凝血酶激活真皮成纤维细胞蛋白酶激活受体-1释放白细胞介素-8及金属蛋白酶的信号通路研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类真皮成纤维细胞是一重要组成细胞,它广泛分布于机体。在炎症过程和创伤修复方面的作用日益受到重视。蛋白酶激活受体(Protease-activated receptors,PARs)属G蛋白偶联受体家族成员,广泛分布在各种类型的细胞膜上。不同亚型的蛋白酶活性受体在不同来源的成纤维细胞中表达不同。成纤维细胞可分泌IL-8,炎症趋化因子,在系统性红斑狼疮、类风湿性关节炎和组织缺氧时都发现IL-8的表达增加,这一前炎症因子在皮肤炎症和纤维化中起重要作用。
     金属蛋白酶,在胚胎发育和形态变化、繁殖、组织再吸收和重塑、肿瘤侵润和代谢中起作用。成纤维细胞丰富存在于结缔组织,因此血管损伤部位的凝血因子与这些细胞接触。真皮成纤维细胞不仅产生组织皮肤的细胞外基质,也与其他细胞相互作用,主要调节皮肤生理功能。
     目前对于真皮成纤维细胞蛋白酶激活受体及各亚型受体的表达、激活作用以及产生的效应物研究较少,对凝血酶作用于成纤维细胞的PAR和激活受体后所参与的信号通路和生物学作用均知之甚少。
     本研究目的就是探索真皮成纤维细胞的PAR各亚型的表达状态,凝血酶激
Dermal fibroblasts not only produce and organize the extracellular matrix of the dermis but they also communicate with each other and other cell types, playing a crucial role in regulating skin physiology and pathology. The role of fibroblasts in inflammatory processes and wound remodeling is increasingly being recognized. Protease-activated receptors (PARs) have wide diverse cell types tissues distribution. Different subtypes of PARs have been expressed on fibroblasts from different source. It was reported that thrombin could induce IL-8 secretion from human dermal fibroblasts (HDFs) through activation of proteinase activated receptor (PAR)-1. However, little is known of intracellular signaling pathways involved in the event. Our aim was to explore the capacity of dermal fibroblasts to produce MMP-2, MMP-9 and inflammatory chemokine IL-8 invovled in thrombin stimulation via PAR. We also revealed which intracellular signal pathway was involved in this process.
    Here we determined the subtypes of PARs that were expressed on the human dermal fibroblast by immunostaining, FCM and RT-PCR. Furthermore we examined
引文
1. Hollenberg MD and Compton SJ. (2002). International union of pharmacology.XXVIII. Proteinase-activated receptors. Pharmacological reviews, 54:203-217.
    
    2. Vu TK, Hung DT, Wheaton VI, & Coughlin SR. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell, 64:1057-1068.
    
    3. Schmidt VT, Nierman WC, Maglott DR, Cupit LD, Moskowitz KA, Wainer JA,et al. (1998)The human proteinase-activated receptor-3 (PAR-3) gene. Identification within a Par gene cluster and characterization in vascular endothelial cells and platelets. J boil Chem, 273:15061-15068.
    
    4. Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, et al. (1998).Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci, 95:6642-6646.
    
    5. Molino M, Barnathan ES, Numerof R, Clark J, Dreyer M, Cumashi A,et al._(1997). Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem, 272, 4043-4049.
    
    6. He S, Aslam A, Gaca MDA., Gaca MD, He Y, Buckley .G, et al. (2004). Inhibitors of tryptase as mast cell stabilizing agents in the human airways: effects of tryptase and other agonists of PAR2 on histamine release. J Pharmacol Exp Ther,309,119-126.
    
    7. Brass LF & Molino M. (1997). Protease-activated G protein-coupled receptors on human platelets and endothelial cells. Thromb Haemost, 78, 234-241.
    8. Chi L, Li Y, Stehno-Bittel L, Gao J, Morrison DC, Stechschulte DJ, Dileepan KN.(2001). Interleukin-6 production by endothelial cells via stimulation of protease-activated receptors is amplified by endotoxin and tumor necrosis factor-alpha. J Interferon Cytokine Res, 21, 231-240.
    
    9. Chambers RC, Leoni P, Blanc-Brude OP, Wembridge DE, Laurent GJ. (2000).Thrombin is a potent inducer of connective tissue growth factor production via proteolytic activation of protease-activated receptor-1. J Biol Chem, 275,35584-35591.
    
    10. Weiss, R.H., Nuccitelli, R. (1992). Inhibition of tyrosine phosphorylation prevents thrombin-induced mitogenesis, but not intracellular free calcium release, in vascular smooth muscle cells. J Biol Chem, 267, 5608-5613.
    11. Mari B, Guerin S, Far DF, Breitmayer JP, Belhacene N, Peyron JF., Auberger P (1996). Thrombin and trypsin-induced Ca~(2+) mobilization in human T cell lines through interaction with different protease-activated receptors. FASEB J, 10, 309-316.
    12. Bolton SJ, McNulty CA, Thomas RJ, Hewitt CR, Wardlaw AJ. (2003). Expression of and functional responses to protease-activated receptors on human eosinophils. J Leukoc Biol, 74, 60-68.
    13. Naldini A, Pucci A, Carney DH, Fanetti G, Carraro F. (2002). Thrombin enhancement of interleukin-1 expression in mononuclear cells: involvement of proteinase-activated receptor-1. Cytokine, 20,191-199.
    14. Bachili EB, Pech CM, Johnson KM, Johnson DJ, Tuddenham EG, McVey JH. (2003). Factor Ⅹa and thrombin, but not factor Ⅶa, elicit specific cellular responses in dermal fibroblast. J Thromb Haemost, 1, 1935-1944.
    15. Hayakawa Y, Hirashima Y, Yamamoto H, Hayashi N, Kurimoto M, Kuwayama N, et al. (2005). Adenovirus-mediated expression of hepadn cofactor Ⅱ inhibits thrombin-induced cellular responses in fibroblasts and vascular smooth muscle cells. Thromb Res, 116, 357-363.
    16. Moyer KE, Saggers GC, Allison GM, Mackay DR, Ehrlich HP.(2002). Effects of interleukin-8 on granulation tissue maturation. J cell Physiol, 193, 173-179.
    17. Fukasawa C, Kawaguchi Y, Harigai M, Sugiura T, Takagi K, Kawamato M, et al. (2003). Increased SD40 expression in skin fibroblasts from Patients with systemic sclerosis (SSc): role of CD40-CD154 in the phenotype of SSc fibroblasts. Eur J Immunol, 33, 2792-2800.
    18. Georganas C, Liu., Pedman H, Hoffmann A, Thimmapaya B, Pope R. (2000). Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblasts: the dominant role for NF-kappa B but not C/EBP beta or c-Jun. J Immunol, 165, 7199-7206.
    19. Galindo M, Santiago B, Alcami J, Rivero M, Martin-serrano J, Pablos JL. (2001). Hypoxia induces expression of the chemokines monocyte chemoattractant protein-1(MCP-1) and IL-8 in human dermal fibroblasts. Clin Exp Immunol, 123, 36-41.
    20. Nagase H, Woessner FJJr. (1999). Matrix Metalloproteinases. The Journal of Biological Chemistry, 274, 21491-21494.
    21. Johnson LL, Dyer R, Hupe DJ. (1998). Matrix metalloproteinases. Curr Opinoin in Biochem Bio, 2, 466-71.
    22. Pucci-Minafra I, Minafra S, Rocca LG., Barranca M, Fontana FS, Alaimo G, Okada Y. (2001). Zymographic analysis of circulating and tissue forms of colon carcinoma gelatinase A (MMP-2) and B (MMP-9) separated by mono-and two-dimensional electrophoresis. Matrix Biology, 20, 419-27
    23. Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown P. (2002). Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci, 99, 12877-82.
    24. Akagi A., Tajima S, Ishibashi A, Yamaguchi N, Nagai Y. (1999). Expression of type ⅩⅥ collagen in human skin fibroblasts: enhanced expression in fibrotic skin diseases. J Invest Dermatol, 113, 246-50.
    25. Gruber R, Jindra C, Kandler B, Watzak G, Fischer MB, & Watzek G. (2004). Proliferation of dental pulp fibroblast in response to thrombin involves mitogen-activated protein kinase signaling. International Endodontic J, 37, 145-150.
    26. Hou L, Ravenall S, Macey MG, Harriott P, Kapas S, & Howells GL. (1998). Protease activated receptors and their role in IL-6 and NF-IL-6 expression in human gingival fibroblasts, J Periodont res, 33, 205-211.
    27. Tanaka N, Morita T, Nezu A, Tanimura A, Mizoguchi I, & Tojyo Y. (2003). Thrombin-induced Ca2+ mobilization in human gingival fibroblasts is mediated by protease-activated receptor-1 (PAR-1). Life Sci, 73, 301-310.
    28. Boire A, Covic L, Agarwal A, Jacques S, Sheriff S, Kullopulos A. (2004). PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumaorigenesis of breast cancer cells. Cell, 120, 303-13.
    29. Vliagoftis H, Schwingshackl A, Milne CD, Duszyk M, Hollenberg MD, Wallace JL, Befus AD, Moqbel R. (2000). Proteinaseactivatedreceptor-2-mediated matrix metalloproteinase-9 release from airway epithelial cells. J. Allergy Clin. Immunol, 106, 537-45.
