含硫族元素有机金属碳硼烷多核配合物的合成与结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为现代化学中一个重要的研究领域,碳硼烷衍生物及其配合物作为模型化合物在研究有机金属催化反应、分子识别、新型材料的合成、癌症治疗中的中子捕获剂(BNCT)、HIV蛋白酶抑制剂等方面均具有十分重要的意义,正是由于碳硼烷化合物所具有的独特功能性、其本身配位化学的丰富性,对它们的研究一直以来都是化学界引人注目的一类重要性课题,设计并合成新型碳硼烷化合物一直为合成化学家、材料化学家和生物化学家所共同关注,这也是碳硼烷化学研究中的核心问题。
     在前人工作的基础上,本论文围绕16电子碳硼烷化合物Cp~*IrE_2C_2(B_(10)H_(10))(E=S,1a;Se,1b)为中心,系统地研究了其相关化学反应,首先,利用含有“类芳香金属杂环”的16-电子含硫族元素有机金属碳硼烷化合物与低价态过渡金属化合物反应,硫族元素作为桥基来连接不同的金属,形成了含有金属-金属键的双核、三核、四核等多核化合物,建立了利用高氧化态16电子有机金属碳硼烷化合物构建含有金属-金属键簇合物的新的合成方法,这类反应既发生分子之间的氧化、还原,同时伴随着金属对B-H活化的参与,也形成硼与金属之间成键的产物。其次,在上述工作基础上,探索并建立了含有金属原子簇的巢式结构碳硼烷及金属碳硼烷的合成方法,合成了多种结构新颖的有机金属碳硼烷化合物。此外,利用16电子碳硼烷化合物金属原子中心可以发生加成反应这一特性,成功的合成了一系列含有多个碳硼烷分子的超分子化合物,首次合成并表征了含有有机金属碳硼烷-卟啉分子的配位聚合物,为研究碳硼烷分子在超分子化学中的应用提供了方法学上的支持。
     全文共合成了87个新化合物,并测定了其中68个化合物的晶体结构。
     论文的主要内容如下:
     (一)研究了具有半夹心结构16电子体系碳硼烷化合物Cp~*M[E_2C_2(B_(10)H_(10))](M=Rh,Ir;E=S,Se)的合成及结构,晶体结构研究显示该类化合物由Ir(Rh),S(Se),C五个原子形成五元金属环,这个金属环具有平面结构,并且具有一定的类芳香性.利用这一特征,用其与低价态过渡金属配合物Mo(CO)_3(NC_5H_5)_3,w(CO)_3(NC_5H_5)_3,Cr(CO)_3(NC_5H_5)_3反应,合成了含有Ir-M(Mo,W,Cr)金属键的一系列金属原子簇合物{Cp~*Ir[E_2C_2(B_(10)H_(10))]}_2M(CO)_(2·)(M=Mo,W;E=S,Se)。在反应过程中,Ir(Ⅲ)被低价态的过渡金属(Cr,Mo,W)还原,同时Ir-M(Mo,W,Cr)之间形成金属-金属键。通过对化合物{Cp~*Ir[S_2C_2(B_(10)H_(10))]}_2Mo(CO)_2(6a),{Cp~*Ir(CO)[E_2C_2(B_(10)H_(10))](7a),Cp~*Ir(CO)[S_2C_2(B_(10)H_(10))]W(CO)_5(8a)的三阶非线性光学性能研究发现,由于化合物6a的电子云离域化程度比化合物7a,8a要好,因此,化合物6a表现出较好的三阶非线性光学性能。
     (二) 16电子半夹心结构碳硼烷化合物[Cp~*Ir{E_2C_2(B_(10)H_(10))}][E=S(1a),Se(1b)]与等摩尔量的CO_2(CO)_8反应,可以形成三核原子簇化合物[Cp~*Ir{E_2C_2(B_(10)H_(10))}]{CO_2(CO)_5}[E=S(11a),Se(11b)]以及羰基加成产物[Cp~*h(CO){E_2C_2(B_(10)H_(10))}][E=S(7a),Se(7b)]。化合物11a,11b含有由两个Ir-Co金属-金属键和一个Co-Co金属-金属键形成的闭式三角形结构。依据等瓣相似原理,1a(1b)与Fe(CO)_5在脱羰基试剂的作用下合成了双核化合物[Cp~*Ir{E_2C_2(B_(10)H_(10))}]{Fe(CO)_3}[E=S(12a),Se(12b)]。
     (三)化合物1a与Ni(cod)_2按照不同的比例反应分别得到双核化合物[Cp~*Ir{E_2C_2(B_(10)H_(10))}]Ni(cod)(13a)和三核化合物[Cp~*Ir{E_2C_2(B_(10)H_(10))}]_2Ni(14a),13a进一步与1当量的1a反应可以合成14a。1a(1b)与Ni(Ⅱ)化合物的反应得到了不含金属键的三核簇合物[Cp~*Ir{E_2C_2(B_(10)H_(10))}]_2{Ni(SC_4H_9)_2}[E=S(15a),Se(15b)],中心金属Ni为四配位平面构型。而与Pd(PPh_3)_4的反应由于PPh_3与Ir之间的强配位能力,没有生成三核的簇合物,只得到了18电子构型的加成产物[Cp~*Ir(PPh_3){E_2C_2(B_(10)H_(10))}][E=S(16a),Se(16b)]。
     (四)化合物Cp~*M[E_2C_2(B_(10)H_(10))](M=Rh,Ir;E=S,Se)与低价金属配合物[Rh(cod)(μ-Cl)]_2反应,合成了一系列Ir_2Rh,Rh_3结构含有金属-金属键的金属原子簇合物。在反应过程中,Ir~Ⅲ或者Rh~Ⅲ被低价态的过渡金属配合物Rh~Ⅰ还原,同时Ir-Rh,Rh-Rh之间形成金属-金属键。通过一系列反应,研究了三核化合物的生成机理,以及由单核到双核,再到三核的反应过程。
     (五)利用单核化合物Cp~*Ir[E_2C_2(B_(10)H_(10))1(E=S(1a),Se(1b)]与[Rh(cod)(μ-OEt)]_2反应合成了Ir_2Rh_2结构的四核化合物{Cp~*Ir[Se_2C_2(B_(10)H_9)]}Rh_2(cod){Cp~*Ir[Se_2C_2(B_(10)H_(10))]}[E=S(24a);Se(24b)]。
     (六)在含有Ir-Ir金属-金属键碳硼烷配合物的合成中,系统的研究了金属诱导的B-H活化反应,合成了三核簇合物trans-{(cod)Ir[Se_2C_2(B_(10)H_8)(OC_2H_5)]}Ir{[Se_2C_2(B_(10)H_(10))]IrCp~*}(25b),cis-{(cod)Ir[Se_2C_2(B_(10)H_8)(OC_2H_5)]}Ir{[Se_2C_2(B_(10)H_9)]IrCp~*}。(26b),{Cp~*Ir[Se_2C_2(B_(10)H_9)]}{IrSe_2[C_2(B_(10)H_9)(OC_2H_5)]}{[Se_2C_2(B_(10)H_(10))]IrCp~*}(27b)。发现具有反式结构的化合物25b可以进一步反应生成顺式结构的化合物26b。虽然同25b相比,26b中的两个碳硼烷配体具有较强的排斥作用,但是由于Ir-B键的形成,有力地起到固定碳硼烷分子的作用。
     (七)合成了含有金属-金属键的杯状巢式结构碳硼烷化合物{(Cp~*Ir)[E_2C_2(B_9H_(10))][Ir(cod)(OCH_3)]}[E=S(33a),Se(33b)],{(Cp~*Ir)[S_2C_2(B_9H_(10))][Rh(cod)(OCH_3)])(35a),{[Ir(cod)][E_2C_2(B_9H_(10))][Ir(cod)(OCH_3)]}[E=S(37a),Se(37b)],并以其为原料进一步合成了含有金属-金属键的金属碳硼烷化合物{[Ir(cod)][(C_8H_(11))IrE_2C_2(B_9H_9)][Ir(cod)(OCH_3)])[E=S(38a),Se(38b)]。化合物38a(38b)代表着一类新的金属碳硼烷簇合物,这类化合物含有V-型三金属单元,这类化合物的合成为进一步合成杂核金属碳硼烷提供了新的方法。
     (八)研究了Cp~*Rh[E_2C_2(B_(10)H_(10))][(E=S(3a),Se(3b)]与[Ir(cod)(μ-OCH_3)]_2的反应,在该反应中分离并表征了三核金属簇合物Cp~*RhS_2[Ir(cod)]_2(40a),Cp~*RhSe_2[Ir(cod)]_2(40b),以及含有碳硼烷配体的类立方烷结构的金属原子簇合物(Cp~*Rh)_3S_4[C_2(B_(10)H_9)](42a)(cubane-type sulfido cluster),并对其晶体结构进行了表征。
