中国葡萄酒中氨基甲酸乙酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨基甲酸乙酯(Ethyl Carbamate, EC)早在1943年就被证实是一种致癌物质,研究表明,对于啮齿类动物,氨基甲酸乙酯是一种多位点致癌物,可导致肺癌、淋巴癌、肝癌和皮肤癌等疾病,国际癌症研究所把氨基甲酸乙酯对人类的致癌毒性归为2B群。包括葡萄酒在内的发酵饮料和食品中含有微量的氨基甲酸乙酯。加拿大的卫生与预防部门规定佐餐葡萄酒中氨基甲酸乙酯含量不得超过30μg/L;美国食品和药品管理局(US FDA)规定1988年以后生产的佐餐葡萄酒(酒精度≤14%v/v)中氨基甲酸乙酯含量不能超过15μg/L。
     论文研究的目的在于建立葡萄酒中氨基甲酸乙酯检测的标准方法,并用该方法对我国葡萄酒中氨基甲酸乙酯的含量进行初步调查,提出我国葡萄酒中氨基甲酸乙酯含量的限量指标建议值,并对葡萄酒中氨基甲酸乙酯的质量控制进行初步探索。
     论文主要对以下内容进行了研究:待测葡萄酒样品经预处理后,结合气相色谱-质谱联用的方法对其中氨基甲酸乙酯的含量进行了检测。分别对液/液萃取(Liquid/liquid extraction, LLE)、固相萃取柱萃取(Solid phase extration, SPE)、固相微萃取(Solid phase microextration, SPME)及固/液萃取(Solid/liquid extraction, SLE)四种前处理方法的最佳萃取参数、准确度和精确度进行了研究,并建立葡萄汁中的精氨酸含量的检测方法。通过以上研究,得到如下结果:
     液/液萃取法萃取葡萄酒样品中氨基甲酸乙酯时的最佳参数为:酒样溶液的pH为自然pH, KCl用量为16 g (40%),二氯甲烷用量为3×100 mL。方法的检出限为8.0μg/L,回收率在76.56-80.39%之间,相对标准偏差在4.42-9.82%。液/液萃取法用于葡萄酒中氨基甲酸乙酯含量的定量检测,无需贵重仪器,但乳化现象严重,操作系统误差较大,方法的精密度及准确度均较低。
     固相微萃取方法萃取的最佳参数为:在搅拌速率800 rpm,溶液平衡30 min的平衡条件下,萃取头选用70μm CW/DVB,NaCl浓度为20-25%,溶液pH10.2,40℃下萃取35 min后,取出萃取头,插入气相色谱-质谱联用的进样口热解析10 min。在此萃取条件下,分析葡萄酒中氨基甲酸乙酯含量的回收率在76.0-84.8%之间,相对标准偏差在6.62-10.95%,检出限8.0μg/L。固相微萃取可以用来检测葡萄酒中氨基甲酸乙酯的含量,方法简便、快速且不需萃取溶剂,是一种环保的样品前处理方法,但方法的精密度和准确度较低。
     固相萃取柱方法萃取的最佳pH为样品溶液的自然pH,二氯甲烷的消耗量为175 mL,方法的回收率为85.76-102.82%,相对标准偏差为4.22-8.20%,方法的检出限为3.0μg/L。固/液萃取方法萃取的最佳pH为样品溶液的自然pH,二氯甲烷的消耗量为70 mL,方法的回收率为82.67-93.39%,相对标准偏差为2.91-6.67%,方法的检出限为2.0μg/L。
     固/液萃取和固相萃取柱萃取方法准确度高、重现性好,应用这两种萃取方法分析葡萄酒中氨基甲酸乙酯含量没有显著性差异(p<0.05)。国际葡萄与葡萄酒组织(OIV)推荐的方法为固相萃取柱方法,方法中应用的试剂之一无水乙醇本身含有氨基甲酸乙酯,因此存在一定缺陷。同时,和固相萃取柱方法相比,固/液萃取方法萃取成本低,无需贵重仪器和设备,消耗有机溶剂量少,是一种经济、环保、快捷、简便的萃取方法。本研究选择固/液萃取方法为葡萄酒中氨基甲酸乙酯含量检测前处理的标准方法。
     用固/液萃取方法对我国61个葡萄酒样品中氨基甲酸乙酯萃取,结合气相色谱-质谱联用分析,结果表明,1997年后生产的葡萄酒中有81.82%的葡萄酒样品中氨基甲酸乙酯含量真实浓度低于15μg/L,参照美国食品和药品管理局、美国葡萄酒研究所和美国酒商协会制定了有关葡萄酒中氨基甲酸乙酯含量的非强制性标准,即1988年以后生产的佐餐葡萄酒(酒精度≤14%v/v)氨基甲酸乙酯含量不能超过15μg/L,因此推荐15μg/L为我国葡萄酒中氨基甲酸乙酯含量限量标准建议值。
     通过对氨基甲酸乙酯含量调查结果分析,1996年生产的干红葡萄酒中氨基甲酸乙酯含量最低为未检出,最高含量为28.6μg/L;干白葡萄酒中氨基甲酸乙酯含量最低为未检出,最高含量为13.9μg/L;干红葡萄酒中氨基甲酸乙酯含量高于干白葡萄酒。不同产区之间生产的葡萄酒中氨基甲酸乙酯含量没有显著性差异;贮藏时间对氨基甲酸乙酯的含量有显著性差异,贮藏时间越长,氨基甲酸乙酯含量越高。
     对部分原酒样品中氨基甲酸乙酯含量进行潜在浓度的检测,结果表明,氨基甲酸乙酯含量的潜在浓度均超过了加拿大对干红和干白葡萄酒中氨基甲酸乙酯真实浓度规定的限制性标准30μg/L。表明我国还应采取有效措施降低葡萄酒中氨基甲酸乙酯的潜在含量。
     葡萄酒中氨基甲酸乙酯的生成与葡萄汁中精氨酸的含量有很大的相关性。葡萄汁中精氨酸在葡萄酒酵母和苹果酸-乳酸菌的代谢下产生氨基甲酸乙酯的前体物质,因此对葡萄汁中精氨酸含量的控制是降低葡萄酒中氨基甲酸乙酯含量的主要途径之一。本研究建立了以离子交换树脂分离提取葡萄汁中精氨酸,然后用坂口试剂检测洗脱液中精氨酸浓度的葡萄汁中精氨酸含量检测的快速方法,方法的最佳检测条件如下。
     8-羟基喹啉的次溴酸钠溶液检测葡萄汁中精氨酸含量的最佳条件为:取16 g经预处理的732#离子交换树脂装入玻璃离子色谱柱;将葡萄汁离心,取上清夜,调整其pH为2.0,准确量取待测样品10.0 mL,装入离子交换柱,用蒸馏水淋洗,然后用1 mol/L NaOH洗脱。准确吸取经适当稀释的洗脱液(精氨酸含量大约为1.5-12μg/mL)5.0 mL置于试管中,加入1.0 mL 0.02%的8-羟基喹啉溶液和1.0 mL 10%的NaOH溶液,摇匀,置于冰水浴中,10 min后加入0.5 mL 0.4%的冷次溴酸钠溶液,摇匀,反应1 min,溶液呈铁红色,迅速加入40%尿素1.0 mL,摇匀,用分光光度计进行比色测定,根据标准曲线回归方程计算出葡萄汁中精氨酸含量。
     精氨酸浓度在1.5-12μg/mL范围内符合朗姆-比尔定律,摩尔吸光系数为1.45×10~4 L·mol~(-1)·cm~(-1),从葡萄汁的样品分析结果可以看出,相对标准偏差和回收率分别在1.13-2.42%,87.0-100.7%范围内,此方法具有很高的精确度和准确度,适合用于葡萄汁中精氨酸含量的检测。
     本研究建立的葡萄酒中氨基甲酸乙酯含量检测的标准方法精密度和准确度较高,并且简便、快捷、环保、经济,适合用于我国葡萄酒中氨基甲酸乙酯含量的检测。建立的葡萄汁中精氨酸含量的快速检测方法适合应用于葡萄种植者和葡萄酒生产厂家用于对葡萄汁中精氨酸含量的适时控制,以便采取措施降低葡萄酒中氨基甲酸乙酯的含量。
Ethyl carbamate, a pluripotent carcinogen, has resulted in an increased incidence of lung, lymphocytic leukemia, liver, and melanotic tumors of the skin, which was first demonstrated in 1943. The International Agency for Research on Cancer (IARC) has classifed ethyl carbamate as a Group 2B, possibly carcinogenic to humans. Most fermented foods and beverages, including wine, contain trace amounts of ethyl carbamate. Health Protection Branch of Canada set the upper limit of 30μg/L ethyl carbamate in table wine; and the U.S. Food and Drug Administration has established a voluntary target for ethyl carbamate of 15μg/L for table wine≤14% alcohol by volume starting with the 1998 harvest.
