内蒙古毛乌素沙地不同生境油蒿(Artemisia ordosica Krasch.)灌丛地碳动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油蒿(Artemisia ordosica Krasch.)是内蒙古鄂尔多斯高原特有的半灌木,构成该地区沙地优势植被类型。主要分布在固定、半固定沙丘,同时在流动沙丘也有少量分布。它在当地经济价值、防风固沙环保方面均处于无以取代的地位。在毛乌素沙地沙漠化日益扩大的严峻态势下,研究其群落地上、地下过程对生境变化的响应不仅对维持干旱、半干旱区生态系统稳定的管理措施上有所帮助,而且也有助于了解全球变化背景下物种对环境条件的长期变化适应策略。
     为此,本项研究以毛乌素沙地为研究区域,利用异速生长关系确立不同生境油蒿生物量最佳回归方程,并调查、比较了毛乌素沙地固定沙丘、半固定沙丘和流动沙丘三个生境油蒿灌丛地的生物量、土壤和植被的碳储量、生产力和细根周转、土壤微生物生物量碳、氮和土壤呼吸。具体结果如下:
     1.建立并比较了油蒿枝、株两个水平上各部分(不含细根)生物量异速生长关系式,其中枝形态指标(枝直径BD、枝长BL、叶枝长LBL)与油蒿叶、枝、果各部分生物量的异速关系最好;株水平上冠层面积CA与其叶、枝干、果、粗根各部分生物量的回归效果较好。不同生境生物量与其生长变量的异速生长关系存在差异。2004年调查的油蒿灌丛生物量从固定沙丘、半固定沙丘到流动沙丘分别是354.8,178.3和30.4 g m~(-2);各部分(叶、枝干、果、粗根、不同径级细根的)生物量都呈递减趋势。地下根与总生物量比值排序为固定>半固定>流动沙丘。不同生境细根生物量垂直分布存在差异,在固定沙丘根可至100 cm,半固定沙丘达90 cm,而在流动沙丘仅为60 cm,这些结果有助于使了解不同生
     境中的相同物种如何通过自身形态及其生物量调整来适应生境的差异。2.不同生境油蒿灌丛地植被碳储量和土壤碳储量在P < 0.05水平上差异显著,其中固定沙丘植被碳储量和土壤碳储量分别为224.04和7521 g C m~(-2),半固定沙丘是119.27和3029 g C m~(-2),流动沙丘是16.83和2300 g C m~(-2)。可见沙区土壤有机碳远大于植被碳量。
     3.利用最大值减最小值方法、标准取样法和内生长土芯法研究了不同生境油蒿灌丛地的地上、粗根生产力和地下细根生产力。发现各生境生产力、细根周转都随着植被盖度增加而增加,地下根生产力与总生产力之比随着植被盖度
Artemisia ordosica Krasch., a semi-shrubbery plant native to the Ordos Plateau of Inner Mongolia, northern China, is primarily distributed on the fixed and semi-fixed dunes, and is sometimes found on shifting dunes and forms dominant vegetation type in sandy lands of the region. Its status in economic value and fixing-sand and so on was incomparable. With increasing desertification of Mu Us sandland, that how above- and belowground process of A. ordosica shrubbery respond to different habitats is important not only in developing management strategies for for the stability of arid and semi-arid ecosystems, but also in understanding species adaptive strategy to long-term change of environments.
     A two-year study was conducted for determining the allometric equations for leaf area and biomass partitioning in A. ordosica at whole plant and branch levels under three types of habitats, and for investigating biomass pattern, carbon storage, production and fine root turnover, soil microbial carbon and soil respiration on sand dunes differentiated in mobility (i.e. fixed, semi-fixed, and shifting dunes) in Mu Us sandland. The following results were obtained:
     1. Allometric equations were developed for describing leaf, branch and fruit biomass at the branch level, and biomass of leaves, branches, fruits and coarse roots at the whole plant level for A. ordosica plants growing on fixed, semi-fixed and shifting dunes of Mu Us sandland. At the branch level, branch diameter, branch length, and leafy branch length had the best relationships with the biomass of leaves, branches, and fruits. At the whole plant level, crown area was significantly correlated with biomass of leaves, branches, fruits, and coarse roots. The allometric
引文
Aber JD, Mellilo JM, Nadelhoffer KJ. 1985. Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia, 66: 317-321
    Ackerly DD, Reich PB. 1999. Convergence and correlations among 409 leaf size and function in seed plants: a comparative test using 410 independent contrasts. Am J Bot, 86: 1272-1281
    Aerts R, Backker C and De Caluwe H. 1992. Root turnover as determinant of the cycling of C, N and P in a dry heathland ecosystem. Biogeochemistry, 15: 175-190
    Alexander IJ, FaiJrley RI. 1983. Effects of N fertilization on populations of fine roots and mycorrhizae in spruce humus. Plant Soil, 71: 49-53
    Anderson DW, Coleman DC. 1985. The dynamics of organic matter in grassland soils. J Soil water Conserv, 40: 211-216
    Anderson JM. 1992. Responses of soils to climate change. Adv Ecol Res, 22, 163-210
    Asner GP, Archer S, Hughes RF. 2003. Net changes in regional woody vegetation cover and carbon storage in Texas Drylands, 1937-1999. Global Change Biol, 9: 316-335
    Bauhus J, Bartsch N. 1996. Fine-root growth in beech (Fagus sylvatica) Forest gaps. Can J For Res, 26: 2153-5159
    Bazzaz FA, Williams WE. 1991. Atmospheric CO2 concentrations within a mixed forest: Implications for seedling growth. Ecology, 72(1): 12-16
    Blazier MA, Hennessey TC, Lynch TB, et al. 2002. Comparison of branch biomass relationships for North Carolina and Oklahoma/Arkansas loblolly pine seed sources growing in southeastern Oklahoma. Forest Ecol Manag, 159: 241-248
    Blomfield J, Vogt KA, Wargo PM. 1996. Tree root tumover and senescence. In: Waisel Y, Eshel A, Katkafi U eds. Plant roots: the hidden half. 2nd ed. New York: Marcel Dekker. 363-382
    Bohm W, Maduakor H, Taylor HM. 1977. Comparison of five methods for characterizing soybean rooting density and development. Agron J, 69: 415-419
    Bolin B, Sukumar R. 2000. Global perspective. In: Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ. (Eds.), Land Use, Land-Use Change, and Forestry. A Special Report of the IPCC. Cambridge Univ. Press, Cambridge, pp. 23-51
    Botkin DB, Woodwell GM, Tempel N. 1970. Forest productivity estimated from carbon dioxide uptake. Ecology, 51: 1057-1060
    Brown S. 1997. Los bosques y el cambio climatio: el papel de los terrenos forestales como sumideros de carbono. In Actas del XI Congreso Munidal Forestal: Recursos Foretales y Arbores.Vol 1.Antalya Turkia 13-22 October of 1977
    Buchmann N. 2000. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol Biochem, 32: 1625-1635