     (九)基于16电子配合物[Cp~*M_2S_2C_2(B_(10)H_(10))](M=Rh,Ir;E=S,Se)易与两电子配体发生加成反应生成18电子配合物的特点,采用双齿或三齿含吡啶基团有机配体与其反应,成功的合成了一系列双核或三核化合物,并利用~1H-NMR、X-射线单晶衍射等方法对其结构进行了表征。通过改变双齿或三齿有机配体的结构,不仅可以调控金属-金属原子间的距离合成长链的双金属化合物,更可以合成多种结构新颖的超分子化合物。
     (十)利用四吡啶基卟啉H_2-tetra(4-pyridyl)porphyrin(H_2-TPyP)与化合物1a,3a反应,合成了碳硼烷-卟啉化合物(H_2-TPyP)[Cp~*Ir_2S_2C_2(B_(10)H_(10))]_4(58),(H_2-TPyP)[Cp~*Rh_2S_2C_2(B_(10)H_(10))]_4(59)。同时进一步研究了金属卟啉与化合物1a,3a的反应,合成了一系列的金属卟啉-碳硼烷化合物。其中,锌卟啉化合物Zntetra(4-pyridyl)porphyrin(Zn-TPyP)与2当量的Cp~*M{S_2C_2(B_(10)H_(10))}(M=Rh,Ir)在CHCl_3反应,可以合成含碳硼烷分子的有机金属配位聚合物{(Zn-TPyP)[Cp~*M{S_2C_2(B_(10)H_(10)))]_2·6(CHCl_3)}_n(61)。而与4当量的1a在THF反应,可以合成的紫色的金属卟啉-碳硼烷化合物{(Zn-TPyP)[Cp~*M{S_2C_2(B_(10)H_(10))}]_4(THF)2}(60)。
The synthesis and properties of dicarba-closo-dode-caboranes were first reported at the end of 1963 in both the United States and the USSR. Their chemistry is one of the most complete in the field of boranes and heteroboranes. One of the most striking features of the carborane is the capability of the 2 carbon atom and 10 boron atoms to adopt the icosahedral geometry in which the carbon and boron atoms are hexacoordinate. This feature of the icosahedral structure gives rise to the unusual properties of such molecules and their carbon and boron derivatives.The use of carborane clusters has been directed toward broadening of their applications in organometallic chemistry, pharmaceutical chemistry, and materials science, such as molecular recognition systems, display devices, modular construction systems, nonlinear optical (NLO) materials, special polymers, and olefin polymerization catalysts.This dissertation describes the synthesis and structural characterization of organometallic complexes with 1,2-dichalcogenolato-1,2-dicarba-closo-dodecaborane (12) (E_2C_2B_(10)H_(10), E = S, Se) ligands, with emphasis being placed on two fields. One is the synthesis of those complexes containing metal-metal bond, the other is the building of multi-cluster complexes.In the dissertation, ninety complexes were synthesized, which containing 7,2-dichalcogenolato-1,2-dicarba-closo-dodecaborane ligand, and sixty-eight complexes were determined through X-ray single crystal diffraction analysis.This dissertation consists of listed contents:(1) The reaction of [Cp*IrCl_2]2(Cp* =η~5-C_5Me_5) with dilithium- 1, 2- dicarba- closo-dodecaborane(12) -1,2-dithiolate or -diselenolate afforded the 16-electron iridium(III) half-sandwich complexes Cp*Ir[E_2C_2(B_(10)H_(10))] [E = S (1a), Se (1b)]. The molecular geometry of la(lb) were determined by X-ray structural analysis. The metallacycle defined by [Ir(1), S(1), S(2), C(1), C(2)] or [Ir(1), Se(1), Se(2), C(1), C(2)] in 1a(1b) is nearly planar and perpendicular to the Cp* ring. A series of trinuclear clusters {Cp*Ir[E_2C_2(B_(10)H_(10))]}_2Mo(CO)_2 (E = S (6a), Se (6b)), {Cp*Ir[E_2C_2(B_(10)H_(10))]}_2 W(CO)_2 (E = S (8a), Se (8b)), containing Ir-Mo, Ir-W metal-metal bond were obtained from the reaction of la(lb) with [Mo(CO)_3(py)_3] or [W(CO)_3(py)_3]in the presence of BF_3·OEt_2. Their structures have been determined by X-ray crystallography. Some of complexes' third-order nonlinear optical (NLO) properties have been investigated by Z-scan technique. The results indicate that 6a exhibit good NLO absorption and self-focusing effects. The hyperpolarizabilityγvalue is calculated to be 2.60×10~(-29) esu for 6a.