     The purpose of the paper was to develop a simple, accurate and rapid ethyl carbamat analysis standard method for measuring ethyl carbamate in table wine. The developed method could have the application in routine quantification of ethyl carbamate for Chinese table wine. Furthermore, preliminary measures to reduce ethyl carbamate levels in table wine were investigated.
     The paper mainly describes the sample-pretreated methods for analyzing ethyl carbamate in table wines in combination with a gas chromatographic/mass spectrometric (GC/MS) system, and n-propyl carbamate used as the internal standard. Parameters were optimized of the sample-pretreated methods including liquid/liquid extraction, solid phase extraction, solid phase microextraction and solid/liquid extraction. Furthermore, the method for determining arginine in grape juice with Sakaguchi reaction following separating arginine with strong cation - exchange resins was developed. The results were as follows:
     The parameters of the liquid/liquid extraction method were optimized: the pH of the samples was natural pH, KCl 16 g (40%), dichloromethane 300mL. The limits of detection were 10μg/mL. The recoveries and the precision were 76.56%-80.39% and 4.42-9.82%, respectively. Liquid/liquid extraction method used for determination of ethyl carbamate in table wines dispenses with expensive instruments, however it has drawbacks: severe emulsification; the large amounts of organic solvents used, resulting in a large volume of waste; the low precision and accuracy due to manual concentration steps.
     The optimized parameters of the solid phase microextraction of table wine were: sample pH was 10.2, and 9.0 mL sample and 2.0-2.5 g (20-25%) NaCl were added to the vial; the sample vial was shaken for 30min at 40℃at 800 rpm in the agitator for equilibration; A 70μm CW/DVB fiber was inserted into the headspace for 35min at 40℃, then the fiber removed from the sample vial and inserted into the injection port of the GC for 10min. Under this extraction conditions, the recoveries and the presision were 76.00-84.80%, and 6.62-10.95%, respectively. The limits of detection were 8.0μg/mL. The solid phase microextraction technique was successfully applied to determine the ethyl carbamate levels in table wines, and it allows the extraction and concentration to be focused in a single step. The extraction method was rapid and simple, and without the need for any organic solvent, and it was an environmental protecting extraction method. But it has low precision and accuracy due to unstable fibers.
     The parameters of the solid phase extraction method were: the pH of the samples was natural pH, dichloromethane 175 mL. The recoveries and the precision were 85.76%-102.82% and 4.22-8.20%, respectivly. The limit of detection was 3.0μg/mL.
     And the optimized parameters of the solid/liquid extraction method were: the pH of the samples was natural pH, dichloromethane 70 mL. The recoveries and the precision were 82.67-93.39% and 2.91-6.67%, respectivly. The limits of detection were 2.0μg/mL.
     Both solid/liquid extraction and solid phase extraction methods provided good recovery and reproducibility. There was no significant difference between the two methods (p<0.05). Solid phase extraction method was recommended by OIV, but in the OIV method, anhydrous ethanol, one of the reagents, contained ethyl carbamate in itself. Therefore, there was drawback in this method. Furthermore, comparison with the solid phase extraction method, solid/liquid extraction method was less cost, environmental protecting, fast and simple. In the study, the solid/liquid extraction method was selected as the standard method to extract the ethyl carbamate in table wines.
     Solid/liquid extraction method in combination with GC/MS was applied to analysis for ethyl carbamate in 61Chinese table wine samples. The results showed that the real contents of ethyl carbamate in 81.82% samples were lower than 15μg/L. According to the U.S. Food and Drug Administration and the U.S. Bureau of Alcohol, Tobacco, and Firearms established voluntary programs, that is, 15μg/L weighted average for table wines≤14% alcohol by volume starting with the 1998 harvest, so 15μg/L was recommended as the maximum limits for ethyl carbamate in Chinese table wine.
     According to analysis of investigation of ethyl carbamate levels, the minimum was not detection, whatever in red or white table wine, and the maximum 28.6μg/L in red table wine and 13.9μg/L in white table wine. Obviously, ethyl carbamate levels in red table wines were higher than those in white table wines. There were no significant difference between wine region (p<0.05), and there were significant difference at storage time (p<0.05), namely, the longer storage time, the higher ethyl carbamate levels.
     Arginine, one of the most abundant amino acids in grape juice, is closely related to the levels of ethyl carbamate in wines. Arginine is degraded to urea and citrulline, precursors of ethyl carbamate in wine, by the yeast and malolactic bacteria, respectively. Therefore, control of arginine levels in grape juice is one of the most important steps for winemakers to reduce ethyl carbamate in wine. A simple, accurate and rapid arginine separation method by use of 732# ion exchange resins in combination with Sakaguchi reaction for measuring arginine in grape juice was developed. The results were as follows:
     Sixteen grams of 732#pretreated ion exchange resins was packed in chromatographic column. Natural grape juice was centrifuged and the upper (10.0 mL, pH 2.0) was loaded to the column, then rinsed with the distilled water, finally, it was eluted with 1mol/L NaOH solution. To a tube containing 5 mL eluate sample (1.5 -12μg/mL arginine), 1.0 mL 0.02% 8-hydroxyquinoline and 1.0 mL 10% NaOH were added sequentially, the solution was mixed thoroughly in the ice bath, after 10min, 0.5 mL 0.4% sodium hypobromite was added rapidly to develop the color. After mixing, 1.0 mL 40% urea was added within 30 seconds, and then its absorbance was read at 500 nm. According to the standard curve and dilution rate, arginine concentration was determined.