    30. Vouret-Craviari V, Van Obberghen-Schilling E, Scimeca JC, Van Obberghen E, Pouyssegur J. (1993). Differential activation of p44mapk (ERK1) by alpha-thrombin and thrombin-receptor peptide agonist. Biochem J, 289, 209-14.
    31. Coughling SR. (2000). Thrombin signaling and protease-activated receptor. Nature, 406, 258-64.
    32. Pelletier S, Duhamel F, Coulombe P, Popoff MR, Meloche S. (2003). Rho family GTPases are required for activation of Jak/STAT signaling by G protein-coupled receptors. Mol Cell Biol, 23, 1316-33.
    33. Surazynski A, Sienkiewicz P, Wolczynski S, & Palka J. (2005). Differential effets of echistatin and thrombin on collagen production and prolidase activity in human dermal fibroblasts and their possible implication in β_1-intergrin-mediated signaling. Pharmacol Res, 51, 217-221.
    34. Daub H, Wallasch C, Lankenau A, Herrlich A, & Ullrich A. (1997). Signal characteristics of G protein-transactivated EGF receptor. EMBO J, 16, 7032-7044.
    35. Kranenburg O, Verlaan I, Hordijk PL, & Moolenaar WH. (1997). Gi-mediated activation of the Ras/MAP kinase pathway involves a 100 kDa tyrosine-phosphorylated Grb2 SH3 binding protein, but not Src nor Shc. EMBO J, 16, 3097-3105.
    36. Ludwicka-Bradley A, Tourkina E, Suzuki S, Tyson E, Bonner M, Fenton JW 2nd, et al. (2000). Thrombin upregulates intedukin-8 in lung fibroblast via cleavage of proteolytically activated receptor-1 and protein kinase C-γ activation. Am J Respir Cell Mol Biol, 22, 235-243.
    37. Zechel J, Gohil H, Lust WD, Cohen A. (2002). Alterations in matrix metalloproteinase-9 levels and tissue inhibitor of matrix metalloproteinases-1 expression in a transforming growth factor-beta transgenic model of hydrocephalus. J Neurosci Res, 69, 662-668
    38. He S, Peng Q, & Walls AF. (1997). Potent induction ofa neutrophil and eosinophil-rich infiltrate in vivo by human mast cell tryptase: selective enhancement of eosinophil recruitment by histamine. J Immunol, 159, 6216-6225.
    39. Sabri A, Short J, Guo J, & Steinberg SF. (2002). Protease-Activated Receptor-1-Mediated DNA Synthesis in Cardiac Fibroblast Is via Epidermal Growth Factor Receptor Transactivation. Mol Med, 91, 532-539
    40. Bian ZM, Elner SG, Yoshida A, & Elner VM. (2003). Human RPE-monocyte co-culture induces chemokine gene expression through activation of MAPK and NIK cascade. Exp Eye Res, 76, 573-583.
    41. Chen W, Monick MM, Carter AB, & Hunninghake GW. (2000). Activation of ERK2 by respiratory syncytial virus in A549 cells is linked to the production of interleukin 8. Exp Lung Res, 26, 13-26.
    42. Madamanchi NR, Li S, Patterson C, & Runge MS. (2001). Thrombin regulates vascular smooth muscle cell growth and heat shock proteins via the JAK-STAT pathway. J Biol Chem, 276, 18915-18924.
    43. Goel R, Phillips-Mason PJ, Gardner A, Raben DM,& Baldassare JJ. (2004). Alpha-thrombin-mediated phosphatidylinositol 3-kinase activation through release of Gbetagamma dimers from Galphaq and Galphai2. J Biol Chem, 279, 6701-6710.
    44. Iwahashi N, Murakami H, Nimura Y, & Takahashi M. (2002). Activation of RET tyrosine kinase regulates interleukin-8 production by multiple signaling pathways. Biochem Biophys Res Commun, 294, 642-649.
    45. Westermarck J, Kahari VM. (1999). Regulation of matrix metalloproteinase in tumor invasion. FASEB J, 3, 781-92.
    46. Vincent MP. (2001). The metrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) genes. Transcriptional and posttranscriptional regulation, signal transductio and cell-type-specific expression. Method Mol Biol, 151, 121-48.
    47. Galis SZ, Kranzh??fer R, Fenton WJ, Libby PⅡ. (1997). Thrombin Promotes Activation of Matrix Metalloproteinase-2 Produced by Cultured Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol, 17, 483-9.
    48. Sawicki G, Marcoux Y, Sarkhosh K, Tredget EE, Ghahary A. (2005). Interaction of keratinocytes and fibroblasts modulates the expression of matrix metalloproteinases-2 and -9 and their inhibitors. Mol Cell Biochem, 269, 209-16.
    49. Elshaw SR, Henderson N, Knox AJ, Watson SA, Buttle DJ, Johnson SR. (2004). Matrix metalloproteinase expression and activity in human airway smooth muscle cells. Br J Pharmacol, 142, 1318-24.
    50. Hong IK, Kim YM, Jeoung DI, Kim K., Lee H. (2005). Tetraspanin CD9 induces MMP-2 expression by activating p38 MAPK, JNK and c-Jun pathways in human melanoma cells. Exp Mol Med, 37, 230-9.
    51. Chakrabarti S, Patel KD. (2005). Regulation of matrix metalloproteinase-9 release from IL-8-stimulated human neutrophils. J Leukoc Biol, 78, 279-88.
    1. Cormack, D. H. The integumentary system. In Ham's Histology, 9th edn., pp. 450-474. Philadelphia: J.B. Lippincott Company. 1987.
    2.Azzarone, B. and Macieira-Coelho, A.. Heterogeneity of the kinetics of proliferation within human skin fibroblastic cell populations. J. Cell Sci. 57,177-187, 1982.
    3.Sorrell, J. M., Baber, M. A. and Caplan, A. I. Construction of a Bilayered dermal equivalent containing human papillary and reticular dermal fibroblasts: use of fluorescent vital dyes. Tissue Eng. 2, 39-49, 1996.
    4. Sorrell, J. M., Baber, M. A. and Caplan, A. I. (2004). Site-matched papillary and reticular human dermal fibroblasts differ in their release of specific growth factors/cytokines and in their interaction with keratinocytes. J. Cell. Physiol. E-pub ahead of print 16 Dec. 2003.
    5. Grassel, S., Unsold, C, Schacke, H., Bruckner-Tuderman, L. and Bruckner, P. Collagen XVI is expressed by human dermal fibroblasts and keratinocytes and is associated with the microfibrillar apparatus in the upper papillary dermis. Matrix Biol. 18,309-317, 1999.
    6. Akagi A, Tajima S, Ishibashi A, Yamaguchi N, Nagai. Y. Expression of type XVI collagen in human skin fibroblasts: enhanced expression in fibrotic skin diseases. J Invest Dermatol. 113(2):246-50, 1999.
    7.Smola, H., Thiekotter, G. and Fusenig, N. E. Mutual induction of growth factor gene expression by epidermal-dermal cell interaction. J. Cell Biol. 122,417-429, 1993.
    8.Schroder, J.-M. Cytokine networks in skin. J. Invest. Dermatol. 105, 20S-24S, 1995.
    9.Slavin, J. The role of cytokines in wound healing. J. Pathol. 178, 5-10,1996.Smith, R. S., Smith, T. J., Blieden, T. M. and Phipps, R. P. Fibroblasts as sentinel cells. Synthesis of chemiokines and regulation of inflammation. Am. J. Pathol. 151, 317-322, 1997.
    10.Kondo, S. The roles of cytokines in photoaging. J. Dermatol. Sci. 23, S30-S36,2000.
    11.Werner, S. Keratinocyte growth factor: a unique player in epithelial repair processes. Cytokine Growth Factor Rev. 9, 153-165, 1998.
    12.Boxman, I., Lowik, C, Aarden, L. and Ponc, M. Modulation of IL-6 production and IL-1 activity by keratinocyte-fibroblast interaction. J. Invest. Dermatol. 101, 316-324, 1993.
    13.Rubin, J. S., Bottaro, D. P. and Aaronson, S. A. Hepatocyte growth factor/scatter factor and its receptor, the c-met proto-oncogene product. Biochim. Biophys. Acta 1155, 357-371, 1993.
    14.Sato, C, Tsuboi, R., Shi, C.-M., Rubin, J. S. and Ogawa, H. Comparative study of hepatocyte growth factor/scatter factor and keratinocyte growth factor effects on human keratinocytes. J. Invest. Dermatol. 104, 958-963, 1995.
    15.Igarashi, M., Finch, P. W. and Aaronson, S. A. Characterization of recombinant human fibroblast growth factor (FGF)-10 reveals functional similarities with keratinocyte growth factor (FGF-7). J. Biol. Chem. 273, 13230-13235, 1996.
    16.Blomme, E. A. G., Sugimoto, Y., Lin, Y. C, Capen, C. C. and Rosol, T. J. Parathyroid hormone-related protein is a positive regulator of keratinocyte growth factor expression by normal dermal fibroblasts. Mol. Cell. Endocrinol. 152, 189-197, 1999.
    17.Breuhahn, K., Mann, A. Muller, G., Wilhelmi, A., Schirmacher, P., Enk, A. and Blessing,M. Epidermal overexpression of granulocyte-macrophage colony-stimulating factor induces both keratinocyte proliferation and apoptosis. Cell Growth Differ. 11,111-121, 2000.
    18.Mann, A., Breuhahn, K., Schirmacher, P. and Blessing, M. Keratinocyte-derived granulocyte-macrophage colony stimulating factor accelerates wound healing: stimulation of keratinocyte proliferation, granulation tissue formation, and vascularization. J. Invest. Dermatol. 117, 1382-1390,2001.