    Burke MK, Rayna1 DJ. 1994. Fine root phenology, production and turnover in a northern hardwood forest ecosystem. Plant Soil, 162: 135-146
    Burton AJ, Pregitzer KS, Hendrick RL. 2000. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 125: 389-399
    Caldwell MM, Richards JD. 1986. Competing root systems: morphology and models of absorption. In: Givnish TJ (Ed) on the economy of plant form and function (pp 251-273). Cambridge University Press. Cambridge. UK
    Caldwell MM, White RS, Moore RT. 1977. Carbon balance, productivity, and water use of cold-winter desert shrub communities dominated by C3 and C4 species. Oecologia, 29: 275-300
    Callaway RM, Delucia FH. 1994. Biomass allocation of mountain and desert ponderosa pine: an analog for response to climate change. Ecology, 75: 1474-1481
    Casals P, Romanya J, Cortina J, et a1. 2000. CO2 efflux from a Mediterranean semi-arid forest soil I. Seasonality and effects of stoniness. Biogeochemistry, 48: 261-281
    Chapin FS III. 1980. The mineral nutrition of wild plants. Annu Rev Ecol Syst, 11: 233-260
    Chew RM, Chew AE. 1965. The primary productivity of a desert shrub (Larrea tridentata). Ecol Monogr, 35(4): 355-375
    Coleman DC. 1976. A review of root production processes and their influence on soil biota in terrestrial ecosystems. In: Mac-Fadyen JM (ed.). The role of terrestrial and aquatic organisms in decomposition processes. Blackwell, Oxford
    Comeau PG, Kimmins JP. 1989. Above-and belowground biomass and production of lodge pole pine on sites with differing soil moisture regimes. Can J Forest Res, 19: 447 454
    Conant RT, Klopatek JM, Malin RC, et al. 1998. Carbon pools and fluxes along an environmental gradient in northern Arizona. Biogeochemistry, 43: 43-61
    Conant RT, Klopatek JM, Klopatek CC. 2000. Environmental factors controlling soil respiration in three semiarid ecosystems. Soil Sci Soc Am J, 64: 383-390
    Craine MJ, Wedin DA, Chapin FS. 1999. Predominance of ecophydiological controls on soil CO2 flux in a Minnesota grassland. Plant Soil, 207: 77-86
    Dablman RD, Kucera CL. 1965. Root productivity and turnover in native prairie. Ecology, 46: 84-89
    Davidson EA, Verchot LV, Cattanio JH, et al. 2000. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48(1): 53-69
    Dean TJ, Long JN. 1986. Variation in sapwood area relations within two stands of lodgepole pine. For Sci, 32: 749-758
    Dobrowolski JP, Caldwell MM, Richards JH. 1990. Basin hydrology and plant root systems. In: Osmond CB, Pitelka LF, Hidy GM, eds. Plant biology of the basin and range. Ecological studies 80. Berlin, Germany: Springer-Verlag, 243-292
    Dorr H, Munnich KO. 1987. Annual variation in soil respiration in selected areas of temperate zone. Tellus, 39B: 114-121
    Ehleringer JR, Mooney HA. 1982. Productivity of desert and Mediterranean-Climate Plants. Pp. 205-226. In: Lange OL, Nobel PS, Osmond LB and Ziegler H (eds), Physiological plant ecology IV, Vol. 12. Ecosystem processes: mineral cycling, productivity and man’s influence. Springer-Verlag, Berlin
    Eissenstat DM, Wels CE, Yanai RD, et al. 2000. Building roots in a changing environment: implications for root longevity. New Phytol, 147: 33-42
    Emanuel WR, Shugart HH, Stevenson MP. 1985. Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climatic Change, 7: 29-43
    Emmertt BA, Beier C, Estiarte M, et al. 2004. The response of soil processes to climate change: results from manipulation studies of shrublands across an environmental gradient. Ecosystem, 7: 625-637
    Evenari M, Noy-Meir I, eds Goodall DW. 1985. Hot Deserts and Shrublands, A. Ecosystems of the World, Vol. 12A. Elsevier, Amsterdam
    Fang C, Moncrief JB, Gholz HL, et al. 1998. Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Plant Soil, 205: 135-146
    Field CB, Behrenfeld MJ, Randerson JT, et a1. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281: 237-240
    Fitter AH, Graves JD, Self GK, et al. 1998. Root production, turnover and respiration under two grassland types along an altitudinal gradient: influence of temperature and solar radiation. Oecologia, 114: 20-30
    Flores-Martínez A, Ezcurra E, Sánchez-Colón S.1998. Water availability and the competitive effect of a columnar cactus on its nurse plant. Acta Oecol, 19: 1-8
    Fogel R, Hunt G. 1979. Fungal and arboreal biomass in a western Oregon Douglar-fir ecosystem distribution patterns and turnover. Can J Forest Res, 9: 245-256
    Fownes JH, Harrington RH. 1992. Allometry of woody biomass and leaf area in five tropical multipurpose trees. J Tropical For Sci, 4: 317-330
    Fu CB, An ZS. 2002. Study of aridification in northern China - A global change issue facing directly the demand of nation. Earth Sci Frontiers, (China University of Geosciences. Beijing) 9: 271-275
    Garcia C, Roldan A, Hernandez T. 2005. Ability of different plant species to promote microbiological processes in semiarid soil. Geoderma, 124: 193-202
    Garnier E, Laurent G, Bellmann A, et al. 2001a. Consistency of species ranking based on functional leaf traits. New Phytol, 152: 69-83
    Garnier E, Shipley B, Roumet C, et a1. 2001b. Standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct Ecol, 15: 688-695