(2) The 16-electron half-sandwich iridium complexes 1a(1b) reacted with Co_2(CO)_8 in toluene to afford the trinuclear cluster complexes [Cp*Ir{E_2C_2(B_(10)H_(10))}]{Co_2(CO)_5} [E = S(11a), Se(11b)] and mononuclear carbonyl complexes [Cp*Ir(CO){E_2C_2(B_(10)H_(10))}] [E = S(7a), Se(7b)] as by-products respectively. Complexes 11a, 11b were found to consist of close IrCo_2 triangle geometry with two Ir-Co bonds and one Co-Co bond. The binuclear IrFe complexes [Cp*Ir{E_2C_2(B_(10)H_(10))}]{Fe(CO)_3} [E = S(12a), Se(12b)] were obtained from the reaction of 1a, 1b with Fe(CO)_5 and 2 equiv of Me_3NO. The molecular structures of 11a, 11b, 12b have been determined by X-ray crystallography.(3) The reaction of Cp*M[E_2C_2(B_(10)H_(10))] (M = Rh, Ir; E = S, Se) with [Rh(cod)(μ-Cl)]_2 (cod = cyclo-octa-1,5-diene, C_8H_(12)) give a series of trinuclear cluster: 17a, 18a, 19a, 20a, 22a, which containing Ir_2Rh, Rh_3 core. The metal-metal bonds are bridged by dithiolate or diselenolate ligand E_2C_2(B_(10)H_(10))~(2-). Through the formation of trans-{Cp*Ir[S_2C_2(B_(10)H_9)]}Rh{[S_2C_2(B_(10)H_(10))]IrCp*} (22a), we studied the theory from mononuclear, dinuclear cluster to trinuclear cluster.(4) The novel tetrametallic cluster complexes {Cp*Ir[E_2C_2(B_(10)H_9)]}Rh_2(cod) {Cp*Ir[E_2C_2(B_(10)H_(10))]} (E = S(24a); Se(24b)) have been synthesized by reactions of the 16-electron half-sandwich iridium complexes [Cp*Ir{E_2C_2(B_(10)H_(10))}] [E = S(1a), Se(1b)] with [Rh(cod)(μ-OEt)_2] at room temperature in toluene solution. In the solid state, this tetrametallic cluster exhibits an irregular nearly planar metal skeleton with the two carborane dichalcogenolato ligands bridging the four metal centers from the both side of the tetrametallic plane. Even though all metal atoms coordinate bridging chalcogen atoms, they show different electronic and coordination environments.(5) Dimetallic complexes {Cp*Ir[E_2C_2(B_9H_9)][(cod)Ir(OCH_3)]} [E=S(33a), E=Se, (33b)], {Cp*Ir[E_2C_2(B_(10)H_9)][(cod)Ir]} [E=S(34a), E=Se(34b)] were synthesized by the reaction of Cp*Ir[E_2C_2(B_(10)H_(10))] [E = S(1a), Se(1b)] with 2 equivalents of [Ir(cod)(μ-OMe)]_2 (2-Ir). Analogous reaction of la with [Rh(cod)(μ-OMe)]_2 (2-Rh) were investigated and three complexes {Cp*Ir[S_2C_2(B_9H_9)][(cod)Rh(OCH_3)]} (35a), {Cp*Ir[S_2C_2(B_(10)H_(10))][(cod)Rh]} (36a), {Cp*Ir[S_2C_2(B_(10)H_9)][(cod)Rh]} (21a) were obtained. By comparing with the two reaction, the routes of metal induced B-H activation at the B(3)/B(6) of ortho-carborane-1,2-dichalcogenolato ligand were investigated. These nido-carborane complexes such as 33a, 33b, 35a, 35b contain intercluster metal-metal bonds. Moreover, the V-shaped trimetallic unit {(cod)Ir[E_2C_2(B_9H_8)][(cod)Ir(OCH_3)][(C_8H_(13))Ir]} [E = S(38a), Se(38b)] have been constructed through the M_2-nido-carborane complexes{(cod)Ir[E_2C_2(B_9H_9)][(cod)Ir(OCH_3)]} [E = S(37a), Se(37b)]. X-ray structural analyses were studied for complexes 33a, 33b, 34a, 35a, 36a, 37a, 38b and 39b. (6) Base on the rule of addition reaction at the metal center of Cp*M[E_2C_2(B_(15)H_(10))], multicluster molecule [Cp*MS_2C_2(B_(10)H_(10))]_n(L) (M = Rh, Ir) [n = 2, 3, 4] which connected with pyridyl-based ligands, were prepared and characterized by X-ray crystallography. Through the changing of ligand, different kind of multi-nuclear complexes were synthesised, such as complexes 43-54 and tirnuclear supramolecular compelxes 55-57. Moreover, the assembly of soluble, air-stable, porphyrin-carborane supramolecular structure {(Zn-TPyP)[Cp*fr{S_2C_2(B_(10)H_(10))}]_4(THF)_2} (60), {(Zn-TPyP) [Cp*Ir{S_2C_2(B_(10)H_(10))}]_2-6(CHCl_3)}_n (61), based on metal-containing moieties [Cp*Ir{S_2C_2(B_(10)H_(10))}] (la) bridged by nitrogen-based organic spacers are built by the same method.