    19.Marchese, C., Felici, A., Visco, V., Lucania, G., Igarashi, M., Picardo, M., Frati, L. and Torrisi, M. R. Fibroblast growth factor 10 induces proliferation and differentiation of human primary cultured keratinocytes. J. Invest. Dermatol. 116, 623-628, 2001.
    20.Brauchle, M., Angermeyer, K., Hubner, G. and Werner, S. Large induction of keratinocyte growth factor expression by serum growth factors and pro-inflammatory cytokines in cultured fibroblasts. Oncogene 9, 3199-3204, 1994.
    21. Maas-Szabowski, N. and Fusenig, N. E. Interleukin-1-induced growth factor expression in postmitotic and resting fibroblasts. J. Invest. Dermatol. 107, 849-855, 1996.
    22. Maas-Szabowski, N., Shimotoyodome, A. and Fusenig, N. E. Keratinocyte growth regulation in fibroblast cocultures via a double paracrine mechanism. J. Cell Sci. 112,1843-1853, 1999.
    23.Andreadis, S. T., Hamoen, K. E., Yarmush, M. L. and Morgan, J. R. Keratinocyte growth factor induces hyperproliferation and delays differentiation in a skin equivalent model system. FASEB J. 15, 898-906, 2001.
    24.Szabowski, A., Maas-Szabowski, N., Andrecht, S., Kolbus, A., Schorpp-Kristner, M.,Fusenig, N. E. and Angel, P. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin. Cell 103, 745-755,2000.
    25. Angel, P. and Szabowski, A. Function of AP-1 target genes in mesenchymal-epithelial cross-talk in skin. Biochem. Pharmacol. 64,949-956,2002.
    26.Martin, P. Wound healing - aiming for perfect skin regene ration. Science 276, 75-81, 1997.
    27. Pierce, G. F., Mustoe, T. A., Altrock, B. W., Deuel, T. F. and Thomason, A. Role of platelet-derived growth factor in wound healing. J. Cell. Biochem. 45, 319-326, 1991.
    28. Sappino, A. P., Schurch, W. and Gabbiani, G. Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Lab. Invest. 63,144-161, 1990.
    29. Grinnell, F. Fibroblasts, myofibroblasts, and wound contraction. J. Cell Biol. 124,401-404, 1994.
    30. Clark, R. A. F. Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J. Invest. Dermatol. 94, 128s-134s, 1990.
    31. Singer, A. J. and Clark, R. A. F. Cutaneous wound healing. N. Engl. J. Med. 341, 738-746, 1999.
    32. Grinnell, F., Zhu, M., Carlson, M. A. and Abrams, J. M. Release of mechanical tension triggers apoptosis of human fibroblasts in a model of regressing granulation tissue. Exp. Cell Res. 248, 608-619, 1999.
    33. Gailit, J. and Clark, R. A. F. Wound repair in the context of extracellular matrix. Curr. Opin. Cell Biol. 6,717-725, 1994.
    34. Adzick, N. S. and Lorenz, H. P. Cells, matrix, growth factors, and the surgeon. The biology of scarless fetal wound repair. Ann. Surg. 220,10-18, 1994.
    35. Liechty, K. W., Adzick, N. S. and Crombleholme, T. M. Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine 12,671-676, 2000.
    36. Schor, S. L., Schor, A. M., Rushton, G. and Smith, L. Adult, foetal and transformed fibroblasts display different migratory phenotypes on collagen gels: evidence for an isoformic transition during foetal development. J. Cell Sci. 73,221-234, 1985.
    37. Gosiewska, A., Yi, C.-F., Brown, L. J., Cullen, B., Silcock, D. and Geesin, J. C.Differential expression and regulation of extracellular matrix-associated genes in fetal and neonatal fibroblasts. Wound Repair Regen. 9,213-222,2001.
    38. Fries, K. M., Blieden, T., Looney, R. J., Sempowski, G. D., Silvera, M. R., Willis, R. A. and Phipps, R. P. Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis. Clin. Immunol. Immunopathol 72, 283-292,1994.
    39. Rasmussen UB, Vouret-Craviari V, Jallat S, Schlesinger Y, Pages G, Pavirani A, Lecocq JP, Pouyssegur J, and Van Obberghen- Schilling E. cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2_ mobilization. FEBS Lett 288: 123-128, 1991.
    40. Vu TK, Hung DT, Wheaton VI, and Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64: 1057-1068, 1991.
    41. Nystedt S, Emilsson K, Wahlestedt C, and Sundelin J. Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci USA 91:9208-9212,1994.
    42. Nystedt S, Larsson AK, Aberg H, and Sundelin J. The mouse proteinase-activated receptor-2 cDNA and gene. Molecular cloning and functional expression. J Biol Chem 270: 5950-5955, 1995.
    43. Connolly AJ, Ishihara H, Kahn ML, Farese RV Jr, and Coughlin SR. Role of the thrombin receptor in development and evidence for a second receptor. Nature 381: 516-519, 1996.
    44. Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, Tram T, and Coughlin SR. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386: 502-506, 1997.
    45. Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, Farese RV Jr, Tam C, and Coughlin SR. A dual thrombin receptor system for platelet activation. Nature 394:690-694, 1998.
    46. Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, Gilbert T, Davie EW, and Foster DC. Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci USA 95: 6642-6646, 1998.
    47. Schechter NM, Brass LF, Lavker RM, and Jensen PJ. Reaction of mast cell proteases tryptase and chymase with protease activated receptors (PARs) on keratinocytes and fibroblasts. J Cell Physiol 176: 365-373, 1998.
    48.Norton KJ, Scarborough RM, Kutok JL, Escobedo MA, Nannizzi L, and Coller BS.Immunologic analysis of the cloned platelet thrombin receptor activation mechanism: evidence supporting receptor cleavage, release of the N-terminal peptide, and insertion of the tethered ligand into a protected environment. Blood 82: 2125-2136, 1993.
    49. Vouret-Craviari V, Grall D, Chambard JC, Rasmussen UB, Pouyssegur J, and Van Obberghen-Schilling E. Post-translational and activation-dependent modifications of the G protein-coupled thrombin receptor. J Biol Chem 270: 8367-8372, 1995.
    50. Nystedt S, Emilsson K, Larsson AK, Strombeck B, and Sundelin J. Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Eur J Biochem 232: 84-89, 1995.
    51.Bohm SK, Khitin LM, Grady EF, Aponte G, Payan DG, and Bunnett NW. Mechanisms of desensitization and resensitization of proteinase-activated receptor-2. J Biol Chem 271: 22003-22016, 1996.
    52.1shihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, Tram T, and Coughlin SR. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386:502-506, 1997.
    53.Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, Farese RV Jr, Tam C, and Coughlin SR. A dual thrombin receptor system for platelet activation. Nature 394: 690-694, 1998.
    54. Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, Gilbert T, Davie EW, and Foster DC. Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci USA 95: 6642-6646, 1998.
    55. Vu TK, Wheaton VI, Hung DT, Charo I, and Coughlin SR. Domains specifying thrombin-receptor interaction. Nature 353:674-677, 1991.
    56. Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, and Coughlin SR. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 103: 879-887, 1999.
    57. Shapiro MJ, Weiss EJ, Faruqi TR, and Coughlin SR. Protease-activated receptors 1 and 4 are shutoff with distinct kinetics after activation by thrombin. J Biol Chem 275: 25216-25221, 2000.
    58.Covic L, Gresser AL, and Kuliopulos A. Biphasic kinetics of activation and signaling for PAR1 and PAR4 thrombin receptors in platelets. Biochemistry 39: 5458-5467, 2000.
    59. Nakanishi-Matsui M, Zheng YW, Sulciner DJ, Weiss EJ, Ludeman MJ, and Coughlin SR. PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404: 609-613,2000.
    60. Blackhart BD, Emilsson K, Nguyen D, Teng W, Martelli AJ, Nystedt S, Sundelin J, and Scarborough RM. Ligand cross-reactivity within the protease-activated receptor family. J Biol Chem 271: 16466-16471, 1996.
    61. O'Brien PJ, Prevost N, Molino M, Hollinger MK, Woolkalis MJ, Woulfe DS, and Brass LF. Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. J Biol Chem 275: 13502-13509,2000.
    62. Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 407: 258-264, 2000.
    63. Riewald M and Ruf W. Science review: role of coagulation protease cascades in sepsis. Crit Care 7: 123-129, 2003.
    64. Camerer E, Huang W, and Coughlin SR. Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc NatlAcadSci USA 97: 5255-5260,2000.
    65. Riewald M and Ruf W. Mechanistic coupling of protease signaling and initiation of coagulation by tissue factor. Proc Natl Acad Sci USA 98: 7742-7747, 2001.
    66.Camerer E, Kataoka H, Kahn M, Lease K, and Coughlin SR Genetic evidence that protease-activated receptors mediate factor Xa signaling in endothelial cells. J Biol Chem 277: 16081-16087,2002.
    67. Riewald M, Petrovan RJ, Donner A, Mueller BM, and Ruf W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296: 1880-1882,2002.
    68.Griffin JH, Zlokovic B, and Fernandez JA. Activated protein C: potential therapy for severe sepsis, thrombosis, and stroke. Semin Hematol 39: 197-205,2002.
    69.Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW, and Fisher CJ Jr. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344: 699-709,2001.
    70. Cheng T, Liu D, Griffin JH, Fernandez JA, Castellino F, Rosen ED, Fukudome K, and Zlokovic BV. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 9: 338-342, 2003.