    Ghols HL, Vogel SA, Cropper WP. 1991. Dynamics of canopy structure and light interception in Pinus elliottii stands. North Florrida. Ecol Monogr, 6: 33-51
    Gholz HL, Grier CC, Campbell AG, et al. 1979. Equations and their use for estimating biomass and leaf area of Pacific Northwest plants, Res. Paper No. 41, For Res Lab, Oregon State Univ., Corvallis
    Gill RA, Jackson RB. 2000. Global patterns of root turnover for terrestrial ecosystems. New Phytol, 147: 13-31
    Gower ST, Isebrands JG, Sheriff DW. 1995. Carbon allocation and accumulation in conifers. In Resource physiology of conifers. Edited by Smith W and Hinckley TM. Academic Press, San Diego, Calif
    Gower ST, Vogt KA, Grier CC. 1992. Carbon dynamics of Rocky Mountain Douglas-fir: influence of water and nutrient availability. Ecol Monogr, 62: 43-65
    Gómez JA, Giráldez JV, Fereres E. 2001. Rainfall interception by olive trees in relation to leaf area. Agr Water Manage, 49: 65-76
    Greco SA, Cavagaro JB. 2002. Effects of drought in biomass production and allocation in three varieties of Trichloris crinita P. (Poaceae) a forage grass from the arid Monte region of Argentina. Plant Ecol, 164: 125-135
    Grier CC, Running SW. 1977. Leaf area of mature northwestern coniferous forests: relation to site water balance. Ecology, 58: 893-899
    Grime JP. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat, 111: 1169-1194
    Gross LK, Peters AA, Pregitzer KS. 1993. Fine root growth and demographic responses to nutrient patches in four old-field plant species. Oecologia, 95: 61-64
    Haase P, Pugnaire FI, Fernandez EM, et al. 1996. An investigation of rooting depth in the semiarid shrub Retama sphaerocarpa (L) Boiss. By labelling of ground water with a chemical tracer. J Hydrol, 177: 23-31
    Hakkila P. 1975. Bark percentage, basic density, and amount of acetone extractives in stump and root wood. Folia For, 224: 14
    Halpern CB, Miller EA, Geyer MA 1996. Equations for predicting aboveground biomass of plant species in early successional forests of the western Cascade Range, Oregon. Northwest Sci, 70: 306-320
    Harrington RH, Fownes JH. 1993. Allometry and growth of planted versus coppice stands of four fast-growing tropical tree species. Forest Ecol Manag, 56: 315-327
    Harrington RH, Fownes JH. 1995. Radiation interception and growth of planted and coppice stands of four fast growign tropical trees. J Appl Ecol, 32: 1-8
    Hastings SJ, Oechel WC, Muhlia-melo A. 2005. Diurnal, seasonal and annual variation in the net ecosystem CO2 exchange of a desert shrub community (Sarcocaulescent) in Baja California, Mexico. Global Change Biol, 11: 927-939
    Haynes BE, Gower ST. 1995. Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiol, 15: 317-325
    Helmisaari HS, Makkonen K, Kellom?ki S, et al. 2002. Below- and above-ground biomass, production and nitrogen use in Scots pine stands in eastern Finland. Forest Ecol Manage, 165: 317-326
    Hendrick RL, Pregitzer KS. 1996. Applications of minirhizotrons to understand root function in forests and other natural ecosystems. Plant Soil, 185: 293-304
    Hendrick RL, Pregitzer KS. 1993. Patterns of fine root mortality in two sugar maple forests. Nature, 361: 59-61
    Hendricks JJ, Aber JD, Nadelhofer KJ. 2000. Nitrogen controls on fine root substrate quality in temperate forest ecosystems. Ecosystems, 3: 57-69
    Hendricks JJ, Nadelhofer KJ, Aber JD. 1993. Patterns of fine root mortality in two sugar maple forests. Nature, 361: 59-61
    Houghton JT, Ding Y, Griggs DJ, et al. 2001. IPCC 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, New York
    Hsiao TC, Acevedo E. 1974. Plant responses to water deficits, water use efficiency, and drought resistance. Agr Meteorol, 14: 59-84
    Huenneke LF, Anderson JP, Remmenga M. et al. 2002. Desertification alters patterns of aboveground net primary production in Chihuahuan ecosystems. Global Change Biol, 8: 247-264
    Huxley JS. 1936. Terminology of relative growth. Nature (London), 137: 780-781
    Ishii H, Ford ED, Boscolo ME, et al. 2002. Variation in specific needle area of old-growth Douglas-fir in relation to needle age, within-crown position and epicormic shoot production. Tree Physiol, 22: 31-40
    Janssens IA, Sampson DA, Curiel-Yuste J, et al. 2002. The carbon cost of fine root turnover in a Scots pine forest. Forest Ecol Manag, 168: 231-240
    Jiménez-Lobato V, Valverde T. 2006. Population dynamics of the shrub Acacia bilimekii in a semi-desert region in central Mexico. J Arid Environ, 65: 29-45
    Joslin JD, Wolfe MH, Hanson PJ. 2000. Effect of altered water regimes on forest root systems. New Phytol, 147: l17-129
    Kandiannan K, Kailasam C, Chandaragiri KK. et al. 2002. Allometric model for leaf area estimation in black pepper (Piper nigrum L.). J Agron Crop Sci, 188: 138-140
    Keddy PA. 1989. Effects of competition from shrubs on herbaceous wetland plants: a four-year field experiment. Can J Forestry Res, 67: 708-716
    Keyes MR, Grier CC. 1981. Above- and belowground net production in 40-year-old Douglas-?r stands on low and high productivity sites. Can J For Res, 11: 599-605
    King JS, Albaugh TJ, Allen HL, et al. 2002. Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytol, 154: 389-398
    Knapp AK, Smith MD. 2001. Variation among biomass in temporal dynamics of aboveground primary production. Science, 291: 481-484