引文
[1] (a) Wilkinson, G.; Stone, F. G. A.; Abel, E. W. Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, England, 1982, p. 411-542; (b) Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, John Willey & Sons, Inc. 2003, p 149-163.
    [2] General Review: (a) Hawthorne, M. F. Ace. Chem. Res. 1968, 1, 281-288; (b) Dunks, G. B.; Hawthorne, M. F. Acc. Chem. Res. 1973, 6, 124-131; (c) Hawthorne, M. F. J. Organometal. Chem. 1975, 100, 97-110; (d) Bregadze. V. I. Chem. Rev. 1992, 92, 209-223; (e) Grimes, R. N. J. Organometal. Chem. 1999, 581, 1-12; (f) Hosmane, N. S. J. Organometal. Chem. 1999, 581, 13-27; (g) Hawthorne, M. F.; Maderna, A. Chem. Rev. 1999, 99, 3421-3434; (h) Vicente, M. G. H. Curr. Med. Chem. Anti-Cancer Agents, 2001, 1, 175-194; (i) Kang, S. O.; Lee, J.; Ko, J. Coord. Chem. Rev. 2002, 231, 47-65; (j) Xie, Z. Coord. Chem. Rev. 2002, 231, 23-46; (k) Hosmane, N. S.; Maguire, J. A. Eur. J. Inorg. Chem. 2003, 3989-3999; (l) Hosmane, N. S. Pure Appl. Chem., 2003, 75, 1219-1229; (m) Jin, G. -X. Coord. Chem. Rev. 2004, 248, 587-602; (n) Xie, Z. Chin. J. Chem. 2005, 23, 1100-1102.
    [3] (a) Badr, I. H. A.; Diaz, M.; Hawthorne, M. F.; Bachas, L. G. Anal. Chem. 1999, 71, 1371-1377; (b) Hawthorne, M. F.; Zheng, Z. Acc. Chem. Res. 1997, 30, 267-276; (c) Hawthorne, M. F.; Varadarajan, A.; Knobler, C. B.; Chakrabarti, S.; Paxton, R. J.; Beatty, B. G.; Curtis, F. L. J. Am. Chem. Soc. 1990, 112, 5365-5366;
    [4] (a) Base, K.; Tierney, M. T.; Fort, A.; Muller, J.; Grinstaff, M. W. Inorg. Chem. 1999, 38, 287-289; (b) Fendrich, W.; Harvey, J. E.; Kaszynski, P. Inorg. Chem. 1999, 38, 408-410; (c) Hong, E.; Jang, H.; Kim, Y.; Jeoung, S. C.; Do, Y. Adv. Mater. 2001, 13, 1094-1099.
    [5] (a) Lee, S.; Mazurowski, J.; Ramseyer, G.; Dowben, P. A. J. Appl. Phys. 1992, 72, 4925; (b) Lee, S.; Dowben, P. A. J. Appl. Phys. 1994, A58, 223; (c) Byun, D.; Hwang, S. D.; Dowben, P. A.; Perkin, F. K.; Filips, F.; Ianno, N. J. Appl. Phys. Lett. 1994, 64, 1968; (d) Hwang, S. D.; Byun, D.; lanno, N. J.; Dowben, P. A.; Kim, H. R.Appl. Phys. Lett. 1996, 68, 1495;
    [6] (a) Douglass, A. G.; Czuprynski, K.; Mierzwa, M.; Kaszynski, P.; J. Mater. Chem. 1998, 8, 2391-2398; (b) Douglass, A. G.; Czuprynski, K.; Mierzwa, M.; Kaszynski, P.; Chem. Mater. 1998, 10, 2399-2402; (c) Crowther, D. J.; Swenson, D. C.; Jordan, R. F. J. Am. Chem. Soc. 1995, 117, 10403-10404; (d) Bowen, D. E.; Jordan, R. F. Organometallics 1995, 14, 3630-3635.
    [7] Cigler, P.; Kozisek, M.; Rezacova, P.; Brynda, J.; Otwinowski, Z.; Pokorna, J.; Plesek, J.; Gruener, B.; Doleckova, L.; Masa, M.; Sedlacek, J.; Bodern, J.; Kraeusslich, H. -G.; Kral, V.; Konvalinka, J. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 15394-15399.