    71.Grand RJ, Turnell AS, and Grabham PW. Cellular consequences of thrombin-receptor activation. Biochem J 313: 353-368, 1996.
    72.Nguyen TD, Moody MW, Steinhoff M, Okolo C, Koh DS, and Bunnett NW. Trypsin activates pancreatic duct epithelial cell ion channels through proteinase-activated receptor-2. J Clin Invest 103: 261-269, 1999.
    73. Koshikawa N, Nagashima Y, Miyagi Y, Mizushima H, Yanoma S, Yasumitsu H, and Miyazaki K. Expression of trypsin in vascular endothelial cells. FEBS Lett 409: 442-448, 1997.
    74.Koshikawa N, Hasegawa S, Nagashima Y, Mitsuhashi K, Tsubota Y, Miyata S, Miyagi Y, Yasumitsu H, and Miyazaki K. Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am J Pathol 153: 937-944,1998.
    75.Koivunen E, Huhtala ML, and Stenman UH. Human ovarian tumor-associated trypsin. Its purification and characterization from mucinous cyst fluid and identification as an activator of pro-urokinase. J Biol Chem 264: 14095-14099, 1989.
    76.Koivunen E, Saksela O, Itkonen O, Osman S, Huhtala ML, and Stenman UH. Human colonic carcinoma, fibrosarcoma and leukemia cell lines produce tumor-associated trypsinogen. Int J Cancer 47: 592-596, 1991.
    77.Alm AK, Gagnemo-Persson R, Sorsa T, and Sundelin J. Extrapancreatic trypsin-2 cleaves proteinase-activated receptor-2. Biochem Biophys Res Commun 275: 77-83, 2000.
    78.Ducroc R, Bontemps C, Marazova K, Devaud H, Darmoul D, and Laburthe M. Trypsin is produced by and activates protease-activated receptor-2 in human cancer colon cells: evidence for new autocrine loop. Life Sci 70: 1359-1367, 2002.
    79.Katona G, Berglund GI, Hajdu J, Graf L, and Szilagyi L. Crystal structure reveals basis for the inhibitor resistance of human brain trypsin. J Mol Biol 315: 1209-1218, 2002.
    80.Caughey GH. Mast cell chymases and tryptases: phylogeny, family relations, and biogenesis. In: Mast Cell Proteases in Immunology and Biology, edited by Caughey GH. New York: Dekker, 1995, p. 305-329.
    81. Metcalfe DD, Baram D, and Mekori YA. Mast cells. Physiol Rev 77: 1033-1079, 1997.
    82.McEuen AR, He S, Brander ML, and Walls AF. Guinea pig lung tryptase. Localisation to mast cells and characterisation of the partially purified enzyme. Biochem Pharmacol 52: 331-340, 1996.
    83.Akers LA, Parsons M, Hill MR, Hollenberg MD, Sanjar S, Laurent GJ, and McAnulty RJ. Mast cell tryptase stimulates human lung fibroblast proliferation via protease-activated receptor-2. Am J Physiol Lung Cell Mol Physiol 278: L193-L201, 2000.
    84.Berger P, Perng DW, Thabrew H, Compton SJ, Cairns JA, McEuen AR, Marthan R, Tunon De Lara JM, and Walls AF. Tryptase and agonists of PAR-2 induce the proliferation of human airway smooth muscle cells. J Appl Physiol 91: 1372-1379, 2001.
    85.Reed DE, Barajas-Lopez C, Cottrell G, Velazquez-Rocha S, Dery O, Grady EF, Bunnett NW, and Vanner SJ. Mast cell tryptase and proteinase-activated receptor 2 induce hyperexcitability of guinea-pig submucosal neurons. J Physiol 547: 531-542,2003.
    86.Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bunnett NW, Gater PR, Geppetti P, Bertrand C, and Stevens ME. Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol 169: 5315-5321,2002.
    87.Steinhoff M, Corvera CU, Thoma MS, Kong W, McAlpine BE, Caughey GH, Ansel JC, and Bunnett NW. Proteinase-activated receptor-2 in human skin: tissue distribution and activation of keratinocytes by mast cell tryptase. Exp Dermatol 8: 282-294, 1999.
    88.Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, Ennes HS, Trevisani M, Hollenberg MD, Wallace JL, Caughey GH, Mitchell SE, Williams LM, Geppetti P, Mayer EA, and Bunnett NW. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Medd: 151-158, 2000.
    89. Mirza H, Schmidt VA, Derian CK, Jesty J, and Bahou WF. Mitogenic responses mediated through the proteinase-activated receptor-2 are induced by expressed forms of mast cell alpha- or beta-tryptases.Blood 90: 3914-3922, 1997.
    90.Huang C, De Sanctis GT, O'Brien PJ, Mizgerd JP, Friend DS, Drazen JM, Brass LF, and Stevens RL. Evaluation of the substrate specificity of human mast cell tryptase beta I and demonstration of its importance in bacterial infections of the lung. J Biol Chem 276: 26276-26284,2001.
    91.Compton SJ, Renaux B, Wijesuriya SJ, and Hollenberg MD. Glycosylation and the activation of proteinase-activated receptor 2 [PAR(2)] by human mast cell tryptase. Br J Pharmacol 134: 705-718, 2001.
    92.Compton SJ, Sandhu S, Wijesuriya SJ, and Hollenberg MD. Glycosylation of human proteinase-activated receptor-2 (hPAR2): role in cell surface expression and signalling. Biochem J 368: 495-505, 2002.
    93.Pereira PJ, Bergner A, Macedo-Ribeiro S, Huber R, Matschiner G, Fritz H, Sommerhoff CP, and Bode W. Human beta-tryptase is a ring-like tetramer with active sites facing a central pore. Nature 392: 306-311, 1998.
    94.Cenac N, Coelho AM, Nguyen C, Compton S, Andrade-Gordon P, MacNaughton WK,Wallace JL, Hollenberg MD, Bunnett NW, Garcia-Villar R, Bueno L, and Vergnolle N.Induction of intestinal inflammation in mouse by activation of proteinase-activated receptor-2.Am J Pathol 161: 1903-1915, 2002.
    95.Vergnolle N, Bunnett NW, Sharkey KA, Brussee V, Compton SJ, Grady EF, Cirino G,Gerard N, Basbaum AI, Andrade-Gordon P, Hollenberg MD, and Wallace JL.Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway. Nat Med 7: 821-826,2001.
    96.Stead RH, Tomioka M, Quinonez G, Simon GT, Felten SY, and Bienenstock J. Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves. Proc Natl Acad Sci USA 84: 2975-2979, 1987.
    97. Santos J, Bayarri C, Saperas E, Nogueiras C, Antolin M, Mourelle M, Cadahia A, and Malagelada JR. Characterisation of immune mediator release during the immediate response to segmental mucosal challenge in the jejunum of patients with food allergy. Gut 45: 553-558, 1999.
    98. Sabri A, Short J, Guo J, and Steinberg SF. Protease-activated receptor-1-mediated DNA synthesis in cardiac fibroblast is via epidermal growth factor receptor transactivation: distinct PAR-1 signaling pathways in cardiac fibroblasts and cardiomyocytes. Circ Res 91: 532-539, 2002.
    99. Uehara A, Sugawara S, Muramoto K, and Takada H. Activation of human oral epithelial cells by neutrophil proteinase 3 through protease-activated receptor-2. J Immunol 169: 4594-4603, 2002.
    100. Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, and Craik CS. Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 275: 26333-26342, 2000.
    101. King C, Brennan S, Thompson PJ, and Stewart GA. Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J Immunol 161: 3645-3651,1998.
    102. Sun G, Stacey MA, Schmidt M, Mori L, and Mattoli S. Interaction of mite allergens der p3 and der p9 with protease-activated receptor-2 expressed by lung epithelial cells. J Immunol 167: 1014-1021,2001.
    103. Lourbakos A, Chinni C, Thompson P, Potempa J, Travis J, Mackie EJ, and Pike RN.Cleavage and activation of proteinase-activated receptor-2 on human neutrophils by gingipain-R from Porphyromonas gingivalis. FEBS Lett 435: 45-48, 1998.
    104. Lourbakos A, Potempa J, Travis J, D'Andrea MR, Andrade-Gordon P, Santulli R, Mackie EJ, and Pike RN. Arginine-specific protease from Porphyromonas gingivalis activates protease-activated receptors on human oral epithelial cells and induces interleukin-6 secretion. Infect Immun 69: 5121-5130., 2001.
    105. Lourbakos A, Yuan YP, Jenkins AL, Travis J, Andrade-Gordon P, Santulli R, Potempa J, and Pike RN. Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood 97: 3790-3797,2001.
    106. Kauffman HF, Tomee JF, van de Riet MA, Timmerman AJ, and Borger P.Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. J Allergy Clin Immunol 105: 1185-1193, 2000.
    107. Gerszten RE, Chen J, Ishii M, Ishii K, Wang L, Nanevicz T, Turck CW, Vu TK, and Coughlin SR Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface. Nature 368: 648-651, 1994.
    108. Nanevicz T, Ishii M, Wang L, Chen M, Chen J, Turck CW, Cohen FE, and Coughlin SR. Mechanisms of thrombin receptor agonist specificity. Chimeric receptors and complementary mutations identify an agonist recognition site. J Biol Chem 270: 21619-21625, 1995.
    109. Nanevicz T, Wang L, Chen M, Ishii M, and Coughlin SR. Thrombin receptor activating mutations. Alteration of an extracellular agonist recognition domain causes constitutive signaling. J Biol Chem 271: 702-706, 1996.