    Kolesnikov VA. 1968. Cyclic renewal of roots in fruit plants.In: Chilarov LN et a1. Methods of Productivity Studies in Root Systems and Rhizosphere Organisms, Nanka: Leningrad, 102-106
    Kucera CI, Kirkham DR. 1971. Soil respiration studies in tallgrass prairie in Missourt. Ecology, 52: 912-915
    Lauenroth WK. 2000. Methods of estimating belowground net primary production. In: Sala OE, editor. Methods in ecosystem science. New York: Springer-Verlag. p 58-71
    Lauenroth WK, Sala OE. 1992. Long-term forage production of North American shortgrass steppe. Ecol Appl, 2: 397–403
    Li XR, Ma FY, Long LQ, et al., 2001. Soil water dynamics under sand-fixing vegetation in Shapotou area. Journal of Desert Research, 21(3): 217-222
    Linder S. 1985. Potential and actual production in Australian forest stands. In Landsberg JJ and Parson W (eds). Research for Forest Management. Commonwealth Scientific and Industrial Research Organization, Melbourne, Australia, pp. 11-35
    Liu XZ, Wan SQ, Su B, et a1. 2002. Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem. Plant Soil. 240: 213-223
    Lodhiyal N, Lodhiyal LS. 2003. Biomass and net primary of Bhabar Shisham forests in central Himalaya, India. Forest Ecol Manag, 176: 217-235
    Long SP, Garcia ME, Imbamba SK, et al. 1989. Primary productivity of natural grass ecosystems of the tropics: a reappraisal. Plant Soil, 115: 155-166
    Lopez-Bermudez F, Albaladejo J. 1990. Factores ambientales en la degradacio′n del suelo en el a′rea mediterra′nea. In: Albaladejo J, Stocking MA, Diaz E (Eds.), Soil Degradation and Rehabilitation in Mediterranean Environmental Conditions. CSIC, Madrid, pp. 123-128
    Lundegardh H. 1927. Carbon dioxide evolution of soil and crop growth [J]. Soil Sci, 23: 417-453 Luo TX, Pan YD, Ouyang H, et al. 2004. Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau. Global Ecol Biogeogr, 13: 345-358
    Lloyd J, Taylor JA. 1994. On the temperature dependence of soil respiration. Funct Ecol, 8: 315-323
    MacMahon JA, Wagner FH. 1985. The Mojave, Sonoran and Chihuahuan desert of North America. Pp. 105-202. In: Evenari M, Noy-Meir I (eds), Hot desert and arid shrublands. Ecosystems of the world 12A. Elsevier, Amsterdam
    Maestre FT. 2003. Small-scale spatial patterns of two soil lichens in semi-arid Mediterranean steppe. Lichenologist, 35: 71-81
    Maestre FT, Cortina J. 2003. Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe. Appl Soil Ecol, 23:199-209
    Majdi H, Nalund JE. 1996. Does liquid fertilization affect fine root dynamics and lifespan of mycorrhizal sbort roots. Plant Soil, 185: 305-309
    Marshall JD, Waring RH. 1985. Predicting fine root production and turnover by monitoring root starch and soil temperature. Can J For Res, 15: 781-800
    Martínez F, Merino O, Martín A, et al. 1998. Belowground structures and production in a Mediterranean sand dune shrub community. Plant Soil, 201: 209-216
    McCrady RL, Jokela EJ. 1998. Growth phenology and crown structure of selected loblolly pine families planted at two spacings. Forest Sci, 42: 46-57
    Michael AC, Sandra B, Eileen EH, et al. 1997. Root biomass allocation in the upland forests. Oecologia, 111: 1-11
    Monk CD. 1966. An ecological significance of evergreenness. Ecology, 47: 504-505
    Murach D, Parth A. 2000. Assessment of methods used in Toot ecological field studies of the research center forest ecosystems in Goettingen. Goettlngen
    Nadelhoffer KJ, 2000. The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytol, 147: 131-139
    Nadelhoffer KJ, Aber JD, Melillo JM. 1985. Fine root, net primary productivity, and soil nitrogen availability: a new hypothesis. Ecology, 66: 1377-1390
    Nadelhoffer KJ, Raich JW. 1992. Fine root production estimates and belowground carbon allocation in forest ecosystem. Ecology, 73: 1139-1147
    Nadezhdina N, Tatarinov F, Ceulemans R. 2004. Leaf area and biomass of Rhododendron understory in a stand of Scots pine Forest Ecol Manag, 187: 235-246
    Návar J, Nájera J, Jurado E. 2001. Preliminary estimates of biomass growth in the Tamaulipan thornscrub in North-eastern Mexico. J Arid Environ. 47: 281-290
    Návar J, Nájera J, Jurdo E. 2002a. Biomass estimation equations in the Tamaulipan thornscrub of north-eastern Mexico, J Acid Environ, 52: 167-179
    Návar J, Méndez E, Dale V. 2002b. Estimating stand biomass in the Tamaulipan thornscrub of northeastern Mexico. Ann For Sci, 59: 813-821
    Neill C.1992. Comparison of soil coring and ingrowth methods for measuring belowground production. Ecology, 73(5): 1918-1921
    Ni J. 2004. Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecol, 174: 217-234
    Niklas KJ. 1994. Plant Allomtry. The Scaling of Form and Process. University of Chicago Press, Chicago
    Niklas KJ. 1995. Size-dependent allometry of tree height, diameter and trunk taper. Ann Bot, 75: 217-227
    Northup BK, Zitzer SF, Archer S, et al. 2005. Above-ground and carbon and nitrogen content of woody species in a subtropical thornscrub parkland. J. Arid Environ. 62: 23-43
    Ohmann LF, Grigal DF, Rogers LL. 1981. Estimating plant biomass for undergrowth species of northeastern Minnesota forest communities. General Technical Report NC-61. USDA Forest Service, North Central Forest Experimental Station, St. Paul, MN, USA, 10 pp.