    [8] Hawthorne, M. F.; Zink, J. I.; Skelton, J. M.; Bayer, M. J.; Liu, C.; Livshits, E.; Baer, R.; Neuhauser, D. Science, 2004, 303, 1849-1851
    [9] (a) Reed, C. A., Kim, K. -C., Bolskar, R. D., Mueller, L. J. Science 2000, 289, 4660-4667; (b) Reed, C. A. Acc. Chem. Res. 1998, 31, 133-139
    [10] (a) Teixidor, F.; Flores, M. A.; Vinas, C.; Sillanpaa, R.; Kivekas, R. J. Am. Chem. Soc. 2000, 122, 1963-1973; (b) Tutusaus, O.; Vinas, C.; Nunez, R.; Teixidor, F.; Demonceau, A.; Delfosse, S.; Noels, A. F.; Mata, I.; Molins, E. J. Am. Chem. Soc. 2003, 125, 11830-11831; (c) Tutusaus, O.; Vinas, C.; Kivekas, R.; Sillanpaa, R.; Teixidor, F. Chem. Commun. 2003, 2458-2459; (d) Sogbein, O. O.; Merdy, P.; Morel, P.; Valliant, J. F. Inorg. Chem. 2004, 43, 3032-3034; (e) Vinas, C.; Llop, J.; Teixidor, F.; Kivekas, R.; Sillanpaa, R. Chem. Eur. J. 2005, 11, 1933-1941; (f) Nunez, R.; Tutusaus, O.; Teixidor, F.; Vinas, C.; Sillanpaa, R.; Kivekas, R. Chem. Eur. J. 2005, 11, 5637-5647; (g) Cheung, M. -S.; Chan, H. S.; Xie, Z. Organometallic 2005, 24, 4207-4215; (h) Lee, Y. -J.; Lee, J. -D.; Jeong, H. -J.; Son, K. -C.; Ko, J.; Cheong, M.; Kang, S. O. Organometallics 2005, 24, 3008-3019; (i) Wei, X., Carroll, P. J.; Sneddon, L. G. Organometallics 2006, 3, 609-621; (j) Iwahori, F.; Nishikawa, Y.; Mori, K.; Yamashita, M.; Abe, J. Dalton Trans. 2006, 3, 473-477.
    [11] Lipscomb, W. N. NobelLecture, 1976.
    [12] (a) Heying, T. L.; Ager, J., W., Jr.; Clark, S. L.; Mangold, D. J.; Goldstein, H. L.; H. L.; Hillman, M.; Polak, R. J.; Szymanski, J. W. Inorg. Chem. 1963, 2, 1089; (b) Fein, M. M.; Bobinski, J. ; Mayes, N. ; Schwartz, N. ; Cohn, M. S. Inorg. Chem. 1963, 2, 1111; (c) Zakharkin, L. I. ; Stanko, V. I. ; Brattsev, V. A. ; Chapovsky, Yu. A. ; Struchkov, Yu. I. Akad. Nauk SSSR, Ser, Khim, 1963, 2069; (d) Zakharkin, L. I. ; Stanko, V. I. ; Brattsev, V. A. ; Chapovsky, Yu. A. ; Okhlobystin, O. ; Yu. I. Akad. Nauk SSSR. Ser, Khim, 1963, 2238.
    [13] Selected examples: (a) Wiesboeck, R. A. ; Hawthorne, M. F. J. Am. Chem. Soc. 1964, 86, 1642-1643; (b) Hawthorne, M. F. ; Young, D. C. ; Wegner, P. A. ; J. Am. Chem. Soc. 1965, 87, 1818-1819; c) Hawthorne, M. F. ; Pilling, R. L. J. Am. Chem. Soc. 1967, 89, 470-471; d) Hawthorne, M. F. ; Young, D. C. ; Garrett, P. M. ; Owen, D. A. ; Schwerin, S. G. ; Tebbe, F. N. ; Wegner, P. A. J. Am. Chem. Soc. 1968, 90, 862-868.
    [14] (a) Zakharkin, L I. ; Pisareva, I. V. ; Bikkineev, R. Kh, Izv. Akad. Nauk. SSSR, Ser. Khim. 1977, 641;(b) Plesek, J. ; Hermanek, S. Chem. Ind. 1977,360. (c) Bregadze, V. I. ; Kampel, V. Ts. ; Godovikov, N. N. J. Organomet. Chem. 1976, 112, 249; (d) Bregadze, V. I. ; Usiatinsky, A. Ya. ; Godovikov, N. N. J. Organomet. Chem. 1985, 112, 249.
    [15] Togni, A. ; Halterman, R. L. Metallocenes: Synthesis, Reactivity, Applications; Wiley-VCH: New York, 1998; Vol. 1 and 2.
    [16] Hawthorne, M. F. ; Young, D. C. ; Wegner, P. A. J. Am. Chem. Soc. 1965, 87, 1818-1819.
    [17] (a) Grimes, R. N. In Comprehensive Organometallic Chemistry Ⅱ; Abel, E. W. , Stone, F. G. A. , Wilkinson, G. , Eds.; Pergamon: New York, 1995; Vol. 1, pp 373-430; (b) Grimes, R. N. Coord. Chem. Rev. 2000, 200-202, 773-811.
    [18] (a) Saxena, A. K. ; Hosmane, N. S. Chem. Rev. 1993, 93, 1081-1124; (b) Saxena, A. K. ; Maguire, J. A. ; Hosmane, N. S. Chem. Rev. 1997, 97, 2421-2462.
    [19] (a) Fehlner, T. P. Metallaboranes of the earlier transition metals: relevance to the cluster electron counting rules. ACS Symposium Series, 2002, 822, 49-67; (b) Yan, H. ; Noll, B. C. ; Fehlner, T. P. J. Am. Chem. Soc. 2005, 127, 4831-4844; (c) Ghosh, S. ; Noll, B. C. ; Fehlner, T. P. Angew. Chem. Int. Ed. 2005, 44, 2916-2918.
    [20] (a) Xie, Z. ; Wang, S. ; Zhou, Z. -Y. ; Mak, T. C. W. Organometallics 1998, 17, 1907-1909; (b) Xie, Z. ; Wang, S. ; Zhou, Z. -Y. ; Mak, T. C. W. Organometallics 1999, 18, 1641-1652; (c) Wang, S. ; Yang, Q. ; Mak, T. C. W. ; Xie, Z. Organometallics 1999, 18, 4478-4487; (d) Chui, K. ; Yang, Q. ; Mak, T. C. W. ; Xie, Z. Organometallics 2000, 19, 1391-1401; (e) Zi, G. ; Yang, Q. ; Mak, T. C. W. ; Xie, Z. Organometallics 2001, 20, 2359-2366; (f) Wang, S. ; Yang, Q. ; Mak, T. C. W. ; Xie, Z. Organometallics 2000, 19, 334-343.