    110. Lerner DJ, Chen M, Tram T, and Coughlin SR Agonist recognition by proteinase-activated receptor 2 and thrombin receptor. Importance of extracellular loop interactions for receptor function. J Biol Chem 271: 13943-13947, 1996.
    111. Al-Ani B, Saifeddine M, Kawabata A, and Hollenberg MD. Proteinase activated receptor 2: role of extracellular loop 2 for ligand-mediated activation. Br J Pharmacol 128: 1105-1113, 1999.
    112. Hollenberg MD, Saifeddine M, al-Ani B, and Kawabata A. Proteinase-activated receptors: structural requirements for activity, receptor cross-reactivity, and receptor selectivity of receptor-activating peptides. Can J Physiol Pharmacol 75: 832-841, 1997.
    113. Andrade-Gordon P, Maryanoff BE, Derian CK, Zhang HC, Addo MF, Darrow AL, Eckardt AJ, Hoekstra WJ, McComsey DF, Oksenberg D, Reynolds EE, Santulli RJ, Scarborough RM, Smith CE, and White KB. Design, synthesis, and biological characterization of a peptide-mimetic antagonist for a tethered-ligand receptor. Proc Natl Acad Sci USA 96:12257-12262, 1999.
    114. Derian CK, Damiano BP, Addo MF, Darrow AL, D'Andrea MR, Nedelman M, Zhang HC, Maryanoff BE, and Andrade-Gordon P. Blockade of the thrombin receptor protease-activated receptor-1 with a small-molecule antagonist prevents thrombus formation and vascular occlusion in nonhuman primates. J Pharmacol Exp Ther 304: 855-861, 2003.
    115. Faruqi TR, Weiss EJ, Shapiro MJ, Huang W, and Coughlin SR. Structure-function analysis of protease-activated receptor 4 tethered ligand peptides. Determinants of specificity and utility in assays of receptor function. JBiol Chem 275: 19728-19734, 2000.
    116. Dery O, Corvera CU, Steinhoff M, and Bunnett NW. Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol Cell Physiol 274: C1429-C1452, 1998.
    117. Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, and Plevin R. Proteinase-activated receptors. Pharmacol Rev 53: 245-282, 2001.
    118. Ishii K, Hein L, Kobilka B, and Coughlin SR. Kinetics of thrombin receptor cleavage on intact cells. Relation to signaling. J Biol Chem 268: 9780-9786,1993.
    119. Offermanns S. In vivo functions of heterotrimeric G-proteins: studies in Galpha-deficient mice. Oncogene 20: 1635-1642,2001.
    120. Hung DT, Vu TH, Nelken NA, and Coughlin SR. Thrombin-induced events in non-platelet cells are mediated by the unique proteolytic mechanism established for the cloned platelet thrombin receptor. J Cell Biol 116: 827-832,1992.
    121. Baffy G, Yang L, Raj S, Manning DR, and Williamson JR. G protein coupling to the thrombin receptor in Chinese hamster lung fibroblasts. J Biol Chem 269: 8483-8487,1994.
    122. Benka ML, Lee M, Wang GR, Buckman S, Burlacu A, Cole L, DePina A, Dias P, Granger A, Grant B, Hayward-Lester A, Karki S, Mann S, Marcu O, Nussenzweig A, Piepenhagen P, Raje M, Roegiers F, Rybak S, Salic A, Smith-Hall J, Waters J, Yamamoto N, Yanowitz J, Yeow K, Busa WB, and Mendelsohn ME. The thrombin receptor in human platelets is coupled to a GTP binding protein of the G alpha q family. FEBS Lett 363: 49-52, 1995.
    123. Offermanns S, Toombs CF, Hu YH, and Simon ML Defective platelet activation in G alpha(q)-deficient mice. Nature 389: 183-186, 1997.
    124. Aragay AM, Collins LR, Post GR, Watson AJ, Feramisco JR, Brown JH, and Simon ML G12 requirement for thrombin-stimulated gene expression and DNA synthesis in 1321N1 astrocytoma cells. J Biol Chem 270: 20073-20077, 1995.
    125. Offermanns S, Laugwitz KL, Spicher K, and Schultz G G proteins of the G_(12) family are activated via thromboxane A_2 and thrombin receptors in human platelets. Proc Natl Acad Sci USA 91: 504-508, 1994.
    126. Klages B, Brandt U, Simon MI, Schultz G, and Offermanns S. Activation of G12/G13 results in shape change and Rho/Rho-kinase-mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol 144: 745-754, 1999.
    127. Offermanns S, Mancino V, Revel JP, and Simon MI. Vascular system defects and impaired cell chemokinesis as a result of Galpha_(13) deficiency. Science 275: 533-536, 1997.
    128. Vouret-Craviari V, Boquet P, Pouyssegur J, and Van Obberghen-Schilling E.Regulation of the actin cytoskeleton by thrombin in human endothelial cells: role of Rho proteins in endothelial barrier function. Mol Biol Cell 9: 2639-2653, 1998.
    129. Hung DT, Wong YH, Vu TK, and Coughlin SR. The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenylyl cyclase. J Biol Chem 267: 20831-20834, 1992.
    130. Winitz S, Gupta SK, Qian NX, Heasley LE, Nemenoff RA, and Johnson GL. Expression of a mutant Gi2 alpha subunit inhibits ATP and thrombin stimulation of cytoplasmic phospholipase A_2-mediated arachidonic acid release independent of Ca~(2+) and mitogen-activated protein kinase regulation. J Biol Chem 269: 1889-1895, 1994.
    131. Wang H, Ubl JJ, Stricker R, and Reiser G. Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways. Am J Physiol Cell Physiol 283: C1351-C1364, 2002.
    132. Widmann C, Gibson S, Jarpe MB, and Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79: 143-180, 1999.
    133. Buresi MC, Buret AG, Hollenberg MD, and MacNaughton WK. Activation of proteinase-activated receptor 1 stimulates epithelial chloride secretion through a unique MAP kinase- and cyclo-oxygenase-dependent pathway. FASEB J 16: 1515-1525, 2002.
    134. Keogh RJ, Houliston RA, and Wheeler-Jones CP. Thrombin-stimulated Pyk2 phosphorylation in human endothelium is dependent on intracellular calcium and independent of protein kinase C and Src kinases. Biochem Biophys Res Commun 294: 1001-1008, 2002.
    135. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallaseh C, and Ullrich A. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402: 884-888, 1999.
    136. Saifeddine M, al-Ani B, Cheng CH, Wang L, and Hollenberg MD. Rat proteinase-activated receptor-2(PAR-2): cDNA sequence and activity of receptor-derived peptides in gastric and vascular tissue. Br J Pharmacol 118: 521-530, 1996.
    137. Miotto D, Hollenberg MD, Bunnett NW, Papi A, Braccioni F, Boschetto P, Rea F, Znin A, Geppetti P, Saetta M, Maestreili P, Fabbri LM, and Mapp CE. Expression of protease activated receptor-2 (PAR-2) in central airways of smokers and non-smokers. Thorax 57: 146-151, 2002.
    138. Kong W, McConalogue K, Khitin LM, Hollenberg MD, Payan DG, Bohm SK, and Bunnett NW. Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc Natl Acad Sci USA 94: 8884-8889, 1997.
    139. Nystedt S, Emilsson K, Wahlestedt C, and Sundelin J. Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci USA 91: 9208—9212, 1994.
    140. Ubl JJ, Vohringer C, and Reiser G. Co-existence of two types of [Ca~(2+)]_i-inducing protease-activated receptors (PAR-1 and PAR-2) in rat astrocytes and C6 glioma cells. Neuroscience 86: 597-609, 1998.
    141. DeFea KA, Zalevsky J, Thoma MS, Dery O, Mullins RD, and Bunnett NW. Beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 148: 1267-1281, 2000.
    142. DeFea KA, Zalevsky J, Thoma MS, Dery O, Mullins RD, and Bunnett NW.Beta-arrestin-dependent endocytosis of proteinaseactivated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 148: 1267-1281, 2000.
    143. Bretschneider E, Kaufmann R, Braun M, Wittpoth M, Glusa E, Nowak G, and Schror K. Evidence for proteinase-activated receptor-2 (PAR-2)-mediated mitogenesis in coronary artery smooth muscle cells. Br J Pharmacol 126: 1735-1740, 1999.
    144. Yu Z, Ahmad S, Schwartz JL, Banville D, and Shen SH. Proteintyrosine phosphatase SHP2 is positively linked to proteinase-activated receptor 2-mediated mitogenic pathway. J Biol Chem 272: 7519-7524, 1997.
    145. Hoxie JA, Ahuja M, Belmonte E, Pizarro S, Parton R, and Brass LF. Internalization and recycling of activated thrombin receptors. JBiol Chem 268: 13756-13763, 1993.
    146. Trejo J, Hammes SR, and Coughlin SR. Termination of signaling by protease-activated receptor-1 is linked to lysosomal sorting. Proc Natl Acad Sci USA 95: 13698-13702, 1998.
    147. Molino M, Blanchard N, Belmonte E, Tarver AP, Abrams C, Hoxie JA, Cerletti C, and Brass LF. Proteolysis of the human platelet and endothelial cell thrombin receptor by neutrophil-derived cathepsin G. J Biol Chem 270: 11168-11175,1995.