    Orchard VA and Cook FJ.1983. Relationship between soil respiration and soil moisture. Soil Biol. Biochem, 22: 153-160
    Ostertag R. 1998. Belowground effects of canopy gaps in a tropical wet forest. Ecology, 79: 1294-1304
    Padrón E, Návarro RM. 2004. Estimation of above-ground biomass in naturally occurring populations of Prosopsis pallida (H. & B. ex. Wild. ) H.B.K. in the north of Peru.. J Arid Environ, 56: 283-292
    Pavón NP, Oscar B. 2000. Root distribution, standing crop biomass and belowground productivity in a semidesert in México. Plant Ecol, 146: 131-136
    Peek JM. 1970. Relation of canopy area and volume to production of three woody species. Ecology, 51: 1098-1101
    Peek MS, Joshua LA, Ivans CY, et al. 2005. Fine root distributions of three co-occurring Great Basin species of different life form. New Phytol, 165: 171-180
    Peinetti HR, Menezes RSC, Coughenour MB. 2001. Changes induced by elk browsing in the aboveground biomass production and distribution of willow (Salix monticola Bebb): their relationships with plant water, carbon, and nitrogen dynamics. Oecologia, 127: 334-342
    Persson H. 1978. Root dynamics in a young Scots pine stand in central Sweden. Oikos, 30: 508-519
    Persson H. 1983. The distribution and productivity of fine roots in boreal forests. Plant Soil, 71: 87-101
    Peterjohn WT, Melillo JM, Steudler PA, et al. 1994. Response of trace gases fluxes and N availability to experimentally elevated soil temperatures. Ecol Appl, 4: 617-625
    Pitman JI. 1989. Rainfall interception by bracken in open habitats-relations between leaf area, canopy storage and drainage rate. J Hydrol, 105: 317-334
    Poorter H, De Jong R. 1999. A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15habitats differing in productivity. New phytol, 143: 163-176
    Post WM, Emanuel WR, Zinke PJ, et al. 1982. Soil carbon pools and world life zones. Nature, 298(8): 156-159
    Pregitzer KS, Hendrick RL, Fogel R. 1993. The demography of fine roots in response to patches of water and nitrogen. New Phytol, 125: 575-580
    Pregitzer KS, King JS, Burton AJ, et al. 2000. Responses of tree fine roots to temperature. New Phytol, 147: 105-115
    Pregitzer KS, Zak DR, Curtis PS. 1995. Atmospheric CO2 soil nitrogen and turnover of fine roots. New Phytol, 189: 579-585
    Qi F, Cheng GD, Mikami M. 2001. The carbon cycle of sandy lands in China and its global significance. Climatic Change, 48: 535-549
    Qi J, Marshell JD, Mattson KG. 1994. High soil carbon dioxide concentrations inhibit root respiration of Douglas fir. New Phytol, 128: 422-435
    Raich JW. 1998. Aboveground productivity and soil respiration in three Hawaiian rain forests. Forest Ecol Manag, 107: 309-318
    Raich JW, Nadelhoffer KJ. 1989. Belowground carbon allocation in forest ecosystems: global trends. Ecology, 70: 1346-1354
    Raich JW, Schlesinger WH. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44: 81-89
    Raich JW, Tufekcioglu A. 2000. Vegetation and soil respiration: Correlations and controls. Biogeochemistry, 48: 71-90
    Reich PB, Koike T, Gower ST, et al. 1995. Causes and consequences of variation in conifer leaf life-span. In Ecophysiology of Conifers (Smith WK and Hinckley TM Eds.), Academic, San Diego, CA, pp. 225-254
    Reinke JJ, Adriano DC, Mcleod KW. 1981. Effects of litter alteration on carbon dioxide from a South Carolina pine forest floor. Soil Soc Am J, 45: 620-623
    Research groups of “Study on Combating Desertification/Land Degradation in China”. 1998. Study on Combating Desertification/ Land Degradation in China. China Environmental Science Press, Beijing, pp. 69-75
    Rey A, Pegoraro E, Tedeschi V, et al. 2002. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global Change Biol, 8: 851-866
    Reynolds ERC. 1970. Root distribution and the cause of its spatial variability in Pseudutsuga taxifolia. Plant Soil, 32: 501-517
    Rosacker LL, Kieff TL. 1990. Biomass and adenylate energy charge of a grassland soil during drying. Soil Biol Biochem, 22: 1121-1127
    Ruess RW, Van Cleve K, Yarie J, et al. 1996. Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior. Can J For Res, 26: 1326-1336
    Ruijter FJ, Veen BW, Van Oijen M. 1996. A comparison of soil core sampling and minirhizatrons to quantify root development of field-grown potatoes. Plant Soil, 182: 301-312
    Running SW, Nemani RR, Peterson LE, et al. 1989. Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology, 70: 1090-1101
    Runnstr?m MC. 2000. Is Northern China winning the battle against desertification? –Satellite remote sensing as a tool to study biomass trends on the Ordos Plateau in Semiarid China. Ambio, 29(8): 468-476
    Russell CA, Voroney RP. 1998. Carbon dioxide efflux from the floor of a boreal aspen forest. I. Relationship to environmental variables and estimates of C respired. Can J Soil Sci, 78: 301-310
    Rytter RM, Rytter L. 1997. Growth decay and turnover rates of fine roots of basket willows. In: Fine-root production and Carbon and Nitrogen Allocation Swedish Univ Agric Sci, Uppaala Sala OE, Parton WJ, Joyce LA, Lauenroth WK. 1988. Primary production of the central grassland region of the United States. Ecology, 69: 40-45
    Santantonio D. 1978. Seasonal dynamics of fine roots in mature stands of Douglas fir of different water regions-A preliminary report. In: Reidacker A, et a1. Symposium of Root Physiology and Symbiosis, Seichamps. France: Centre Nationale de Recherches Forestieres. 190-203
    Santantonio D. 1982. Production and turnover of fine roots of mature Douglas-fir in relation to site. Doctor thesis, Oregon State University, School of Forestry, Corvallis, Oregon, 93
    Santantonio D, Hermann RK. 1985. Standing crop, production and turnover of fine roots on dry moderate and wet sites of mature Douglas fir in western Oregon. Annuals Deus Sciences Foresters. 42: l13-142
    Santantonio D, Hermann RK, Overton WS. 1977. Root biomass studies in forest ecosystems. Pedobiologia, 17: 1-31
    Sánchez-Gallén I, Alvarez-Sánchez J. 1996. Root productivity in a lowland tropical rain forest in Mexico. Vegetatio, 123: 109-115
    Saterson KA, Vitousek PM. 1984. Fine-root biomass and nutrient cycling in Aristida stricta in a North Carolina coastal plain savanna. Can J Bot, 62: 823-829
    Schlesinger WH. 1990. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature, 348: 232-234
    Schimel DS, Braswell BH, Holland EA, et a1. 1994. Climatic edaphic and biotic controls over storage and turnover of carbon in soils. Global Biogeochem Cycle, 8(3): 279-293
    Schlesinger WH. 1985. The formation of caliche in soils of the Mojave Desert, California. Geochimica et Cosmochimica Acta, 49: 57-66
    Schlesinger WH, Pilmanis AM. 1998. Plant–soil interactions in desert. Biogeochemistry, 42: 169-187
    Schoettle AW, Fahey TJ. 1994. Foliage and fine root longevity of pines. Ecol Bull, 43: 136-153