     The Lambert-Beer law was followed up to an arginine concentration from1.5 to 12μg/mL, and apparent molar absorptivity of the method was 1.45×10~4 L·mol~(-1)·cm~(-1), its recoveries and precison of grape juice samples were 87.0-100.7% and 1.13-2.42% respectivly. The method presented in this paper is accurate and reliable, and it is suitable for determination of L-arginine in grape juice.
     The developed standard method of determination of ethyl carbamate in table wines was simple, fast, reproducible and accurate, and the method could be applicable for routine determination of ethyl carbamate in table wines. The method of determination of arginine in grape juice could be applied for grape growers and winemakers to take necessary measure for controlling the level of ethyl carbamate in wine.
引文
[1] Conacher H B S, Page B D. Ethyl carbamate in alcoholic beverages: a Canadian case history [J]. Proceedings of Euro Food Tox Ⅱ. Zürich, 1986, 237-242.
    [2] Zimmerli B, Schlatter J. Ethyl carbamate: analytical methodology, occurrence, formation, biological activity and risk assessment [J]. Mutation Reseach, 1991, 259: 325-350.
    [3] 陆 建, 曹 钰. 葡萄酒中氨基甲酸乙酯的研究[J]. 食品与发酵工业, 1996, 3: 79-82.
    [4] Sakano K, Oikawa S, Hiraku Y, et al. Metabolism of carcinogenic urethane to nitric oxide is involved in oxidative DNA damage [J]. Free Radical Biology and Medicine, 2002, 33:703-714.
    [5] Miller Y E, Dwyer-Nield, Keith R L, et al. Induction of a high incidence of lung tumors in C57BL/6 mice with multiple ethyl carbamate injection [J]. Cancer Letters, 2003, 198: 139-144.
    [6] Tomisawa M, Suemizu H, Ohnishi Y, et al. Mutation analysis of vinyl carbamate or urethane induced lung tumors in rasH2 transgenic mice [J]. Toxicology Letters, 2003, 142: 111-117.
    [7] Beland F A, Wayne B R, Mellick P W, et al. Effect of ethanol on the tumorigenicity of urethane (ethyl carbamate) in B6C3F1 mice [J]. Food and Chemical Toxicology, 2005, 43: 1-19.
    [8] Ough, C S. Ethyl carbamate in fermented beverages and foods.Ⅱ. Possible formation of ethyl carbamate from diethyl dicarbonate addition to wine [J]. J. Agric. Food Chem, 1976, 24: 328-331.
    [9] Ough, C.S. Ethyl carbamate in fermented beverages and foods. I. Naturally occurring ethyl carbamate [J], J. Agric.Food Chem., 1976, 24: 323-328.
    [10] Canas B J, Joe F L, Diachenko GW, et al. Determination of ethyl carbamate in alcoholic beverages and soy sauce by chromatography with mass selective detection: collaborative study [J]. Journal of AOAC International, 1994, 77: 1530-1536.
    [11] 耿予欢, 李国基. 关于酿造酱油中氨基甲酸乙酯的探讨 [J]. 中国酿造, 2003, 124(1): 31-33.
    [12] 李伍林, 汪新亮, 周平春. 氨基甲酸乙酯的合成 [J]. 咸宁学院学报, 2005, 25(3): 99-100.
    [13] 马娅萍, 孙守威, 邓富全. 用多维色谱-稳定同位素稀释质谱联用技术测定酒中氨基甲酸乙酯[J].分析化学, 1996a, 24(1): 36-40.
    [14] 马娅萍, 孙守威, 邓富全. 用二维色谱技术直接定量测定白酒中氨基甲酸乙酯[J]. 分析测试学报, 1996b, 15(3): 47-50.
    [15] 王利平, 刘杨珉, 袁身淑. 固相微萃取气质连用分析黄酒中氨基甲酸乙酯[J]. 江苏食品与发酵, 2003, 115(4): 3-6.
    [16] 吴平谷, 陈正冬. 固相萃取结合 GC/MS 法测定酒中氨基甲酸乙酯[J]. 卫生研究, 2004, 33(5): 627-628.
    [17] 袁身淑, 刘杨岷, 王林祥等. 饮料酒中氨基甲酸乙酯测定方法的研究[J]. 无锡轻工业学院学报. 1991, 10(3): 7-14.
    [18] 周英田, 孙咏梅, 邓峰. 毛细管色谱/质谱选择离子监测法测定酒精饮料中氨基甲酸乙酯[J]. 色谱, 1996, 14(3): 190-192.
    [19] Bailey R, North D, Myatt D. Determination of ethyl carbamate in alcoholic beverages by methylation and gas chromatography with nitrogen - phosphorus thermionic detection [J]. Journal of Chromatography A, 1986, 369: 199-202.
    [20] Dennis M J, Howarth N, Massey R C, et al. Method for the analysis of ethyl carbamate in alcoholic beverages by capillary gas chromatography [J]. Journal of Chromatography A, 1986, 369: 193-198.
    [21] Fauhl C, Wittkowski R. Determination of ethyl carbamate in wine by GC-SIM-MS after continuous extraction with diethyl ether [J]. Journal of High Resolution Chromatography and Chromatography Communications. 1992, 15(3): 203-205.
    [22] Giachetti C, Assandri A, Zanolo G. Gas chromatographic-mass spectrometric determination of ethyl carbamate as the xanthylamide derivative in Italian aqua vitae (grappa) samples [J]. Journal of Chromatography A, 1991, 585: 111-115.
    [23] Jagerdeo E, Dugar S, Foster G D, et al. Analysis of Ethyl Carbamate in Wines Using Solid-Phase Extraction and Multidimensional Gas Chromatography/Mass Spectrometry [J]. J. Agric. Food Chem., 2002, 50 (21): 5797 -5802.
    [24] Lachenmeier D W, Nerlich U, Kuballa T. Automated determination of ethyl carbamate in stone-fruit spirits using headspace solid-phase microextraction and gas chromatography–tandem mass spectrometry [J]. Journal of Chromatography A, 2006, 1108(1): 116-120.
    [25] Lau B P, Weber D, Page D. Gas chromatographic-mass spectrometric determination of ethyl carbamate in alcoholic beverages. Journal of Chromatography, 1987, 402: 233-241.
    [26] Ma Y P, Deng F Q, Chen D Z. Determination of ethyl carbamate in alcoholic beverages by capillary multi-dimensional gas chromatography with thermionic specific detection [J]. Journal of Chromatography A, 1995, 695: 259-265.