    [21] Yu, X. Y. ; Jin, G. -X; Hu, N. H. ; Weng, L. H, Organometallics 2002, 21, 5540-5548.
    [22] (a) Lu, S. X. ; Jin, G. -X. ; Eibl, S. ; Herberhold, M. ; Xing, Y. Organometallics 2002, 21,2533-2535;(b)卢士香,金国新,胡宁海.高等学校化学学报,2002,23,1077-1080;(c)孔 庆安,金国新,林永华,高等学校化学学报,2002,23,410-412;(d)Lu, S. X. ; Jin, G. -X. ; Hu N. H. Chin. Struc. Chem. 2002, 21, 493-496; (e) Lu, S. X. ; Jin, G. -X. ; Hu, N. H. Chem. Res. Chin. Univ. 2002, 18, 405-408; (f) Kong, Q. A. ; Jin, G. -X. ; Cai, S. ; Weng, L. H Chin. Sci. Bull. 2003, 48, 1733-1736; (g) Yu, X. Y. ; Jin, G. -X. ; Hu, N. -H. Chin. J. Chem, 2003, 21, 446-451.
    [23] Yu, X. Y. ; Lu, S. X; Jin, G. -X; Weng, L. -H. Inorg. Chim. Acta 2004, 357, 361-366.
    [24] Yu, X. Y. ; Jin, G. -X. ; Weng, L. H. Chin. J. Chem. 2002, 20, 1256-1262.
    [25] (a)Arnold, J. Prog. Inorg. Chem. 1995, 43, 353; (b) Dilworth, J. R.; Hu, J. Adv. Inorg. Chem. 1993, 40, 411.
    [26] (a) Herberhold, M. ; Jin, G. -X. ; Yan, H. ; Milius, W. ; Wrackmeyer, B. J. Organomet. Chem. 1999, 587, 252-257; (b) Herberhold, M. ; Jin, G.-X. ; Yan, H. ; Milius, W. ; Wrackmeyer, B. Eur. J. Inorg. Chem. 1999, 873-875.
    [27] (a) Bae, Y. ; . Park, Y. I; Ko, J. ; Park, K. I. ; Cho, S. I. ; Kang, S. O. Inorg. Chim. Acta, 1999, 289, 141; (b) Kim, D. H. ; Ko, J. ; Park, K. ; Cho. S. ; Kang, S. O. Organometallics 1999, 18, 2738; (c) Won, J. ; Kim, D. ; Kim, B. Y. ; Kim, S. J. ; Lee, C. ; Cho, S. ; Ko, J. ; Kang, S. O. Organometallics 2002, 21, 1443-1453.
    [28] (a)Herberhold, M. ; Yan, H. ; Milius, W. ; Wrackmeyer, B. Angew. Chem. Int. Ed. 1999, 38, 3689; (b)Herberhold, M. ; Yan, H. ; Milius, W. ; Wrackmeyer, B. Chem. Eur. J. 2000, 6, 3026; (c)Herberhold, M. ; Yan, H. ; Milius, W. ; Wrackmeyer, B. J. Chem. Soc. Dalton Trans. 2001, 1782; (d)Herberhold, M. ; Yan, H. ; Milius, W. ; Wrackmeyer, B. Organometallics 2000, 19, 4289-4294; (e)Herberhold, M. ; Yan, H. ; Milius, W. ; Wrackmeyer, B. Chem. Eur. J. 2002, 8, 388-395; (f) Wrackmeyer, B. ; Yan, H. ; Milius, W. ; Herberhold, M. Russ. Chem. B, 2001, 50, 1518-1524.
    [29] Karlin, K. D. ; Stiefel, E. I. Progress in Inorganic Chemistry, John Willey & Sons, Inc. 2003, Vol. 52,
    [30] Herberhold, M. ; Yan, H. ; Milius, W. ; Wrackmeyer, B. Organometallics 2000, 19, 4289-4294
    [31] (a) Kajitani, M. ; Igarashi, A. ; Hatano, H. ; Akiyama, T. ; Sugimori, A. ; Matsumoto, S. ; Iguchi, Y. ; Bonnemann, H. ; Shimizu, K. ; Sato, G. P. J. Organomet. Chem. 1995, 485, 31; (b) Hatano, H. ; Kajitani, M. ; Akiyama, T. ; Sakaguchi, Y. ; Nazkamura, J. ; Hayashi, H. ; Sugimori, A. Chem. Lett. 1990, 1089.
    [32] Yang, K. ; Don, M. -J. ; Sharma, D. K. ; Bott, S. G. ; Richmond, M. G. J. Organomet. Chem. 1995, 495, 61-69.
    [1] Togni, A. ; Halterman, R. L. Metallocenes: Synthesis, Reactivity, Applications; John Wiley & Sons, Inc. : New York, 1998; Vol. 1 and 2.
    [2] 金国新,孔庆安.化学进展,1998,10,16-32
    [3] Yu, X. Y. ; Jin, G. -X; Hu, N. H. ; Weng, L. H. Organometallics 2002, 21, 5540-5548.
    [4] (a) Herberhold, M. ; Jin, G. -X. ; Yan, H. ; Milius, W. ; Wrackmeyer, B. Eur. J. Inorg. Chem. 1999, 873-875; (b) Herberhold, M. ; Jin, G. -X. ; Yan, H. ; Milius, W. ; Wrackmeyer, B. J. Organomet. Chem. 1999, 587, 252-257. (c)Kong, Q. ; Jin, G. -X. ; Cai, S. Y. ; Weng, L. H. Chin. Sci. Bull. 2003, 48, 1733.