    Scott RK, Jaggard KW. 1993. Crop physiology and agronomy. In: Cooke DA, Scott RK (ed.): The Sugar Beet Crop: Science into Practice. Pp. 179-237. Chapman & Hall, Cambridge University Press, Cambridge
    Scurlock JMO, Johnson K, Olson RJ. 2002. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biol, 8: 736-753
    Sellin A. 1994. Sapwood-heartwood proportion related to tree diameter, age, and growth rate in Picea abies. Canad J For Res, 24: 1022-1028
    Shelburne VB, Hedden RL, Allen RM. 1989. The relationship of leaf area to sapwood area in loblolly pine as affected by site, stand basal area, and sapwood permeability. USDA For. Ser. Gen. Tech. Rep. So-74, 75-80
    Shigo AL. 1984. Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves. Annu Rev Phytopathol, 22: 189-214
    Shipley B. 2002. Trade-off between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Funct Ecol, 16: 682-689
    Sikora LJ, McCoy JL. 1990. Attempts to determine available carbon in soils. Biol Fert Soils, 9: 19-24
    Sims PL, Singh JS, Lauenroth WK. 1978. The structure and function of the western north American grasslands. I. Abiotic and vegetational characteristics. J Ecol, 66: 251-285
    Singh G. 2004. Influence of soil moisture and nutrient gradient on growth and biomass production of Calligonum polygonoides in Indian desert affected by surface vegetation. J Arid Environ, 56: 541-558
    Singh JS, Gupta SR. 1977. Plant decomposition and soil respiration in terrestrial ecosystem. Bot Rev, 43: 449-528
    Smith FW, Long JN.1989. The influence of canopy architecture on stemwood production and growth efficiency of Pinus contorta var.Latifolia. J Appl Ecol, 26: 681-691
    Smith WB, Brand GJ. 1983. Allometric equations for 98 species of herbs, shrubs, and small trees. USDA For Serv Res Note NC-299
    Sparling GP. 1981. Microcalorimetry and other methods to assess biomass and activity in soil. Soil Biol Biochem, 13: 93-98
    Steele SJ, Gower ST, Vogel JG, et al. 1997. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba. Can Tree Physiol, 17: 577-587
    Stone LR, Teare ID, Nickell, CD, et al. 1976. Soybean root development and soil water depletion. Agron J, 68: 677-680
    Stoyan H, De-Polli H, Bohm S, et al. 2000. Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant Soil, 222: 203-214
    Su YZ, Zhao HL, Zhang TH, et al. 2004. Soil properties following cultivation and non-grazing of a semi-arid sandy grassland in northern China. Soil Till Res, 75: 27-36
    Tateno R, Hishi T, Takeda H. 2004. Above- and belowground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen. Forest Ecol Manag, 193: 297-306
    Tierney GL, Fahey TJ. 2001. Evaluating minirhizotron estimates of fine root longevity and production in the forest floor of a temperate broadleaf forest. Plant Soil, 229: 167-176
    Tilman D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton, NJ
    Townsend AR, Vitousek PM, Desmarais DJ, et a1. 1997. Soil carbon pool structure an d temperature sensitivity inferred using CO2 and 13CO2 incubation fluxes from five Hawaiian soils. Biogeochemistry, 38: l-l7
    Tripathi SK, Singh KP. 1994. Productivity and nutrient cycling in recently harvested and mature bamboo savannas in dry tropical region in India. J Appl Ecol, 31: 109-124
    Tsialtas JT, Maslaris N. 2005. Leaf area estimation in a sugar beet cultivar by linear models. Photosynthetica, 43(3): 477-479
    Turner NC, Begg J. 1976. Responses of pasture plants to water deficits. In: Wilson JR. (ed.), Plant Relations in Pastures.CSIRO, East Melbourne, Australia, pp. 50-66
    Verwijst T, Wen DZ. 1996. Leaf allometry of Salix viminalis during the first growing season. Tree Physiol, 16: 655-660
    Vogt KA, et al. 1983. Production, turnover and nutrient dynamics of above-and belowground detritus of world forests. Adv Ecol Res, 15: 303-378
    Vogt KA, Grier CC, Gower ST, et al. 1986. Overestimation of net root production: a real or imaginary problem? Ecology, 67: 577-579
    Vogt KA, Vogt DJ, Blioomfield J. 1998. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil, 200: 71-89
    Vose JM, Dougherty PM, Long JN, et al.1994. Factors influencing the amount and distribution of leaf area of pine stands. Ecol Bull, 43: 102-114
    Wagner RG, Ter-Mikaelian MT. 1999. Comparison of biomass component equations for four species of northern coniferous tree seedlings. Ann For Sci, 56: 193-199
    Wang QS, Liang YY. 1997. Dynamics of Artemisia ordosica community plant diversity. J desert Res, 17(2):159-163
    Wang RZ. 2005. Demographic variation and biomass allocation of Agropyron cristatum grown on steppe and dune sites in the Hunshandake Desert, North China. Grass and Forage Science, 60: 99-102
    Wang RZ, Ripley EA, Zu YG, et al. 2001. Demography of reproductive and biomass allocation of grassland and dune Leymus chinensis on the Songnen plain, northeastern China. J Arid Environ, 49: 289-299
    Wardle DA. 1992. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews, 67: 321-358
    Waring RH. 1983. Estimating forest growth and efficiency in relation to canopy leaf area. Adv Ecol Res, 13: 327-354
    Watts WR, Neilson RE, Jarvis PG. 1976. Photosynthesis in Sitka spruce (Picea Stchensis [Bong.] Carr.). Ⅶ . Stomatal conductance and 14CO2 uptake in a forest canopy. J Appl Ecol, 13: 623-638
    Whittaker RH. 1965. Branch dimensions and estimation of branch production. Ecology, 46: 365-370
    Wildung RE, Garland TR, Buschom RI. 1975. The interdependent effect of soil respiration rate and plant root decomposition in arid grassland soils. Soil Biol Biochem, 7: 373-378
    Wilson JW, Agnew ODQ. 1992. Positive-feedback switches in plant communities. Adv Ecol Res, 20: 265-336
    Wofsy SP, Goulden MI, Munger JW, et al. 1993. Net exchange of CO2 in a mid-latitude forest. Science, 260: 1314-1317
    Wu KH. 1997. Root production and turnover and its contribution to nutrients cycling in two beech (Fagus sylvatica L.) ecosystems. Goettingen: Ph.D thesis, University of Goettingen, 1999
    Wu KH. 1999. Fine root production and turnoff and its contribution to nutrients cycling in two beech (Fagus sylvarica L.) ecosystems. Goettingen: Ph.D thesis, University of Goettingen Xiao CW, Ceulemans R. 2004a. Allometric relationships for below- and aboveground biomass of young Scots pines. Forest Ecol Manag, 3: 177-186
    Xiao CW, Curiel Yuste J, Janssens IA, et al. 2003. Above- and belowground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiol, 23: 505-516
    Xiao CW, Ceulemans R. 2004b. Allometric relationships for needle area of different needle age classes in young Scots pines: needles, branches and trees. Forestry, 77(5): 369-382
    Xu M, Qi Y. 2001. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biol. 7: 667-677
    Yoshikawa K, Li S. 1989. Stand structure of S. vulgaris in the Mu-us desert, China. In Proceedings of 1989 International Symposium for Japan and China Joint Research. pp 83-87. Inner Mongolian Research Group
    鲍士旦. 2000. 土壤农化分析. 第三版. 中国农业出版社.
