eng. Aspects, 2007,292, 32-35;
    (c) F. B. Jiang, L. Y. Huang, X. G. Meng, J. Du, X. Q. Yu, Y. F. Zhao, X. C. Zeng, J. Colloid Interface Sci., 2006, 303,236-242.
    5. (a) J. A. Zoltewicz, L. B. Bloom, J. Phys. Chem., 1993, 97, 2755-2758.;
    (b) S. Biggs, A. Hill, J. Selb, F. Candau, J. Phys. Chem., 1992, 96, 1505-1511;
    (c) C. Tondre, B. Claude-Montigny, M. Ismael, P. Scrimin, P. Tecilla, Polyhedron, 1991, 10, 1791-1798;
    (d) K. Yamashita, M. Chiba, H. Ishida, K. Ohkubo, Bull. Chem. Soc. Jpn., 1991, 64, 410-415.
    6. (a) R. A. Moss, K. G. Ragunathan, Langmuir, 1999, 15, 107-110;
    (b) J. Du, M. Z. Chen, Y. R. Wu, X. C. Zeng, Y. J. Liu, S. Yamamoto, Y. Sueishi, J. Disper. Sci. Tech., 2003, 24, 683-689;
    (c) G. J. Buist, C. A. Bunton, L. Robinson, L. Sepulveda, M. Stam, J. Am. Chem. Soc., 1970, 92, 4072-4078;
    (d) S. Couderc, J. Toullec, Langmuir, 2001, 17, 3819-3828.
    7. (a) F. M. Menger, C. A. Littau, J. Am. Chem. Soc., 1991, 113, 1451-1452;
    (b) F. M. Menger, C. A. Littau, J. Am. Chem. Soc., 1993, 115, 10083-10090.
    8. (a) P. Scrimin, G. Ghirlanda, P. Tecilla, R. A. Moss, Langmuir, 1996, 12, 6235-6241;
    (b) R. A. Moss, H. Morales-Rojas, Langmuir, 2000, 16, 6485-6491.
    9. R. Zana, M. Benrraou, R. Rueff, Langmuir, 1991, 7, 1072-1075.
    10. Jie Yan, Jianzhang Li, Kebin Li, Bo Zhou, Wei Zeng, Shengying Qin, Transition Metal Chemistry, 2006, 31,286-292.
    11. (a) M. M. Gote, M.I. Khan, D.V. Gokhale, K.B. Bastawde, J. M. Khire, Process Biochem., 2006, 41,1311-1317;
    (b) S. Falcocchio, C. Ruiz, F.I. Javier Pastor, L. Saso, P. Diaz, J. Mol. Catal. B: Enzym., 2006, 40, 132-137.
    12. M. J. Young, D. Wahnon, R. C. Hynes, J. Chin, J. Am. Chem. Soc., 1995, 117, 9441-9447.
    13. J. Chin, Acc. Chem. Res., 1991, 24, 145-152.
    14. (a) D. P. N. Satchell, R. S. Satchell, Annu. Rep. Prog. Chem. Sect. A: Inorg. and Phys. Chem., Chapter 3, 1978, 75, 25-48;
    (b) F. B. Jiang, J. Du, X. Q. Yu, J. K. Bao, X. C. Zeng, J. Colloid interface Sci., 2004, 273,497-504.
    15. A. Olivera-Nappa, B. A. Andrews, J. A. Asenjo, Biotechnol. Bioeng., 2004, 86, 573-586.
    16. (a) M. M. Ibrahim, Noriyuki Shimomura, Kazuhiko Ichikawa, Motoo Shiro, Inorg. Chim. Acta, 2001, 313, 125-136;
    (b) K. Ichikawa, Máté Tarnai, Mohamed Khabir Uddin, Kou Nakata, Shiori Sato, J. Inorg. Biochem., 2002, 91,437-450.
    17. J. R. Morrow, W. C. Trogler, Inorg. Chem., 1988, 27, 3387-3394.
    18. Junghun Suh, Acc. Chem, Res., 1992, 25,273-279.
    19. M. J. Rosen, Chemtech., 1993, 23, 30-33.
    20. S. Tascioglu, Tetrahedron, 1996, 52, 11113-11152.
    21. G. X. Zhao, "Physicalchemistry of Surfactans", Peking University Publishing House, 1991.
    22. B. Y. Jiang, Y. Xiang, J. Du, J. Q. Xie, C. W. Hu, X. C. Zeng, Coll. Surf. A: Physicochem. Eng. Aspects, 2004, 235,145-151.