    148. Renesto P, Si-Tahar M, Moniatte M, Balloy V, Van Dorsselaer A, Pidard D, and Chignard M. Specific inhibition of thrombin-induced cell activation by the neutrophil proteinases elastase, cathepsin G, and proteinase 3: evidence for distinct cleavage sites within the aminoterminal domain of the thrombin receptor. Blood 89: 1944-1953,1997.
    149. Dulon S, Cande C, Bunnett NW, Hollenberg MD, Chignard M, and Pidard D. Proteinase-activated receptor-2 and human lung epithelial cells: disarming by neutrophil serine proteinases. Am J Respir Cell Mol Biol 28: 339-346,2003.
    150. Uehara A, Muramoto K, Takada H, and Sugawara S. Neutrophil serine proteinases activate human nonepithelial cells to produce inflammatory cytokines through protease-activated receptor 2. J Immunol 170: 5690-5696, 2003.
    151. Cumashi A, Ansuini H, Celli N, De Blasi A, O'Brien PJ, Brass LF, and Molino M. Neutrophil proteases can inactivate human PAR3 and abolish the co-receptor function of PAR3 on murine platelets. Thromb Haemostasis 85: 533-538, 2001.
    152. Luttrell LM and Lefkowitz RJ. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115: 455-465,2002.
    153. Ishii K, Chen J, Ishii M, Koch WJ, Freedman NJ, Lefkowitz RJ, and Coughlin SR.Inhibition of thrombin receptor signaling by a G-protein coupled receptor kinase. Functional specificity among G-protein coupled receptor kinases. J Biol Chem 269:1125-1130,1994.
    154. Vouret-Craviari V, Auberger P, Pouyssegur J, and Van Obberghen-Schilling E. Distinct mechanisms regulate 5-HT_2 and thrombin receptor desensitization. J Biol Chem 270:4813-4821, 1995.
    155. Iaccarino G, Rockman HA, Shotwell KF, Tomhave ED, and Koch WJ. Myocardial overexpression of GRK3 in transgenic mice: evidence for in vivo selectivity of GRKs. Am J Physiol Heart Circ Physiol 275: H1298-H1306, 1998.
    156. Paing MM, Stutts AB, Kohout TA, Lefkowitz RJ, and Trejo J. beta-Arrestins regulate protease-activated receptor-1 desensitization but not internalization or down-regulation. J Biol Chem 277: 1292-1300, 2002.
    157. Dery O, Thoma MS, Wong H, Grady EF, and Bunnett NW. Trafficking of proteinase-activated receptor-2 and beta-arrestin-1 tagged with green fluorescent protein. beta-Arrestin-dependent endocytosis of a proteinase receptor. J Biol Chem 274: 18524-18535, 1999.
    158. Marchese A and Benovic JL. Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J Biol Chem 276: 45509-45512, 2001.
    159. Brass LF, Pizarro S, Ahuja M, Belmonte E, Blanchard N, Stadel JM, and Hoxie JA. Changes in the structure and function of the human thrombin receptor during receptor activation, internalization, and recycling. J Biol Chem 269: 2943-2952, 1994.
    160. Hein L, Ishii K, Coughlin SR, and Kobilka BK. Intracellular targeting and trafficking of thrombin receptors. A novel mechanism for resensitization of a G protein-coupled receptor. J Biol Chem 269: 27719-27726, 1994.
    161. Horvat R and Palade GE. The functional thrombin receptor is associated with the plasmalemma and a large endosomal network in cultured human umbilical vein endothelial cells. JCellSci 108: 1155-1164, 1995.
    162. Darrow AL, Fung-Leung WP, Ye RD, Santulli RJ, Cheung WM, Derian CK, Burns CL, Damiano BP, Zhou L, Keenan CM, Peterson PA, and Andrade-Gordon P. Biological consequences of thrombin receptor deficiency in mice. Thromb Haemostasis 76: 860-866,1996.
    163. Lindner JR, Kahn ML, Coughlin SR, Sambrano GR, Schauble E, Bernstein D, Foy D, Hafezi-Moghadam A, and Ley K. Delayed onset of inflammation in protease-activated receptor-2-deficient mice. J Immunol 165: 6504-6510, 2000.
    164. Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bunnett NW, Gater PR, Geppetti P, Bertrand C, and Stevens ME. Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol 169: 5315-5321,2002.
    165. Weiss EJ, Hamilton JR, Lease KE, and Coughlin SR. Protection against thrombosis in mice lacking PAR3. Blood 100: 3240-3244,2002.
    166. Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, and Coughlin SR.Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 103: 879-887, 1999.
    167. Howells GL, Macey MG, Chinni C, Hou L, Fox MT, Harriott P, and Stone SR.Proteinase-activated receptor-2: expression by human neutrophils. J Cell Sci 110: 881-887,1997.
    168. Koshikawa N, Hasegawa S, Nagashima Y, Mitsuhashi K, Tsubota Y, Miyata S, Miyagi Y, Yasumitsu H, and Miyazaki K. Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am J Pathol 153:937-944,1998.
    169. D'Andrea MR, Derian CK, Leturcq D, Baker SM, Brunmark A, Ling P, Darrow AL, Santulli RJ, Brass LF, and Andrade-Gordon P. Characterization of protease-activated receptor-2 immunoreactivity in normal human tissues. J Histochem Cytochem 46: 157-164, 1998.
    170. Andersen H, Greenberg DL, Fujikawa K, Xu W, Chung DW, and Davie EW. Protease-activated receptor 1 is the primary mediator of thrombin-stimulated platelet procoagulant activity. Proc NatlAcad Sci USA 96: 11189-11193, 1999.
    171. Covic L, Misra M, Badar J, Singh C, and Kuliopulos A. Pepducin-based intervention of thrombin-receptor signaling and systemic platelet activation. Nat Med 8:1161-1165, 2002.
    172. Hamilton JR, Moffatt JD, Frauman AG, and Cocks TM. Protease-activated receptor (PAR) 1 but not PAR2 or PAR4 mediates endothelium-dependent relaxation to thrombin and trypsin in human pulmonary arteries. J Cardiovasc Pharmacol 38: 108-119, 2001.
    173. Hamilton JR and Cocks TM. Heterogeneous mechanisms of endothelium-dependent relaxation for thrombin and peptide activators of protease-activated receptor-1 in porcine isolated coronary artery. Br J Pharmacol 130: 181-188, 2000.
    174. Mirza H, Schmidt VA, Derian CK, Jesty J, and Bahou WF. Mitogenic responses mediated through the proteinase-activated receptor-2 are induced by expressed forms of mast cell alpha- or beta-tryptases. Blood 90: 3914-3922, 1997.
    175. Hamilton JR, Moffatt JD, Tatoulis J, and Cocks TM. Enzymatic activation of endothelial protease-activated receptors is dependent on artery diameter in human and porcine isolated coronary arteries. Br J Pharmacol 136: 492-501,2002.
    176. Tay-Uyboco J, Poon MC, Ahmad S, and Hollenberg MD. Contractile actions of thrombin receptor-derived polypeptides in human umbilical and placental vasculature: evidence for distinct receptor systems. Br J Pharmacol 115: 569-578, 1995.
    177. Sambrano GR, Huang W, Faruqi T, Mahrus S, Craik C, and Coughlin SR. Cathepsin G activates protease-activated receptor-4 in human platelets. J Biol Chem 275: 6819-6823, 2000.
    178. Robin J, Kharbanda R, McLean P, Campbell R, and Vallance P. Protease-activated receptor 2-mediated vasodilatation in humans in vivo: role of nitric oxide and prostanoids. Circulation 107: 954-959, 2003.
    179. Nystedt S, Ramakrishnan V, and Sundelin J. The proteinaseactivated receptor 2 is induced by inflammatory mediators in human endothelial cells. Comparison with the thrombin receptor. J Biol Chem 271: 14910-14915, 1996.
    180.Mirza H, Yatsula V, and Bahou WF. The proteinase activated receptor-2 (PAR-2) mediates mitogenic responses in human vascular endothelial cells. J Clin Invest 97: 1705-1714, 1996.
    181. McNamara CA, Sarembock IJ, Gimple LW, Fenton JW, Coughlin SR, and Owens GK.Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J Clin Invest 91: 94-98, 1993.
    182. Bretschneider E, Kaufmann R, Braun M, Nowak G, Glusa E, and Schror K. Evidence for functionally active protease-activated receptor-4 (PAR-4) in human vascular smooth muscle cells. Br J Pharmacol 132: 1441-1446, 2001.
    183. Tsopanoglou NE and Maragoudakis ME. On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by up-regulation of its receptors. J Biol Chem 274: 23969-23976, 1999.
    184. Cheung WM, D'Andrea MR, Andrade-Gordon P, and Damiano BP. Altered vascular injury responses in mice deficient in protease-activated receptor-1. Arterioscler Thromb Vasc Biol 19: 3014-3024, 1999.
    185. Milia AF, Salis MB, Stacca T, Pinna A, Madeddu P, Trevisani M, Geppetti P, and Emanueli C. Protease-activated receptor-2 stimulates angiogenesis and accelerates hemodynamic recovery in a mouse model of hindlimb ischemia. Circ Res 91: 346-352,2002.
    186. Vergnolle N. Review article: proteinase-activated receptors: novel signals for gastrointestinal pathophysiology. Aliment Pharmacol Ther 14: 257-266, 2000.
    187. Wang H and Reiser G Thrombin signaling in the brain: the role of protease-activated receptors. J Biol Chem 384: 193-202, 2003.
    188. Dihanich M, Kaser M, Reinhard E, Cunningham D, and Monard D. Prothrombin mRNA is expressed by cells of the nervous system. Neuron 6: 575-581, 1991.