    [27] MacNamaral K, Burke N, Mullins E, et al. Direct Quantification of Ethyl Carbamate in Distilled Alcoholic Beverages Using a Cold Capillary Injection System and Optimised Selected Ion Monitoring [J]. Chromatographia, 1989, 27: 209-215.
    [28] Matsudo T, Aoki T, Abe K, et al. Determination of ethyl carbamte in soy sauce and its possible precursor [J]. Journal of Agricultural and Food Chemistry, 1993, 41: 352-356.
    [29] Pierce W M Jr, Clark AO, Hurst H E. Determination of ethyl carbamate in distilled alcoholic beverages by gas chromatography with flame ionization or mass spectrometric detection [J]. J. Ass. Offic. Anal. Chem., 1988, 71: 781-784.
    [30] Whiton R S, Zoecklein B K. Determination of ethyl carbamate in wine by solid-phase microextraction and gas chromatography/mass spectrometry [J]. American Journal of Enology and Viticulture. 2002, 53: 60-63.
    [31] Melo Abreu S, Arminda A, Oliveira B, et al. Determination of ethyl carbamate in alcoholic beverages: an interlaboratory study to compare HPLC - FLD with GC/MS method [J]. Analytical and Bioanalytical Chemistry, 2005, 382: 498-503.
    [32] Park S K, Kim C T, Lee J W. Analysis of ethyl carbamate in Korean soy sauce using high-performance liquid chromatography with Xuorescence d18 etection or tandem mass spectrometry and gas chromatography with mass spectrometry [J], Food Control, 2007, (8): 975-982.
    [33] Lachenmeier D W. Rapid screening for ethyl carbamate in stone-fruit spirits using FTIR spectroscopy and chemometrics [J]. Anal Bioanal Chem, 2005b, 382: 1407-1412.
    [34] Woo I S, Kim I H, Yun U J, et al. An improved method for determination of ethyl carbamate in Korean traditional rice wine [J]. Journal of Industrial Microbiology & Biotechnology, 2001, 26(6): 363-368.
    [35] Ahmed F E. Analysis of pesticides and their metabolites in foods and drinks [J]. Trends in analytical chemistry. 2001, 20: 649-661.
    [36] Kataoka H, Lord H L, Pawliszyn J. Applications of solid-phase microextraction in food analysis [J]. Journal of Chromatography A, 2000, 880: 35-62.
    [37] 邢云, 王贵方, 李全民. 分析化学中的溶剂萃取技术[J]. 理化检验-化学分册, 2005, 41(9): 694-696.
    [38] 张海霞, 朱彭龄. 固相萃取[J]. 分析化学, 2000, 28(9): 1172-1180.
    [39] 孙天华, 刘晓茹.固相萃取技术及其演化发展.首都师范大学学报(自然科学版). 2004, 25: 116-119.
    [40] 赵利剑, 杨亚玲, 夏静. 固相萃取技术的研究[J]. 四川化工, 2005, 8(3): 21-25.
    [41] 刘芃岩, 马育松. 固相萃取技术在农药残留分析中的应用[J]. 河北大学学报(自然科学版), 2005, 25(1): 109-115.
    [42] Kakalíková L, Matisová E, Le?ko J. Analysis of metalaxyl residues in wines by SPE in combination with HRCGC and GC/MS [J]. Z Lebensm Unters Forsch, 1996, 203: 56-60.
    [43] 王璟琳, 刘国宏, 李善茂等. 固相萃取技术及其应用[J]. 长治学院学报, 2005, 22(5): 21-26.
    [44] 马娜, 陈玲, 熊飞. 固相萃取技术及其研究进展[J]. 上海环境科学, 2002, 21(3): 181-186.
    [45] Green C E. Abraham M H. Investigation into the effects of temperature and stirring rate on the solid phase diuron from water using a C18 extraction disk [J]. Journal of Chromatography A, 2000, 885: 41-49.
    [46] 杨通在, 罗顺忠. 固相微萃取技术的现状与进展[J]. 环境研究与监测, 2006, 19(1): 1-7.
    [47] Stashenko E E, Martínez J R. Derivatization and solid-phase microextraction [J]. Trends in Analytical Chemistry, 2004, 23(8): 553-561.
    [48] Camarasu C, Madichie C, Williams R. Recent progress in the determination of volatile impurities in pharmaceuticals [J]. Trends in Analytical Chemistry, 2006, 25 (8): 768-777.
    [49] Krutz L J, Senseman S A, Sciumbato A S. Solid-phase microextraction for herbicide determination in environmental samples [J]. Journal of Chromatography A, 2003, 999: 103-121.
    [50] Mestera Z, Sturgeon R, Pawliszyn J. Solid phase microextraction as a tool for trace element speciation [J]. Spectrochimica Acta Part B, 2001, 56: 233-260.
    [51] 王锡昌,陈俊卿.固相微萃取技术及其应用[J]. 上海水产大学学报, 2004, 13(4): 348-352.
    [52] 周菊珍, 周培庆. 固相微萃取实验条件的优化[J]. 华东师范大学学报(自然科学版), 2000, 1: 103-106.
    [53] 贾 丽, 张耀方, 刘海清等. 固相微萃取/气相色谱-质谱法测定明胶中的对羟基苯甲酸乙酯 [J]. 分析测试学报, 2006, 25(2): 67-70.
    [54] Malik A K, Kaur V, Verma N. A review on solid phase microextraction-High performance liquid chromatography as a novel tool for the analysis of toxic metal ions [J]. Talanta, 2006, 68: 842–849.
    [55] 李孝国, 张晓彤, 桂建舟 等. 多维气相色谱在线分析轻烃芳构化产物的研究 [J]. 石油化工高等学校学报, 2004, 17(2): 6-8.
    [56] Funch F, Lisbjerg S. Analysis of ethyl carbamate in alcoholic beverages [J]. European Food Research and Technology, 1988, 186(1): 29-32.
    [57] Ferreira M A, Fernandes J O. The application of an Improved GC/MS Procedure to Investigate Ethyl Carbamate Behavior During the Production of Madeira Wines [J]. Am. J. Enol. Vitic, 1992, 43(4):339-343.
    [58] Clegg B S, Frank R, Ripley B D, et al. Contamination of alcoholic products trace quantities of ethyl carbamate (urethane) [J]. Environmental Contamination and Toxicology, 1988, 41: 832-837.
    [59] Vahl, M. A survey of ethyl carbamate in beverages, bread and acidified milks sold in Denmark [J]. Food Additives and Contaminants. 1993, 10(5): 585-592.
    [60] Lee Kim Y K, Koh E, Chung H J, et al. Determination of ethyl carbamate in some fermented Korean foods and beverages [J]. Additives and Contaminants, 2000, 17(6): 469-475.
    [61] 纳新力, 陈介华, 代海香. 酒中氨基甲酸乙酯的薄层分析法[J]. 卫生研究. 1991, 45-46.
    [62] Hübner P, Groux P M, Weibel B, et al. Genotoxicity of ethyl carbamate (urethane) in Salmonella, yeast and human lymphoblastoid cells [J]. Mutation Research, 1997, 390: 11-19.