    1. N. H. Williams, B. Takasaki, M. Wall, J. Chin, Acc. Chem. Res., 1999, 32, 485.
    2. P. Molenveld, Johan F.J. Engbersen, H. Kooijman, A. L. Spek, D. N. Reinhoudt, J. Am. Chem. Soc., 1998, 120, 6726.
    3. P. Molenveld, W. M. G. Stikvoort, H. Kooijman, A. L. Spek, J. E J. Engbersen, D. N. Reinhoudt, J. Org. Chem., 1999, 64, 3896.
    4. O. Iranzo, A. Y. Kovalexsky, J. R. Morrow, J. P. Richard, J. Am. Chem. Soc., 2003, 125, 1988.
    5. R. Breslow, D.-L. Huang, Proc. Natl. Acad. Sci. USA, 1991, 88, 4080.
    6. T. Oost, M. Kalesse, Tetrahedron, 1997, 53, 8421.
    7. J. R. Morrow, L. A. Buttrey, V. M. Shelton K. A. Berback, J. Am. Chem. Soc., 1992, 114, 1903.
    8. W. H. Chapman, Jr, R. Breslow, J. Am.Chem. Soc., 1995, 117, 5462.
    9. T. Gunnlaugsson, M. Nieuwenhuyzen, C. Nolan, Polyhedron, 2003, 22, 3231.
    10. T. Gunnlaugsson, R. J. H. Davies, P. E. Kruger, P. Jensen, T. McCabe, S. Mulready, J. E. O'Brien, C. S. Stevenson, A.-M. Fanning, Tetrahedron Lett., 2005, 46, 3761.
    11. T. Gunnlaugsson, J. E. O'Brein, S. Mulready, Tetrahedron Lett., 2002, 43, 8493.
    12. P. Rossi, P. Tecilla, L. Baltzer, P. Scrimin, Chem. Eur. J., 2004, 10, 4163.
    13. S. Paolo, G. Giovanna, T. Paolo, A. M. Robert, Langmuir, 1996, 12, 6235.
    14. F. B. Jiang, L. Y. Huang, X. G. Meng, J. Du, X. Q. Yu, Y. F. Zhao, X. C. Zeng, J. Colloid Interf. Sci., 2006, 303,236.
    15. R. A. Moss, W. G. Jiang, Langrauir, 2000, 16, 49.
    16. R. A. Moss, K. G. Ragunathan, Langmuir, 1999, 15, 107.
    17. F. M. Menger, L. H. Gan, E. Johnson, D. H. Durst, J. Am. Chem. Soc. 1987, 109, 2800.
    18. E. Bouwman, B. Douziech, L. Gufierrez-Soto, M. Beretta, W. L. Driessen, J. Reedijk, G. Mendoza-Diaz, Inorg. Chim. Acta. 2000, 304, 250.
    19. D. M. Brown, D. A. Usher, J. Chem. Soc. 1965, 6558.
    20. R. Zana, M. Benrraou, R. Rueff, Langmuir, 1991, 7, 1072.
    21. G. X. Zhao, "Physicalchemistry of Surfactans", Peking University Publishing House (P. R. China), 1991.
    22. J. Zhao, S. D. Christian, B. M. Fung, J. Phys. Chem. B, 1998, 102, 7613.
    23. R. Cacciapaglia, A. Casnati, L. Mandolini, D. N. Reinhoudt, R. Salvio,. A. Sartori, R. Ungaro, J. Org. Chem., 2005, 70, 624. Note: the selection of the comparable background κ_(ob) value (1.9×10~(-8) s~(-1), pH7.00) is on the basis of two reasons as following: (1) there is no previous report about the background κ_(ob) value of HPNP cleavage under the same conditions showed in Table 1; (2) the blank value of kob has not been detected at the pre-set time interval in our study.