    常顺利, 杨洪晓, 葛剑平. 2005. 净生态系统生产力研究进展与问题. 北京师范大学学报(自然科学版), 41(5): 517-521
    常学礼, 邬建国. 1998. 科尔沁沙地景观格局特征分析. 生态学报, 18(3): 225-336
    陈全胜, 李凌浩, 韩兴国, 等. 2003. 水分对土壤呼吸的影响及机理. 生态学报, 23(5): 972-978
    陈佐忠, 黄德华. 1988. 内蒙古锡林河流域羊草草原与大针茅草原地下部分生产力和周转值的测定. 草原生态系统研究, 科学出版社, 2: 132-139
    陈仲新, 张新时. 1996. 毛乌素沙化草地景观生态分类与排序的研究. 植物生态学报, 20(5): 423-437
    程晓莉, 安树青, 陈兴龙, 等. 2001. 鄂尔多斯草地荒漠化过程与植被生物量变迁的关系. 林业科学, (37)2: 13-20
    崔望诚. 1991. 半荒漠地带的油蒿群落. 中国草地, 2: 50-52
    崔骁勇, 刘世荣, 赵广东, 等. 2003. 甘薯民勤绿洲-流沙过渡带植物群落光合和呼吸特征的比较研究. 林业科学, 39(3): 6-14
    单建平, 陶大立, 王渺. 1993. 长白山阔叶红松林细根周转的研究. 应用生态学报, 6(1): 7-10
    方精云, 等. 1996. 中国陆地生态系统碳库. 王如松等编著. 现代生态学的热点问题研究, 北京: 中国科学技术出版社, 251-267
    方精云, 刘国华, 徐嵩龄. 1996. 我国森林植被的生物量和净生产量. 生态学报, 16(5): 497-508
    房秋兰, 沙丽清. 2005. 西双版纳热带季节雨林细根周转的研究. 山地学报, 23(4): 488-494
    何炎红, 田有亮, 叶冬梅, 等. 2005. 白剌地上生物量关系模型及其与叶面积关系的研究. 中国沙漠, 25(4): 541-546
    贺金生, 王政权, 方精云. 2004. 全球变化下的地下生态学: 问题与展望. 科学通报, 49(23): 1226-1233
    胡中民, 樊江文, 钟华平, 等. 2005. 中国草地地下生物量研究进展. 生态学杂志, 24(9): 1095-1101
    黄建辉, 韩兴国, 陈灵芝. 1999. 森林生态系统根系生物量研究进展. 生态学报, 19(2): 270-277
    贾宝全, 蔡体久, 高志海, 等. 2002. 白剌灌丛沙包生物量的预测模型. 干旱区资源与环境, 16(1): 96-99
    李宝光, 黄芳. 2004. 植物叶片面积的测定方法. 山东理工大学学报(自然科学版), 18(4): 94-96
    李博. 2000. 生态学. 北京: 高等教育出版社, 208
    李博, 高玉宝. 1990. 鄂尔多斯高原植被. 内蒙古鄂尔多斯高原自然资源与环境研究, 科学出版社
    李根前, 黄宝龙, 唐德瑞, 等. 2001. 毛乌素沙地中国沙棘无性系生长格局与生物量分配. 西北农业大学学报, 29(2): 51-55
    李金花, 李镇清. 2002. 不同放牧强度下冷蒿、星毛委陵菜的形态可塑性及生物量分配格局. 植物生态学报, 26(4): 435-440
    李培芝, 范世华, 王力华, 等. 2001. 杨树细根及草根的生产力与周转的研究. 应用生态学报, 12(6): 829-832
    李香真, 曲秋皓. 2002. 蒙古高原草原土壤微生物量碳氮特征. 土壤学报, 39(1): 97-104
    李英年. 1998. 高寒草甸植物地下生物量与气象条件的关系及周转值分析. 中国农业气象, 19(1): 36-38
    李玉霖, 崔建垣, 苏永中. 2005. 不同沙丘生境主要植物比叶面积和叶干物质含量的比较. 生态学报, 25(2): 304-311
    廖利平, 陈楚莹, 张家武. 1995. 杉木, 火力楠纯林及混交林细根周转的研究. 应用生态学报, 4(3): 241-245
    刘关君, 王大海, 郭晓瑞, 等. 2004. 植物叶面积的快速精确测定方法. 东北林业大学学报, 32(5): 82-83
    刘建军, 王得祥. 2002. 秦岭林区天然油松, 锐齿栎林细根周转过程与能态变化. 林业科学, 38(4): 1-6
    刘金祥. 1996. 油蒿群落种群分布及其初级生产力动态研究. 草业学报, 5(4): 23-29
    刘金祥, 仇保铭, 张志谦, 等. 1998. 油蒿群落初级生产力动态规律研究. 西北植物学报, 18(1): 116-123
    刘绍辉, 方精云. 1997. 土壤呼吸的影响因素及全球尺度下温度的影响. 生态学报, 17(5): 469-476
    刘士刚, 朴顺姬, 安卯柱, 等. 2003. 不同类型沙地上差巴嘎蒿细根的分布状态. 生态学报, 27(5): 684-689
    鲁如坤. 1999. 土壤农业化学分析方法. 中国农业科技出版社 MGR坎内尔(熊文愈译). 1981. 树木生理与遗传改良. 北京:中国林业出版社, 49-50
    牛建明, 李博. 1990. 鄂尔多斯高原植被. 见: 李博主编. 内蒙古鄂尔多斯高原自然资源与环境研究. 北京: 科学出版社. 78-125
    彭少麟, 李跃林, 任海, 等. 2002. 全球变化条件下的土壤呼吸效应. 地球科学进展, 17(5): 705-713
    朴世龙, 方精云, 贺金生, 等. 2004. 中国草地植被生物量及其空间分布格局. 植物生态学报, 28(4): 491-498
    任安芝, 高玉葆, 王金龙. 2001. 不同沙地生境下黄柳(Salix gordejevii)的根系分布和冠层结构特征. 生态学报, 21(3): 399-404
    邵玉琴, 赵吉. 2000. 内蒙古库布齐沙带东段油蒿固定沙丘土壤微生物数量的垂直分布研究. 内蒙古大学学报自然科学版, 31(2): 198-200
    邵玉琴, 赵吉, 包青海, 等. 2002. 沙坡头固定沙丘结皮层的微生物区系动态. 中国沙漠, 22(3): 298-303
    邵玉琴, 赵吉, 廖仰南. 1996. 内蒙古库布齐东段油蒿根际土壤微生物类群数量的研究. 内蒙古大学学报(自然科学版), 27(1): 98-102