    [63] Benson RW, Beland FA. Modulation of urethane (ethyl carbamate) carcinogenicity by ethyl alcohol: a review. International Journal of Toxicology [J]. 1997, 16: 521-544.
    [64] Cha S W, Gu H K,Lee K P, et al. Immunotoxicity of ethyl carbamate in female BALB/ c mice: role of esterase and cytochrome P450 [J]. Toxicology Letters, 2000, 115: 173-181.
    [65] Schlatter J, Lutz W K. The carcinogenic potential of ethyl carbamate (urethane): risk assessment at human dietary exposure levels [J]. Food Chemistry, 1990, 28(3): 205-211.
    [66] Jeong T C, Cha S W, Park J I, et al. Role of metabolism in ethyl carbamate-induced suppression of antibody response to sheep erythrocytes in female Balb/C mice [J]. International Journal of Immunopharmac, 1995, 17: 1035-1044.
    [67] Forkert P G, Lee R P.Metabolism of ethyl carbamate by pulmonary cytochrome P450 and carboxylesterase isozymes: involvement of CYP2E1 and hydrolase A [J]. Toxicology and Applied Pharmacology, 1997, 146: 245-254.
    [68] Guengerich F P. Cytochrome P450 oxidations in the generation of reactive electrophiles: epoxidation and related reactions [J]. Archiyes of Biochemistry and Biophysics, 2003. 409: 59-71.
    [69] 夏艳秋, 朱强, 汪志君. 谨防黄酒中氨基甲酸乙酯的危害[J]. 酿酒, 2004, 3l(3): 51-53.
    [70] International Agency for Research on Cancer, IARC Monographs on the Evaluation of Carcinogenic Risk to Humans [S], 1974, 7:111.
    [71] Choy W N, Black W, Mandakas G, et al. A pharmacokinetic study of ethanol inhibition of micronuclei induction by urethane in mouse bone marrow erythrocytes [J]. Mutation Research, 1995, 341: 255-263.
    [72] Ough C S, Crowell E A, Gutlove B R. Carbamyl Compound Reactions with Ethanol [J]. Am. J. Enol. Vitic. 1988a, 39(3): 239-242.
    [73] Liu S Q, Pritchard G G, Hardman M L, et al. Occurrence of arginine deiminase pathway enzymes in arginine catabolism by wine lactic acid bacteria. Applied and Environment Microbiology [J], 1995, 61(1): 310-316.
    [74] Liu S Q, Pilone G J. A review: Arginine metabolism in wine lactic acid bacteria and its practical significance [J]. Journal of Applied Microbiology, 1998, 84: 315-327.
    [75] Azevedo Z, Couto J A, Hogg T. Citrulline as the main precursor of ethyl carbamate in model fortified wines inoculated with Lactobacillus hilgardii: a marker of the levels in a spoiled fortified wine [J]. Letters in Applied Microbiology, 2002, 34: 32-36.
    [76] Arena M E, Manca de Nadra M C. Influence of ethanol and low pH on arginine and citrullinemetabolism in lactic acid bacteria from wine [J]. Research in Microbiology, 2005, 156: 858-864.
    [77] Arena M E, Saguir F M, Manca de Nadra M C. Aginine, citrulline and ornithine metabolism by lactic acid bacteria from wine [J]. International Journal of Food Microbiology, 1999b, 52: 155-161.
    [78] Huang Z, Ough C S. Effect of Vineyard Locations, Varieties, and Rootstocks on the Juice Amino Acid Composition of Several Cultivars [J]. Am. J. Enol. Vitic. 1989, 40:2:135-139.
    [79] Mauricio J C, Ortega J M. Nitrogen Compounds in Wine During Its Biological Aging by Two Flor Film Yeasts: An Approach to Accelerated Biological Aging of Dry Sherry - Type Wines [J]. Biotechnology and Bioengineering, 1997, 53: 159-167.
    [80] Jauniaux J C, Urrestarazu L A, Wiame J M. Arginine metabolism in Saccharomyces cerevisiae: subcellular localization of the enzymes [J]. Journal of Bacterial, 1978, 133(3): 1096-1107.
    [81] Watkins S J,Hogg T A,Lewis M J.The use of yeast inoculation in fermentation for port production effect on total potential ethyl carbamate [J]. Biotechnology Letters, 1996, 18: 95-98.
    [82] Uthurry CA, Varela F, Colomo B. Ethyl carbamate concentrations of typical Spanish red wines [J]. Food Chemistry, 2004, 88: 329-336.
    [83] Uthurry C A, Suárez Lepe J A. Ethyl carbamate production by selected yeasts and lactic acid bacteria in red wine [J]. Food Chemistry, 2006, 94(2): 262-270.
    [84] Bercy J, Dubois E, Messenguy F. Regulation of arginine metabolism in Saccharomyces cerevisiae expression of the three ARGR regulatory genes and cellular localization of their products [J]. Gene, 1987, 55:277-285.
    [85] Coulon J, Husnik J I, Inglis D L, et al. Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine [J]. Am. J. Enol. Vitic. 2006, 57(2): 113-124.
    [86] Mauricio J C, Valero E, Millán M C, et al. Changes in nitrogen compounds in must and wine during fermentation and biological aging by flor yeasts [J]. Journal of Agricultural and Food Chemistry. 2001, 49: 3310-3315.
    [87] Beltran G, Novo M, Rozès N, et al. Nitrogen catabol ite repression in Saccharomyces cerevisiae during wine fermentations [J]. FEMS Yeast Research, 2004, 4: 625-632.
    [88] Smart WC, Coffman JA, Cooper TG. Combinatorial regulation of the Saccharomyces cerevisiae CAR1 (arginase) promoter in response to multiple environmental signals [J]. Molecular and Cellular Biology, 1996, 16(10): 5876-5887.
    [89] Messenguy F, Vierendeels F, Scherens B, et al. In Saccharomyces cerevisiae, Expression of Arginine Catabolic Genes CAR1 and CAR2 in Response to Exogenous Nitrogen Availability Is Mediated by the Ume6 (CargRI)-Sin3 (CargRII)-Rpd3 (CargRIII) Complex [J]. Journal of Bacteriology, 2000, 182 (11): 3158-3164.
    [90] Suizu T, Limura Y, Gomi K, et al. Construction of urea non-producing yeast Saccharomyces cerevisiae by disruption of the CAR1 gene [J]. Agric. Biol. Chem., 1990, 54(2): 537-539.
    [91] Kitamoto K, Oda K, Gomik, et al. Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene [J]. Applied and Environmental Microbiology, 1991, 57(1): 301-306.
    [92] Yoshiuchi K, Watanabe M, Nishimura A. Breeding of a non-urea producing sake yeast with killer character using a karl-1 mutant as a killer donor [J]. Journal of Industrial Microbiology and Biotechnology, 2000, 24: 203-209.