    24. P. Hendry, A. M. Sargeson, Prog. Inorg. Chem., 1990, 38, 201.
    25. J. R. Morrow, O. Iranzo, Curr. Opin. Chem. Biol., 2004, 8, 192.
    26. S. Mikkola, E. Stenman,. K. Nurmi, E. Yousefi-Salakdeh, R. Stromberg, H. Lonnberg, J. Chem. Soc., perkin Trans. Ⅱ,1999, 1619.
    27. I. O. Fritsky, R. Ott, H. Pritzkow, R. Kramer, Chem. Eur. J., 2001, 7, 1221.
    28. S. Liu, A. D. Hamilton, Tetrahedron Lett., 1997, 38, 1107.
    29. S. Liu, A. D. Hamilton, Bioorg. Meal Chem. Lett., 1997, 7, 1779.
    30. M. Kalesse, A. Loos, LiebigsAnn. Chem., 1996, 935.
    31. D. R. Jones, L. F. Lindoy, A. M. Sargeson, J. Am. Chem. Soc., 1983, 105, 7327.
    32. R. M. Milburn, M. Gautam-Basak, R. Tribolet, H. Sigel, J. Am. Chem. Soc., 1985, 107, 3315.
    33. Y. Fujii, T. Itoh, K. Onodera, T. Tada, Chem. Lett., 1995, 305.
    34. T. Itoh, Y. Fujii,. T. Tada, Y. Yuzo, H. Hisada, Bull. Chem. Soc. Jpn., 1996, 69, 1265.
    35. J. Chin, Acc. Chem. Res. 1991, 24, 145.
    36. O. Iranzo, T. Elmer, J. P. Richard, J. R. Morrow, Inorg. Chem. 2003, 42, 7737.
    37. B. L. Vallee, W. E. C. Waeker, In Handbook of Biochemistry and Molecular Biology, 3(rd) ed.; G.D. Fasman, Ed.; CRC Press: Cleveland, 1976, 2, 276.
    38. D. P. N. Satehell, R. S. Satehell, Annu. Rep. Prog. Chem., Sect. A, 1979, 75, 25.
    39. J. Chin, Curr. Opin. Chem. Biol. 1997, 1,514.
    40. S. Mikkola, E. Stenman, K. Nurmi, E. Yousefi-Salakdeh, R. Str6mberg, H. Lonnberg, J. Chem. Soc., Perkin Trans. Ⅱ 1999, 8, 1619.
    41. P.Molenveld, J. F. J. Engbersen, D. N. Reinhoudt, Chem. Soc. Rev. 2000, 29, 75.
    42. A. Olivera-Nappa, B. A. Andrews, J. A. Asenjo, Biotechnol. Bioeng. 2004, 86, 573.
    43. Y. Xiang, B. Y. Jiang, X. C. Zeng, J. Q. Xie, J. Colloid. Interf. Sci., 2002, 247, 366.
    44. J. Chin, M. Banaszczyk, V. Jubian, J. Chem. Soc., Chem. Commun.,1988, 735.
    45. C. A. Bunton, G. Savelli, Adv. Phys. Org. Chem., 1986, 22, 213.
    46. F. M. Menger, C. A. Littau, J. Am. Chem. Soc., 1991, 113, 1451.
    47. T. Gunnlaugsson, M. Nieuwenhuyzen, C. Nolan, Polyhedron, 2003, 22, 3231.
    48. M. J. Rosen, Chemtech., 1993, 23, 30.
    49. F. M. Menger, J. S. Keiper, Angew. Chem. Int. Ed.., 2000, 39, 1906.
    50. F. Devinsky, I. Lacko, T. Imam, J. Colloid Interface Sci., 1991, 143,336.
    51. L.-G. Qiu, M.-J. Cheng, A.-J. Xie, Y.-H. Shen, J. Colloid Interface Sci., 2004, 278, 40.
    52. Weidong Jiang, Bin Xu, Qi Lin, Jianzhang Li, Haiyan Fu, Xianeheng Zeng, Hua Chen, J. Colloid Interface Sci.,2007, 311,530.
    53. T. A. Camesano, R. Nagarajan, Colloid Surf. A-Physicochem. Eng. Asp., 2000, 167, 165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700