    [5] (a) Kim, D. H. ; Ko, J. ; Park, K. ; Cho, S. ; Kang, S. O. Organometallics 1999, 18, 2738; (b) Won, J. H. ; Kim, D. H. ; Kim, B. Y. ; Kim, S. J. C. Lee, Cho, S. ; Ko, J. ; Kang, O. Organometallics 2002, 21, 1443;
    [6] Blake, A. J. ; Fotheringham, J. D. ; Stephenson, T. A. Acta Crystallogr. Sect. C, 1990, 46, 1102.
    [7] Xi, R. ; Abe, M. ; Suzuki, T. ; Nishioka, T. ; Isobe, K. J. Organomet. Chem. 1997, 549, 117-125.
    [8] Sellmann, D. ; Geck, M. ; Knoch, F. ; Ritter, G. ; Dengler, J. J. Am. Chem. Soc. 1991, 113, 3819
    [9] Cotton, F. A. Advanced Inorganic Chemistry. New York: John Wiley & Sons, Inc. 1999.
    [10] Miller, E. J. ; Brill, T. B. ; Rheingold, A. L. ; Fultz, W. C. J. Am. Chem. Soc. 1983, 105, 7580-7584.
    [11] Habe, S. ; Yamada, T. ; Nankawa, T. ; Mizutani, J. ; Murata, M. ; Nishihara. H. Inorg. Chem. 2003, 42, 1952-1955.
    [12] Hou, X. -F. ; Wang, X. -C. Wang, J. -Q. ; Jin, G. -X. J. Organomet. Chem. 2004, 689, 2228-2235
    [13] (a) G. Wilkinson, G. F. A. Stone, E. W. Abel. Comprehensive Organometallic Chemistry. Pergamon Press, Oxford, 1982. (b) Edward I. Stiefel, Kenneth D. Karlin. Progress in Inorganic Chemistry, John Wiley & Sons, Inc. 2004, 52
    [14] Chan, M. K. ; Kim, S. ; Rees, D. C. Science 1993, 269, 792-794.
    [15] Holm, R H. Adv. in Inorg. Chem. 1992, 38, 1-71
    [16] Holm, R H. Chem. Soc. Rev. 1981, 10, 455
    [17] Xin, X. ; Jin, G. -X.; Wang, B. Y. ; Pope, M. T. Inorg. Chem. 1990, 29, 553,
    [18] Low, K. M. M. ; Hou, H. ; Zheng, H; Wong, W. ; Jin. G. -X. ; Xin. X. ; Ji. W. Chem. Commun. 1998, 505-506.
    [19] (a) Hoffmann, R. ; Angew. Chem. Int. Ed. 1982, 21, 711. (b)Brannstein, P. Perspectivies in Coordination Chemistry. Basel: VCH, 1992, 67
    [20] (a) Herberhold, M. ; Jin, G. -X. Angew. Chem. Int. Ed. 1994, 33, 964. (b) Herberhold, M. ; Jin, G. -X. ; Rheingold. A. L. Angew. Chem. Int. Ed. 1995, 34, 656.
    [21] Jin, G. -X. Coord. Chem. Rev. 2004, 248, 587-602
    [22] (a) Hieber, W. ; Muhlbauer, F. Z. Anorg. Allg. Chem. 1935, 221, 337. (a) Westland, A. D. ; Muriithi. N. Inorg. Chem. 1973, 12, 2356-2361. (b) Nesmeyanov, A. N. ; Krivykh, V. V. ; Kaganovich, V. S. ; Rybinskaya. M. I. J. Organometal. Chem. 1975, 102, 185-193.
    [23] Nihei, M. ; Nankawa, T. ; Kurihara, M. ; Nishihara, H. Angew. Chem. Int. Ed. 1999, 38, 1098-1100.
    [24] Herberhold, M. ; Jin, G. -X. ; Rheingold, A. L. Angew. Chem. Int. Ed. 1995, 34, 656-657.
    [25] (a) Masumori, T. ; Seino, H. ; Mizobe, Y. ; Hidai, M. Inorg. Chem. 2000, 39, 5002. (b) Seino, H. ; Masumori, T. ; Hidai, M. ; Mizobe, Y. Organometallics 2003, 22, 3424.
    [26] (a) Gut, H. P. ; Welte, N. ; Link, U. ; Fischer, H. ; Steiner, U. E. Organometallic 2000, 19, 2354. (b) Elgamiel, R. ; Huppert, I. ; Lancry, E. ; Yerucham, Y. ; Schultz, R. H. Organometallic 2000, 19, 2237. (c) Rooney, A. D. ; McGarvey, J. J. ; Gordon, K. C. Organometallics 1995, 14, 107.
    [27] Herberhold, M. ; Jin, G. -X. ; Rheingold, A. L. J. Organomet. Chem. 1998, 570, 241-246.
    [28] Ikada, T. ; Kuwata, S. ; Mizobe, Y. ; Hidai, M. Inorg. Chem. 1999, 38, 64.
    [29] Seino, H. ; Iwata, N. ; Kawarai, N. ; Hidai, M. ; Mizobe, Y. Inorg. Chem. 2003, 42, 7387.
    [30] (a)李纲.太原:山西大学博士学位论文,2004.(b)李泳,长春:吉林大学博士学位论文,2002.
    [31] (a) Wright, J. R.; Klingen, T. J. J. Inorg. Nucl. Chem. 1970, 32, 2853.
    (b) Lamrani, M.; Hamasaki, R.; Mitsuishi, M.; Miyashita, T.; Yamamoto, Y. Chem. Commun. 2000, 1595.
    (c) Hong, E.; Jang, H.; Kim, Y.; Jeoung, S. C; Do, Y. Adv. Mater. 2001.14,1094.
    [32] (a) Guha, S.; Frazier, C. C.; Porter, P. L.; Kang, K.; Finberg, S. E. Opt. Lett. 1989,14, 952;
    (b) Wang, Y; Cheng, L. T. J. Phys. Chem. 1992, 96,1530.
    [33] (a) Hill, C. A. S.; Charlton, A.; Underhill, A. E.; Malik, K. M. A.; Hursthouse, M. B.; Karaulov, A. I.; Oliver. S. N.; Kershaw, S. V. J Chem. Soc, Dalton. Trans. 1995, 587.