    [93] 曾新安, 于淑娟. 酿造过程中葡萄酒氨基酸的变化[J]. 酿酒科技, 2006, 142(4): 50-54.
    [94] Mira de Ordu?a R. Quantitative determination of L-arginine by enzymatic end-point analysis [J]. Journal of Agricultural and Food Chemistry, 2001b, 49: 549-552.
    [95] Park H D, Shin M C, Woo I S. Antisense - mediated inhibition of arginase (CAR1) gene expression in Saccharomyces cerevisiae [J]. Journal of Bioscience and Bioengineering, 2001, 92: 481-484.
    [96] Pretorius I S, Toit M Rensburg P. Designer Yeasts for the Fermentation Industry of the 21st Century [J]. Food Technol. Biotechnol, 2003, 41(1): 3-10.
    [97] Versari A, Parpinello G P, Cattaneo M. Leuconostoc oenos and malolactic fermentation in wine: a review [J]. Journal of Industrial Microbiology & Biotechnology, 1999, 23: 447-455.
    [98] 李 华. 现代葡萄酒工艺学 [M]. 第二版. 西安: 陕西人民出版社, 2000.
    [99] Liu S Q. Malolactic fermentation in wine - beyond deacidification [J]. Journal of Applied Microbiology, 2002, 92: 589-601.
    [100] Matthews A, Grimaldi A, Walker M, et al. Lactic acid bacteria as a potential source of enzymes for use in vinification [J]. Applied and Environmental Microbiology, 2004, 70(10): 5715-5731.
    [101] Liu S Q, Pritchard G G, Hardman M J, et al. Arginine catabolism in wine lactic acid bacteria: is it via the arginine deiminase pathway or the arginase-urease pathway [J]? Journal of Applied Microbiology, 1996, 81: 486-492.
    [102] Liu S Q, Pritchard G G, Hardman M J, et al. Citrulline production and ethyl carbamate (urethane) precursor formation fFrom arginine degradation by wine lactic acid bacteria Leuconostoc oenos and Lactobacillus buchneri [J]. Am. J. Enol. Vitic. 1994, 45(2): 235-242.
    [103] Crow V L, Thomas T D. Arginine metabolism in lactic streptococci [J]. Journal of Bacteriology, 1982, 150: 1024-1032.
    [104] Montel M C, Champomier M C. Arginine catabolism in Lactobacillus sake isolated from meat [J]. Applied and Environmental Microbiology, 1987, 53(11): 2683-2685.
    [105] Plugg C M, Stams A J M. Arginine catabolim by Thermanaerovibrio acidaminovorans [J]. FEMS Microbiology Letters, 2001, 195: 259-262.
    [106] Mira de Ordu?a R, Patchett M L. Growth and arginine metabolism of the wine lactic acid bacteria Lactobacillus buchneri and Oenococcus oeni at different pH values and arginine concentrations [J]. Applied and Environmental Microbiology, 2001, 67(4): 1657-1662.
    [107] Mira de Ordu?a R, Liu S Q, Patchett M L, et al. Kinetics of the arginine metabolism of malolactic wine lactic acid bacteria Lactobacillus buchneri CUC-3 and Oenococcus oeni Lo111 [J]. Journal of Applied Microbiology, 2000, 89: 547-552.
    [108] Mira de Ordu?a R, Liu S Q, Patchett M L. Ethyl carbamate precursor citrulline formation from arginine degradation by malolactic wine lactic acid bacteria [J]. FEMS microbiology Letters, 2000, 183: 31-35.
    [109] Tonon T, Lonvaud-Funel A. Arginine metabolism by wine Lactobacilli isolated from wine [J]. Food Microbiology, 2002, 19: 451-461.
    [110] Arena M E, Saguir F M, Manca de Nadra M C. Aginine dihydrolase pathway in Lactobacillus plantarum from orange [J]. International Journal of Food Microbiology, 1999a, 47: 203-209.
    [111] Zú?iga M, Miralles M C, Pérez-Martínez G. The Product of arcR, the Sixth Gene of the arc Operon of Lactobacillus sakei, Is Essential for Expression of the Arginine Deiminase Pathway [J]. Appliedand Environmental Microbiology, 2002a, 68(12): 6051-6058.
    [112] Zú?iga M, Pérez G, González-Candelas F. Evolution of arginine deiminase (ADI) pathway genes [J]. Molecular Phylogenetics and Evolution, 2002b, 25: 429-444.
    [113] Angelis M, Mariotti L, Rossi J. Arginine catabolism by sourdough Lactic acid bacteria: purification and characterization of the arginine deiminase pathway enzymes from Lactobacillus sanfranciscensis CB1 [J]. Applied and Environmental Microbiology, 2002,68(12): 6193-6201.
    [114] Zú?iga M, Champomier-Verges M, Zagorec M, et al. Structure and functional analysis of the gene cluster encoding the enzymes of the arginine deiminase pathway of Lactobacillus sake [J]. Journal of Bacteriology, 1998, 180: 4154-4159.
    [115] Divol B, Tonon T, Morichon S, et al. Molecular characterization of Oenococcus oeni genes encoding proteins involved in arginine transport [J]. Journal of Applied Microbiology, 2003, 94: 738-746.
    [116] Spano G, Chieppa G, Beneduce L, et al. Expression analysis of putative arcA, arcB and arcC genes partially cloned from Lactobacillus plantarum isolated from wine [J]. Journal of Applied Microbiology, 2004, 96: 185-193.
    [117] Tonon T, Lonvaud-Funel A. Metabolism of arginine and its positive effect on growth and revival of Oenococcus oeni [J]. Journal of Applied Microbiology, 2000, 89: 526-531.
    [118] Arena M E, Manca de Nadra M C, Mu?oz R. The arginine deiminase pathway in the wine lactic acid bacterium Lactobacillus hilgardii X1B: structural and functional study of the arcABC genes [J]. Gene, 2002, 301: 61-66.
    [119] Bourdineaud JP, Nehmé B, Tesse S, et al. A bacterial gene homologous to ABC transporters protect Oenococcus oeni from ethanol and other stress factors in wine [J]. International Journal of Food Microbiology, 2004, 92: 1-14.
    [120] Stuart M R, Chou L S, Weimer B C. Influence of Carbohydrate Starvation and Arginine on Culturability and Amino Acid Utilization of Lactococcus lactis subsp. lactis [J]. Applied and Environmental Microbiology, 1999, 65(2): 665-673.
    [121] Champomier Vergès M C, Zú?iga M, Morel-Deville F, et al. Relationship between arginine degradation, pH and survival in Lactobacillus sakei [J], FEMS Microbiology Letters, 1999, 180: 297 - 304.
    [122] Chou LS, Weimer BC, Cutler R. Relationship of arginine and lactose utilization by Lactococcus lactis subsp. lactis ML3 [J]. International Dairy Journal, 2001, 11: 253-258.
    [123] Tonon T, Bourdineaud J P, Lonvaud-Funel A. The arcABC gene cluster encoding the arginine deiminase pathway of Oenococcus oeni, and arginine induction of a CRP-like gene [J]. Research in Microbiology, 2001, 152: 653-661.