    189. Weinstein JR, Gold SJ, Cunningham DD, and Gall CM. Cellular localization of thrombin receptor mRNA in rat brain: expression by mesencephalic dopaminergic neurons and codistribution with prothrombin mRNA. J Neurosci 15: 2906-2919, 1995.
    190. Suidan HS, Bouvier J, Schaerer E, Stone SR, Monard D, and Tschopp J. Granzyme A released upon stimulation of cytotoxic T lymphocytes activates the thrombin receptor on neuronal cells and astrocytes. Proc Natl Acad Sci USA 91: 8112-8116, 1994.
    191. Scarborough RM, Naughton MA, Teng W, Hung DT, Rose J, Vu TK, Wheaton VI, Turck CW, and Coughlin SR. Tethered ligand agonist peptides. Structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J Biol Chem 267: 13146-13149, 1992.
    192. Pindon A, Berry M, and Hantai D. Thrombomodulin as a new marker of lesion-induced astrogliosis: involvement of thrombin through the G-protein-coupled protease-activated receptor-1. JNeurosci 20: 2543-2550, 2000.
    193. Niclou S, Suidan HS, Brown-Luedi M, and Monard D. Expression of the thrombin receptor mRNA in rat brain. Cell Mol Biol 40: 421-428,1994.
    194. Niclou SP, Suidan HS, Pavlik A, Vejsada R, and Monard D. Changes in the expression of protease-activated receptor 1 and protease nexin-1 mRNA during rat nervous system development and after nerve lesion. Eur JNeurosci 10: 1590-1607,1998.
    195. D'Andrea MR, Derian CK, Leturcq D, Baker SM, Brunmark A, Ling P, Darrow AL, Santulli RJ, Brass LF, and Andrade- Gordon P. Characterization of protease-activated receptor-2 immunoreactivity in normal human tissues. J Histochem Cytochem 46: 157-164, 1998
    196. Smith-Swintosky VL, Cheo-Isaacs CT, D'Andrea MR, Santulli RJ, Darrow AL, and Andrade-Gordon P. Protease-activated receptor-2 (PAR-2) is present in the rat hippocampus and is associated with neurodegeneration. J Neurochem 69: 1890-1896,1997.
    197. Wang H, Ubl JJ, and Reiser G Four subtypes of protease-activated receptors, co-expressed in rat astrocytes, evoke different physiological signaling. Glia 37: 53-63, 2002.
    198. Ubl JJ and Reiser G Activity of protein kinase C is necessary for sustained thrombin-induced [Ca~(2+)]_i oscillations in rat glioma cells. Pflugers Arch 433: 312-320, 1997.
    199. Ubl JJ and Reiser G Characteristics of thrombin-induced calcium signals in rat astrocytes. Glia 21: 361-369, 1997.
    200. De Garavilla L, Vergnolle N, Young SH, Ennes H, Steinhoff M, Ossovskaya VS, D'Andrea MR, Mayer EA, Wallace JL, Hollenberg MD, Andrade-Gordon P, and Bunnett NW. Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism. Br J Pharmacol 133: 975-987, 2001.
    201. Gurwitz D and Cunningham DD. Thrombin modulates and reverses neuroblastoma neurite outgrowth. Proc Natl Acad Sci USA 85: 3440-3444, 1988.
    202. Beecher KL, Andersen TT, Fenton JWN, and Festoff BW. Thrombin receptor peptides induce shape change in neonatal murine astrocytes in culture. J Neurosci Res 37: 108-115, 1994.
    203. Cavanaugh KP, Gurwitz D, Cunningham DD, and Bradshaw RA. Reciprocal modulation of astrocyte stellation by thrombin and protease nexin-1. J Neurochem 54: 1735-1743, 1990.
    204. Jalink K, van Corven EJ, Hengeveld T, Morii N, Narumiya S, and Moolenaar WH.Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J Cell Biol 126: 801-810,1994.
    205. Vaughan PJ, Pike CJ, Cotman CW, and Cunningham DD. Thrombin receptor activation protects neurons and astrocytes from cell death produced by environmental insults. J Neurosci 15:5389-5401, 1995.
    206. Striggow F, Riek M, Breder J, Henrich-Noack P, Reymann KG, and Reiser G The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc Natl Acad Sci USA 97: 2264-2269, 2000.
    207. Donovan FM, Pike CJ, Cotman CW, and Cunningham DD. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J Neurosci 17: 5316-5326, 1997.
    208. Asfaha S, Brussee V, Chapman K, Zochodne DW, and Vergnolle N. Proteinase-activated receptor-1 agonists attenuate nociception in response to noxious stimuli. Br J Pharmacol 135: 1101-1106,2002.
    209. Kong W, McConalogue K, Khitin LM, Hollenberg MD, Payan DG, Bohm SK, and Bunnett NW. Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc Natl Acad Sci USA 94: 8884-8889, 1997.
    210. Yang PC, Berin MC, Yu L, and Perdue MH. Mucosal pathophysiology and inflammatory changes in the late phase of the intestinal allergic reaction in the rat. Am J Pathol 158: 681-690, 2001.
    211. Bustos D, Negri G, De Paula JA, Di Carlo M, Yapur V, Facente A, and De Paula A.Colonic proteinases: increased activity in patients with ulcerative colitis. Medicina 58: 262-264, 1998.
    212. Rasmussen UB, Vouret-Craviari V, Jallat S, Schlesinger Y, Pages G, Pavirani A, Lecocq JP, Pouyssegur J, and Van Obberghen-Schilling E. cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca~(2+) mobilization. FEBS Lett 288: 123-128,1991.
    213. Santulli RJ, Derian CK, Darrow AL, Tomko KA, Eckardt AJ, Seiberg M, Scarborough RM, and Andrade-Gordon P. Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes. Proc Natl Acad Sci USA 92: 9151-9155, 1995.
    214. Scudamore CL, Thornton EM, McMillan L, Newlands GF, and Miller HR. Release of the mucosal mast cell granule chymase, rat mast cell protease-II, during anaphylaxis is associated with the rapid development of paracellular permeability to macromolecules in rat jejunum. J Exp Med 182: 1871-1881, 1995.
    215. Cocks TM and Moffatt JD. Protease-activated receptor-2 (PAR2) in the airways. Pulm Pharmacol Ther 14: 183-191,2001.
    216. Howell DC, Laurent GJ, and Chambers RC. Role of thrombin and its major cellular receptor, protease-activated receptor-1, in pulmonary fibrosis. Biochem Soc Trans 30: 211-216, 2002.
    217. Idell S, Gonzalez K, Bradford H, MacArthur CK, Fein AM, Maunder RJ, Garcia JG, Griffith DE, Weiland J, and Martin TR. Procoagulant activity in bronchoalveolar lavage in the adult respiratory distress syndrome. Contribution of tissue factor associated with factor VII. Am Rev Respir Dis 136: 1466-1474, 1987.
    218. Jarjour NN, Calhoun WJ, Schwartz LB, and Busse WW. Elevated bronchoalveolar lavage fluid histamine levels in allergic asthmatics are associated with increased airway obstruction. Am Rev Respir Dis 144: 83-87, 1991.
    219. Cocks TM, Fong B, Chow JM, Anderson GP, Frauman AG, Goldie RG, Henry PJ, Carr MJ, Hamilton JR, and Moffatt JD. A protective role for protease-activated receptors in the airways. Nature 398: 156-160, 1999.
    220. Chow JM, Moffatt JD, and Cocks TM. Effect of protease-activated receptor (PAR)-1, -2 and -4-activating peptides, thrombin and trypsin in rat isolated airways. Br J Pharmacol 131: 1584-1591,2000.
    221. Miotto D, Hollenberg MD, Bunnett NW, Papi A, Braccioni F, Boschetto P, Rea F, Zuin A, Geppetti P, Saetta M, Maestrelli P, Fabbri LM, and Mapp CE. Expression of protease activated receptor-2 (PAR-2) in central airways of smokers and non-smokers. Thorax 57:146-151,2002.
    222. Ricciardolo FL, Steinhoff M, Amadesi S, Guerrini R, Tognetto M, Trevisani M, Creminon C, Bertrand C, Bunnett NW, Fabbri LM, Salvadori S, and Geppetti P. Presence and bronchomotor activity of protease-activated receptor-2 in guinea pig airways. Am J Respir Crit Care Med 161: 1672-1680, 2000.223..255
    224. Lan RS, Knight DA, Stewart GA, and Henry PJ. Role of PGE(2) in protease-activated receptor-1, -2 and -4 mediated relaxation in the mouse isolated trachea. Br J Pharmacol 132: 93-100,2001.
    225. Danahay H, Withey L, Poll CT, van de Graaf SF, and Bridges RJ. Protease-activated receptor-2-mediated inhibition of ion transport in human bronchial epithelial cells. Am J Physiol Cell Physiol 280: C1455-C1464, 2001.
    226. Kunzelmann K, Schreiber R, Konig J, and Mall M. Ion transport induced by proteinase-activated receptors (PAR2) in colon and airways. Cell Biochem Biophys 36: 209-214, 2002.
    227. Brown JK, Tyler CL, Jones CA, Ruoss SJ, Hartmann T, and Caughey GH. Tryptase, the dominant secretory granular protein in human mast cells, is a potent mitogen for cultured dog tracheal smooth muscle cells. J Clin Invest 88: 493-499, 1991.