    沈国舫, 贾黎明, 翟明普. 1998. 沙地杨树刺槐人工混交林的改良土壤功能及养分互补关系. 林业科学, 34(5): 12-20
    苏永中, 赵哈林. 2002. 土壤有机碳储量、影响因素及其环境效应的研究进展. 中国沙漠, 22(3): 220-228
    苏永中, 赵哈林, 张铜会. 2004a. 不同退化沙地土壤碳的矿化潜力. 生态学报, 24(2): 372-378
    苏永中, 赵哈林, 张铜会, 等. 2004b. 科尔沁沙地不同年代小叶锦鸡儿人工林植物群落特征 及其土壤特性. 植物生态学报, 28(1): 93-100
    孙力安, 刘国斌, 梁一民. 1994. 不同直径土钻测定草地地下生物量方法探讨. 中国草地, 2: 32-35
    孙良英, 张世彪. 1999. 荒漠化土地土壤生产潜力监测方法. 中国沙漠, 19(3): 261-264
    陶波, 曹明奎, 李克让, 等. 2004. 近 20 年中国陆地净生态系统生产力空间格局及其变化. (CERN 第十二次工作会议暨年度学术交流会论文汇编<水分,大气分册>)
    王百群, 吴金水, 吴振海. 2004. 子午岭次生林区植被中有机碳的储量. 西北植物学报, 24(10): 1870-1876
    王俊河, 李艳彩. 1993. 叶形影响求积仪测算叶面积精度的分析研究. 山西林业科技, (3): 43-44
    王乃江, 李占斌, 赵忠, 等. 2002. 淳化县不同立地上刺槐根系的分布系数. 南京林业大学学报, 26(5): 32-36
    王庆锁. 1994. 油蒿, 中间锦鸡儿生物量估测模式. 中国草地, 1: 49-51
    王庆锁, 李博. 1994. 鄂尔多斯沙地油蒿群落生物量初步研究. 植物生态学报, 18(4): 347-353
    王庆锁, 董学军, 陈旭东, 等. 1997. 油蒿群落不同演替阶段某些群落特征的研究. 植物生态学报, 21(6): 531-538
    王仁忠, 李建东. 1995. 松嫩草原碱化羊草草地放牧空间演替规律的研究. 应用生态学报, 6(3): 277-281
    王绍强, 周成虎, 罗承文. 1999. 中国陆地自然植被碳量空间分布特征探讨. 地理科学进展, 18(3): 238-244
    王树功, 黎厦, 周永章. 2004. 湿地植被生物量测算方法研究进展. 地理与地理信息科学, 20(5): 104-109
    王希群, 马履一, 贾忠奎, 等. 2005. 叶面积指数的研究和应用进展. 生态学杂志, 24(5): 537-541
    王涛, 吴薇, 薛娴, 等. 2003. 中国北方沙漠化土地时空演变分析. 中国沙漠, 23(3): 230-235
    王涛, 朱震达, 吴薇. 2002. 中国北部沙漠化. 中国科学(Series D), 45(Supp.): 23-34
    魏小平, 赵长明, 王根轩, 等. 2005. 民勤荒漠化过渡带优势植物地上和地下生物量的预测模型. 植物生态学报, 29(6): 878-883
    吴建国, 张小全, 徐德应. 2003. 六盘山林区几种土地利用方式土壤呼吸时间格局. 环境科学, 24(6): 23-32
    吴玉德, 张鹏. 2005. 基于Mapinfo的树木叶面积测定方法. 林业调查规划, 30(6): 23-24
    西藏自治区土地管理局, 西藏自治区畜牧局. 1994. 西藏自治区草地资源. 北京: 科学出版社
    项文化, 田大伦, 阎文德. 2003. 森林生物量与生产力研究宗述. 中南林业调查规划, 22(3): 58-64
    肖春旺, 周广胜, 赵景柱. 2001. 不同水分条件对毛乌素沙地油蒿幼苗生长和生态的影响. 生态学报, 21(12): 2136-2140
    杨玉盛, 陈光水, 董彬. 2004. 栲天然林和人工林土壤呼吸对干湿交替得响应. 生态学报, 24(5): 593-598
    杨玉盛, 陈光水, 林鹏, 等. 2003. 格氏栲天然林与人工林细根生物量季节动态及净生产力. 生态学报, 23(9): 1719-1730
    雍世鹏, 黄兆华. 1975. 乌审旗天然草场资源和基本草场的建设. 内蒙古乌审旗农业自然资源研究报告
    宇万太, 于永强. 2001. 植物地下生物量研究进展. 应用生态学报, 12(6): 927-932
    张崇邦, 金则新, 科世省, 等. 2003. 七子花土壤微生物数量及呼吸速率的季节动态. 微生物学通报, 30(4): 6-9
    张东秋, 石培礼, 张宪洲. 2005. 土壤呼吸主要影响因子的研究进展. 地球科学进展, 20(7): 778-785
    张海蕾. 1996. 鄂尔多斯油蒿生物量遥感动态监测研究: [中科院植物所硕士论文]. 北京: 中国科学院植物研究所
    张小全, 吴可红, Murach D. 2000. 树木细根生产与周转研究方法评述. 生态学报, 20(5): 875-883
    张新时. 1994. 毛乌素沙地的生态背景及其草地建设的原则与优化模式. 植物生态学报, 18(1): 1-16
    张志山, 谭会娟, 王新平, 等. 2005. 沙漠人工植被区土壤呼吸初探. 中国沙漠, 25(4): 525-528
    章家恩, 廖宗文. 2000. 土壤生态肥力及其诊断指标探讨. 中国生态学会通讯(特刊), 131-133
    赵成义, 宋郁东, 王玉潮, 等. 2004. 几种荒漠植物地上生物量估算的初步研究. 应用生态学报, 15: 49-52
    赵吉, 郭婷, 邵玉琴. 2004. 内蒙古典型草原土壤微生物生物量及其周转与流通量的初步研究. 内蒙古大学学报(自然科学版), 35(6): 673-676
    赵其国, 孙波, 张桃林. 1997. 土壤质量和持续环境I. 土壤质量的定义及评价方法. 土壤, 29(3): 113-120
    赵忠, 李鹏, 王乃江. 2000. 渭北黄土高原主要造林树种根系分布特征的研究. 应用生态学报, 11(I): 37-39
    朱春全, 等. 1995. 集约与粗放经营杨树人工林叶片光-光合作用模型. 王世绩主编, 杨树研究进展, 北京: 中国林业出版杜. 38-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700