    [124] Muller C J, Fugelsang K C. 3a, 6a-Dimethylglycoluril, the product of the interaction of urea and diacetyl, as a source of post-bottling ethyl carbamate in wines[R]. 1996, http: // cati. csufresno. Edu / verc / rese /96 / 960502 /index. html.
    [125] U. S. FDA publication: Ethyl Carbamate - Preventative Action Manual[R]. 1997.
    [126] Butzke C E. Survey of yeast assimilable nitrogen status in musts from California, Oregon, and Washinton [J]. American Journal of Enology and Viticulture, 1998, 49(2): 220-224.
    [127] Spano G, Beneduce1 L, Palma L, et al. Characterization of wine Lactobacillus plantarum by PCR-DGGE and RAPD-PCR analysis and identification of Lactobacillus plantarum strains able todegrade arginine [J]. World Journal of Microbiology and Biotechnology, 2006, 22: 769-773.
    [128] Gu S L. Research report, Investigating juice arginine and wine ethyl carbamate influenced by viticulrural factors [R]. 2000, http://ari.Calstate. edu/research/pdf/00-1-007/Research Report-00 1-007. pdf.
    [129] Soufleros E H, Bouloumpasi E, Tsarchopoulos C, et al. Primary amino acid profiles of Greek white wines and their use in classification according to variety, origin and vintage [J]. Food Chemistry, 2003, 80: 261-273.
    [130] Spayd S E, Nagel C W, Edwards C G. Yeast Growth in Riesling Juice as Affected by Vineyard Nitrogen Fertilization [J]. Am. J. Enol. Vitic. 1995, 46: 49-55.
    [131] Spayd S E, Wample R L, Evans R G, et al. Nitrogen Fertilization of White Riesling Grapes in Washington. Must and Wine Composition [J]. Am. J. Enol. Vitic. 1994, 45: 34-42.
    [132] Spayd S E, Wample R L, Stevens R G, et al. Nitrogen fertilization of White Riesling grapes in Washington. Effect on petiole nutrient concentration, yield, yield components, and vegetative growth [J]. Am. J. Enol. Vitic. 1993, 44: 378-386.
    [133] Ough C S, Trioli G. Urea Removal from Wine by an Acid Urease [J]. Am. J. Enol. Vitic. 1988b, 39(4): 303-307.
    [134] Monteiro F F and Bisson L F. Nitrogen Supplementation of Grape Juice. I. Effect on Amino Acid Utilization During Fermentation [J]. Am. J. Enol. Vitic. 1992, 43(1): 1-10.
    [135] Valero E, Millán C, Ortega J M, et al. Concentration of amino acids in wine after the end of fermentation by Saccharomyces cerevisiae strains [J]. Journal of the Science of Food and Agriculture, 2003, 83: 830-835.
    [136] Virginia D M, George K M, Hennie J J V. Transcriptional profiling of wine yeast in fermenting grape juice: regulatory effect of diammonium phosphate [J]. FEMS Yeast Research, 2003, 3: 269-287.
    [137] Inglis D. The timing of di-ammonium phosphate addition to fermenting Chardonnay must: Effect on nitrogen utilization, ethyl-carbamate formation and CARl expression by yeast[R]. 2002, Cool C1imate Oenology and Viticuture, Brock University.
    [138] Monteiro F F, Bisson L F. Amino acid utilization and urea formation during vinification fermentations [J]. Am. J. Enol. Vitic. 1991, 42:199-208.
    [139] Tegmo-Larsson I M, Henick-Kling T. The Effect of Fermentation and Extended Lees Contact on Ethyl Carbamate Formation in New York Wine [J]. Am. J. Enol. Vitic. 1990, 41(4): 269-272.
    [140] Mauricio J C, Millán M C, Moreno J. Changes in the urea concentration during controlled wine aging by two “flor”veil-forming yeasts [J]. Biotechnology Letters, 1995, 17(4): 401 -406.
    [141] Ingledew W M, Magnus C A, Patterson J R. Yeast Foods and Ethyl Carbamate Formation in Wine [J]. Am. J. Enol. Vitic. 1987, 38(4): 332-335.
    [142] Stevens D F, Ough C S. Ethyl carbamate formation: reaction of urea and citrulline with ethanol in wine under low to normal temperature conditions [J]. American Journal of Enology and Viticulture. 1993, 44: 309-312.
    [143] Kodama S, Suzuki T, Fujinawa S, et al. Urea contribution to ethyl carbamate formation in commercial wines during storage [J]. American Journal of Enology and Viticulture, 1994, 45: 17-24.
    [144] Hasnip S, Caputi A, Crews C. Effects of storage time and temperature on the concentration of ethyl carbamate and its precursors in wine [J]. Food additives and Contaminants, 2004, 21(12): 1155- 1161.
    [145] Ough C S, Huang Z, An D. Amino acid uptake by four commercial yeasts at Two different temperatures of growth and fermentation: effects on urea excretion and reabsorption [J]. Am. J. Enol. Vitic, 1991, 42 (1): 26-40.
    [146] Daudt C E, Ough C S, Stevens D, et al. Investigations into ethyl carbamate, n-propyl carbamate, and urea in fortified wines [J]. Am. J. Enol. Vitic, 1992, 43(4): 318-322.
    [147] An D, Ough C S. Urea excretion and uptake by wine yeasts as affected by varuous factors [J]. American Journal of Enology and Viticulture, 1993, 44(1): 35-40.
    [148] Torrea-Go?i D, Ancín-azpilicueta C. Nitrogen metabolism in Chardonnay musts inoculated with killer strains of Saccharomyces cerevisiae [J]. Journal of Bioscience and Bioengineering, 2002, 94(1): 15-22.
    [149] Terrade N, Mira de Ordu?a R. Impact of winemaking practices on arginine and citrulline metabolism during and after malolactic fermentation [J]. Journal of Applied Microbiology, 2006, 101(2): 406-411.
    [150] Henschke P A, and Ough C S. Urea Accumulation in Fermenting Grape Juice [J]. Am. J. Enol. Vitic. 1991, 42(4): 317-321.
    [151] Valero E, Mauricio J C, Milán M C, et al. Changes in the urea content of wine under different fermentation and aging conditions by two Saccharomyces cerevisiae races [J]. Biotechnology Letters, 1999, 21: 555-559.
    [152] Jussier D, Morneau D A, Mira de Ordu?a R. Effect of simultaneous inoculation with yeast and bacteria on fermentation kinetics and key wine parameters of cool-climate Chardonnay [J]. Applied and Environmental Microbiology, 2006, 221-227.
    [153] Trioli G T, Ough C S. Causes for inhibition of an acid urease from Lactobacillus fermentus [J]. Am. J. Enol. Vitic. 1989, 40(4): 245-252.
    [154] Fujinawa S, Burns G, Teja P. Application of acid urease to reduction of urea in commercial wines [J]. Am. J. Enol. Vitic. 1990, 41(4): 350-354.