    228. Cairns JA and Walls AF. Mast cell tryptase is a mitogen for epithelial cells. Stimulation of IL-8 production and intercellular adhesion molecule-1 expression. J Immunol 156: 275-283, 1996.
    229. Ruoss S, Hartmann T, and Caughey G Mast cell tryptase is a mitogen for cultured fibroblasts. J Clin Invest 88: 493-499, 1991.
    230. Berger P, Compton SJ, Molimard M, Walls AF, N'Guyen C, Marthan R, and Tunon-De-Lara JM. Mast cell tryptase as a mediator of hyperresponsiveness in human isolated bronchi. Clin Exp Allergy 29: 804-812, 1999.
    231. Clark JM, Abraham WM, Fishman CE, Forteza R, Ahmed A, Cortes A, Warne RL, Moore WR, and Tanaka RD. Tryptase inhibitors block allergen-induced airway and inflammatory responses in allergic sheep. Am J Respir Crit Care Med 152: 2076-2083,1995.
    232. Asokananthan N, Graham PT, Fink J, Knight DA, Bakker AJ, McWilliam AS, Thompson PJ, and Stewart GA. Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E_2 release from human respiratory epithelial cells. J Immunol 168: 3577-3585, 2002.
    233. Moffatt JD, Jeffrey KL, and Cocks TM. Protease-activated receptor- 2 activating peptide SLIGRL inhibits bacterial lipopolysaccharide- induced recruitment of polymorphonuclear leukocytes into the airways of mice. Am J Respir Cell Mol Biol 26: 680-684, 2002.
    234. Trail T and Stewart AG Protease-activated receptor (PAR)-independent growth and pro-inflammatory actions of thrombin on human cultured airway smooth muscle. Br J Pharmacol 138:865-875, 2003.
    235. Chambers RC, Leoni P, Blanc-Brude OP, Wembridge DE, and Laurent GJ. Thrombin is a potent inducer of connective tissue growth factor production via proteolytic activation of protease-activated receptor-1. J Biol Chem 275: 35584-35591,2000.
    236. Rattenholl A and Steinhoff M. Role of proteinase-activated receptors in cutaneous biology and disease. In: Drug Development Research, edited by M. Hollenberg and N. Vergrolle. New York: Wiley-Liss, 2003, vol. 59, p. 408-117.
    237. Ekholm IE, Brattsand M, and Egelrud T. Stratum corneum tryptic enzyme in normal epidermis: a missing link in the desquamation process? J Invest Dermatol 114: 56-63,2000.
    238. Suzuki Y, Nomura J, Hori J, Koyama J, Takahashi M, and Horii I. Detection and characterization of endogeneous protease associated with desquamation of stratum corneum. Arch Dermatol Res 285: 372-377, 1993.
    239. Daaka Y, Luttrell LM, Ahn S, Delia Rocca GJ, Ferguson SS, Caron MG, and Lefkowitz RJ. Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J Biol Chem 273: 685-688, 1998.
    240. Santulli RJ, Derian CK, Darrow AL, Tomko KA, Eckardt AJ, Seiberg M, Scarborough RM, and Andrade-Gordon P. Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes. Proc Natl Acad Sci USA 92: 9151-9155,1995.
    241. Algermissen B, Sitzmann J, Nurnberg W, Laubscher JC, Henz BM, and Bauer F. Distribution and potential biologic function of the thrombin receptor PAR-1 on human keratinocytes. Arch Dermatol Res 292: 488-495, 2000.
    242. Chen YH, Pouyssegur J, Courtneidge SA, and Van Obberghen-Schilling E. Activation of Src family kinase activity by the G protein-coupled thrombin receptor in growth-responsive fibroblasts. J Biol Chem 269:27372-27377,1994.
    243. Tsopanoglou NE and Maragoudakis ME. On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by up-regulation of its receptors. J Biol Chem 274:23969-23976, 1999.
    244. Pendurthi UR, Ngyuen M, Andrade-Gordon P, Petersen LC, and Rao LV. Plasmin induces Cyr61 gene expression in fibroblasts via protease-activated receptor-1 and p44/42 mitogen-activated protein kinase-dependent signaling pathway. Arterioscler Thromb Vasc Biol 22: 1421-1426, 2002.
    245. Hou L, Kapas S, Cruchley AT, Macey MG, Harriott P, Chinni C, Stone SR, and Howells GL. Immunolocalization of protease-activated receptor-2 in skin: receptor activation stimulates interleukin-8 secretion by keratinocytes in vitro. Immunology 94: 356-362, 1998.
    246. Wakita H, Furukawa F, and MT. Thrombin and trypsin stimulate granulocyte-macrophage colony-stimulating factor and interleukin-6 gene expression in cultured normal human keratinocytes. Proc Assoc Am Phys 109: 190-207, 1997.
    247. Kanke T, Macfarlane SR, Seatter MJ, Davenport E, Paul A, McKenzie R, and Plevin R. Proteinase-activated receptor-2-mediated activation of stress-activated protein kinases and inhibitory kappa B kinases in NCTC 2544 keratinocytes. J Biol Chem 18: 18,2001.
    248. Kawagoe J, Takizawa T, Matsumoto J, Tamiya M, Meek SE, Smith AJ, Hunter GD, Plevin R, Saito N, Kanke T, Fujii M, and Wada Y. Effect of protease-activated receptor-2 deficiency on allergic dermatitis in the mouse ear. Jpn J Pharmacol 88: 77-84, 2002.
    249. Steinhoff M, Neisius U, Ikoma A, Fartasch M, Heyer G, Skov PS, Luger TA, and Schmelz M. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci. In press.
    250. O'Brien PJ, Molino M, Kahn M, and Brass LF. Protease activated receptors: theme and variations. Oncogene 20: 1570-1581, 2001.
    251. Compton SJ, Cairns JA, Palmer KJ, Al-Ani B, Hollenberg MD, and Walls AF. A polymorphic protease-activated receptor 2 (PAR2) displaying reduced sensitivity to trypsin and differential responses to PAR agonists. J Biol Chem 275: 39207-39212, 2000.
    252. Napoli C, Cicala C, Wallace JL, de Nigris F, Santagada V, Caliendo G, Franconi F, Ignarro LJ, and Cirino G Protease-activated receptor-2 modulates myocardial ischemia-reperfusion injury in the rat heart. Proc Natl Acad Sci USA 97: 3678-3683,2000.
    253. Napoli C, De Nigris F, Cicala C, Wallace JL, Caliendo G, Condorelli M, Santagada V, and Cirino G Protease-activated receptor-2 activation improves efficiency of experimental ischemic preconditioning. Am J Physiol Heart Circ Physiol 282: H2004-H2010, 2002.
    254. Cirino G, Bucci M, Cicala C, and Napoli C. Inflammation-coagulation network: are serine protease receptors the knot? Trends Pharmacol Sci 21: 170-172,2000.
    255. Cocks TM and Moffatt JD. Protease-activated receptors: sentries for inflammation? Trends Pharmacol Sci 21: 103-108, 2000.
    256. Coughlin SR and Camerer E. PARticipation in inflammation. J Clin Invest 111: 25-27, 2003.
    257. Sawada K, Nishibori M, Nakaya N, Wang Z, and Saeki K. Purification and characterization of a trypsin-like serine proteinase from rat brain slices that degrades laminin and type IV collagen and stimulates protease-activated receptor-2. J Neurochem 74: 1731-1738, 2000.
    258. Marty I, Peclat V, Kirdaite G, Salvi R, So A, and Busso N. Amelioration of collagen-induced arthritis by thrombin inhibition. J Clin Invest 107: 631-640, 2001.
    259. Ferrell WR, Lockhart JC, Kelso EB, Dunning L, Plevin R, Meek SE, Smith AJ, Hunter GD, McLean JS, McGarry F, Ramage R, Jiang L, Kanke T, and Kawagoe J. Essential role for proteinase-activated receptor-2 in arthritis. J Clin Invest 111: 35-41, 2003.
    260. Cunningham MA, Rondeau E, Chen X, Coughlin SR, Holdsworth SR, and Tipping PG Protease-activated receptor 1 mediates thrombin-dependent, cell-mediated renal inflammation in crescentic glomerulonephritis. J Exp Med 191:455-462,2000.
    261. Krishna MT, Chauhan A, Little L, Sampson K, Hawksworth R, Mant T, Djukanovic R, Lee T, and Holgate S. Inhibition of mast cell tryptase by inhaled APC 366 attenuates allergen-induced late-phase airway obstruction in asthma. J Allergy Clin Immunol 107: 1039-1045,2001.
    262. Tremaine WJ, Brzezinski A, Katz JA, Wolf DC, Fleming TJ, Mordenti J, Strenkoski-Nix LC, and Kurth MC. Treatment of mildly to moderately active ulcerative colitis with a tryptase inhibitor (APC 2059): an open-label pilot study. Aliment Pharmacol Ther 16: 407-413,2002.
    263. Kawabata A, Kinoshita M, Nishikawa H, Kuroda R, Nishida M, Araki H, Arizono N, Oda Y, and Kakehi K. The protease-activated receptor-2 agonist induces gastric mucus secretion and mucosal cytoprotection. J Clin Invest 107: 1443-1450, 2001.
    264. Fiorucci S, Mencarelli A, Palazzetti B, Distrutti E, Vergnolle N, Hollenberg MD, Wallace JL, Morelli A, and Cirino G Proteinase-activated receptor 2 is an anti-inflammatory signal for colonic lamina propria lymphocytes in a mouse model of colitis. Proc Natl Acad Sci USA 98: 13936-13941, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700