    [155] Fujinawa S, Kodama S, Todoroki H. Trace urea determination in red wine and its degradation rate by acid urease [J]. Am. J. Enol. Vitic. 1992, 43(4): 362-366.
    [156] Zietsman A, Viljoen M, Vuuren H van. Preventing ethyl carbamate formation in wine [J]. 2000, http://www.wynboer.co.za/recentarticles/1200ethyl.php3.
    [157] 赵树欣. 饮料酒中的氨基甲酸乙酯应引起国人重视[J]. 酿酒科技. 1992, 51(3): 51-54.
    [158] 刘颖, 吴伟祥, 闵航. 酒用脲酶的研究进展[J]. 嘉兴高等专科学校学报, 1999, 12(3): 39-43.
    [159] 李 华, 梁新红, 郭安鹊 等. 葡萄酒苹果酸-乳酸菌精氨酸代谢研究概况 [J]. 微生物学报, 2006, 46(4): 663-667.
    [160] Li H ,Zhang C H, Liu Y L. Species attribution and distinguishing strains of Oenococcus oeni isolated from Chinese wines [J]. World Journal of Microbiology and Biotechnology, 2006, 22: 515-518.
    [161] 王 华, 刘 芳, 李 华. 不同酒类酒球菌苹果酸-乳酸发酵对葡萄酒中氨基酸的影响[J]. 中国食品学报, 2003, 3(4): 51-55.
    [162] 中华人民共和国进出口商品检验行业标准. 出口酒类中氨基甲酸乙酯残留量检验方法[R], SN 0285-93.
    [163] Vas G, Gál1 L, Harangi J, et al. Determination of volatile aroma compounds of Blaufrankisch wines extracted by solid-phase microextraction [J]. Journal of Chromatographic Science, 1998, 36(10): 505-510.
    [164] Mestres M, Martí M P, Busto O, et al. Simultaneous analysis of thiols, sulphides and disulphides in wine aroma by headspace solid-phase microextraction-gas chromatography [J]. Journal of Chromatography A, 1999, 849: 293-297.
    [165] Pollnitz A P, Jones G P, Sefton M A. Determination of oak lactones in barrel-aged wines and in oak extracts by stable isotope dilution analysis [J]. Journal of Chromatography A, 1999, 857: 239-246.
    [166] 魏黎明, 李菊白, 欧庆瑜等. 固相微萃取法在环境监测中的应用[J]. 分析化学, 2004, 32(12): 1667-1672.
    [167] Liu T T, Yang T S. Optimization of solid - phase microextraction analysis for studying change of headspace flavor compounds of banana during ripening [J]. Journal of Agricultural and Food Chemistry. 2002, 50: 653-657.
    [168] 袁志发, 试验设计与分析[M]. 北京: 高等教育出版社, 2000.
    [169] Arthur C L, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers [J]. Anal. Chem. 1990, 62: 2145-2148.
    [170] Lachenmeier D W, Schehl B, Kuballa T, et al. Retrospective trends and current status of ethyl carbamate in German stone-fruit spirts [J]. Additives and Contaminants, 2005a, 22(5): 397-405.
    [171] Ough CS, Stevens D, Almy J. Preliminary Comments on effects of grape vineyard nitrogen Fertilization on the Subsequent Ethyl Carbamate Formation in Wines [J]. Am. J. Enol. Vitic. 1989, 40(3): 219-220.
    [172] Teerlink T, Nijveldt R J, Jong S, et al. Determination of arginine, asymmetric dimethylarginine, and symmetric dimethylarginine in human plasma and other biological samples by high-performance liquid chromatography [J]. Analytical Biochemistry, 2002, 303: 131-137.
    [173] Marra M, Bonfigli AR, Testa R, et al. High-performance liquid chromatographic assay of asymmetric dimethylarginine, symmetric dimethylarginine, and arginine in human plasma by derivatization with naphthalene-2, 3-dicarboxaldehyde [J]. Analytical Biochemistry, 2003, 318: 13-17.
    [174] Zhang L, Liu Y, Chen G. Simultaneous determination of allantoin, choline and l-arginine in Rhizoma Dioscoreae by capillary electrophoresis [J]. Journal of Chromatography A, 2004, 1043 317-321.
    [175] Bathl S, Naqvi S, Venkitasubramanian T A. Simple, rapid quantitative determination of lysine and arginine by thin-layer chromatography [J]. Journal of Agricultural and Food Chemistry, 1976, 24(1): 56-57.
    [176] Austin K T, Butzke C E. Spectrophotometric assay for arginine in grape juice and must [J]. American Journal of Enology and Viticulture, 2000, 51(3): 227-232.
    [177] Gump B H, Zoecklein B W, Fugelsang K C, et al. Comparison of analytical methods for prediction of prefermentation nutritional status of grape juice [J]. American Journal of Enology and Viticulture, 2002, 53(4): 325-329.
    [178] Gilboe D D, William J N. Evaluation of the Sakaguchi reaction for quantitative determination of arginine [J]. Proccedings of the Society of Experimental Biology and Medicine, 1956, 91: 535-536.
    [179] Micklus M J, Stein I M. The colorimitric determination of mono- and disubstituted guanidines [J]. Analytical Biochemistry, 1973, 54: 545-553.
    [180] Yamasaki R B, Shimer D A, Feeney R E. Colorimetric determination of arginine residues in proteins by p-nitrophenylglyoxal [J]. Analytical Biochemistry, 1981, 111: 220-226.
    [181] Sastry C S P, Tummuru M K. Spectrophotometric determination of arginine in proteins [J]. Foodchemistry, 1984, 15: 257-260.
    [182] 甘林火, 翁连进, 王士斌. 国产 732 型阳离子交换树脂吸附 L-精氨酸的特性 [J]. 离子交换与吸附, 2002, 18(6): 559-563.
    [183] 甘林火, 翁连进, 韩媛媛等.3种离子交换材料吸附L-精氨酸的研究 [J]. 食品与发酵工业, 2005, 31(1): 1-4.
    [184] Ceriotti G, Spandrio L. An Improved method for the microdetermination of arginine by use of 8-hydroxyquinoline [J]. Journal of Biochemistry, 1957, 66: 603-607.
    [185] 翁连进, 甘林火, 王士斌等. 大孔强酸型阳离子交换树脂对 L-精氨酸的吸附[J]. 过程工程学报, 2004, 4(5): 391-396.
    [186] 张义萍, 张伟国, 郝 刚. 离子交换法从发酵液中提取 L-精氨酸[J]. 食品与发酵工业, 2005, 31(9): 63-65.
    [187] 郝 刚, 钱和. 发酵液中 L-精氨酸定量检测方法的研究[J]. 食品工业科技, 2005, 26(2): 184-186.
    [188] 钱竹, 徐鹏, 章克昌等.大孔树脂分离提取发酵液中灵芝三萜类物质[J]. 食品与生物技术学报, 2006, 25(6): 111-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700