    (b) Dai, J.; Bian, G. Q.; Wang, X.; Xu, Q. F.; Zhou, M. Y; Munakata, M.; Maekawa, M.; Tong, M. H.; Sun, Z. R.; Zeng, H. P. J. Am. Chem. Soc. 2000,122,11007.
    [34] (a) Lamrani, M.; Hamasaki, R.; Mitsuishi, M.; Miyashita, T.; Yamamoto, Y. Chem. Commun. 2000,1595.
    (b) Taylor, J.; Caruso, J.; Newlon, A.; Englich, U.; Ruhlandt-Senge, K.; Spencer, J. T. Inorg. Chem. 2001,40,3381.
    [1] (a) Sappa, E.; Tiripicchio, A.; Braunstein, P. Chem. Rev. 1983, S3, 203;
    (b) Hoffman, D. M.; Hoffman, R.; Fisel, C. R. J. Am. Chem. Soc. 1982, 104, 3858.
     (c) Baxter, R. J.; Knox, G. R.; Pauson, P. L.; Spicer. M. D. Organometallics 1999,18, 197-205
    [2] Shvo, Y.; Hazum, E. J. Chem. Soc. Chem. Commun. 1975, 829.
    [3] (a) Sly, W. G. J. Am. Chem. Soc. 1959, 81, 18;
    (b) Brown, D. A. J. Chem. Phys. 1960, 33, 1037;
    (c) Summer, G. G.; Klug, H. P.; Alexander, L. E. Acta Cryst. 1964,17, 732;
    (d) Herberhold, M. Jin, G. -X, Rheingold, A. L. Angew, Chem. Int, Ed. Engl. 1995,34, 656.
    [4] Kim, D. H.; Ko, J.; Park, K.; Cho, S.; Kang, S. O. Organometallics 1999,18, 2738;
    [5] (a) Rosenberg, S.; Mahoney, W. S.; Hayes, J. M.; Geoffroy, G. L.; Rheingold, A. L. Organometallics 1986, 5, 1065;
    (b) Crespi, A. M.; Sabat, M; Shriver, D. F. Inorg. Chem. 1988, 27, 812;
    (c) Chen, J.; Daniels, L. M.; Angelici, R. J. J. Am. Chem. Soc. 1991, 113, 2544;
    (d) Pergola, R. D.; Garlaschelli, L.; Demartin, F.; Manassero, M.; Masciocchi, N.; Sansoni, M. J. Chem. Soc, Dalton Trans. 1990, 127;
    (e) Bruce, M. I.; Koutsantonis, G. A.; Tiekink, E. R. T. J. Organomet. Chem. 1991, 407, 391;
    (f) Pergola, R. D.; Ceriotti, A.; Garlaschelli, L.; Demartin, F.; Manassero, M.; Masciocchi, N.; Sansoni, M. Inorg. Chem. 1993, 32, 3277;
    (g) Jones, W. D.; Chin, R. M. J. Am. Chem. Soc. 1994,116, 198;
    (h) Vicic, D. A.; Jones, W. D. Organometallics 1997, 16, 1912;
    (i) Tang, Z.; Nomura, Y.; Kuwata, S.; Ishii, Y.; Mizobe, Y.; Hidai, M. Inorg. Chem. 1998, 37, 4909.
    [6] (a) Mathur, P.; Ghosh, S. Organometallic 1997, 16, 3536;
    (b) Mathur P.; Ghosh, S.; Sarkar, A.; Rheingold, A. L.; Guzei, I. A. Organometallic 1998,17, 770.
    [7] Cotton, F. A.; Troup, J. M. J. Am. Chem. Soc. 1974, 96, 4155.
    [8] (a) Nakagawa, N.; Yamada, T.; Murata, M.; Sugimoto, M.; Nishihara, H. Inorg. Chem. 2006, 45, 14-16;
    (b) Murata, M.; Habe, S.; Araki, S.; Namiki, K.; Yamada, T.; Nakagawa, N.; Nankawa, T.; Nihei, M.; Mizutani, J.; Kurihara, M.; Nishihara, H. Inorg. Chem. 2006,45,1108-1116.
    [9] Smith, H. D.; Martin, J. R.; Robinson, A.; Papetti, S. Inorg. Chem. 1967, 6, 1014.
    [10] Yu X.-Y. Lu, S. -X., Jin, G -X., Weng, L. H. Inorg. Chim. Acta 2004,357,361.
    [1] (a) Wilkinson, G. ; Stone, G. F. A. ; Abel. E. W. Comprehensive Organometallic Chemistry. Pergamon Press, Oxford, 1982. (b) Cotton. F. A. Advanced inorganic chemistry. 6th ed. : John Wiley & Sons, Inc. New York, 1999. (c) Stiefel, E. I.; Karlin. K. D. Progress in Inorganic Chemistry, John Wiley & Sons, Inc. 2004.
    [2] (a) Dubois. M. R. Chem. Rev. 1989, 89, 1-9; (b) Roof. L. C. ; Kolis. J. W. Chem. Rev. 1993, 93, 1037-1080.
    [3] Margoshes, M. ; Vallee, B. L. J. Am. Chem. Soc. 1957, 79, 4813-4814.
    [4] (a) Disalvo, F. J. Science, 1991, 247, 649; (b) Tenne, R. ; Margulis, L. ; Genut, M. Nature 1992, 360, 444-446.
    [5] (a) Nishioka, T. ; Isobe, K. ; Kinoshita, I; Ozawa, Y. ; Miguel, A. V. ; Nakai, T. ; Miyajima, S. Organometallics 1998, 17, 1637-1639; (b) Tang, Z. ; Nomura, Y. ; Ishii, Y. ; Mizobe, Y. ; Hidai, M. ; Organometallics 1997, 16, 151-154; (c) Kajitani, H. ; Tanabe, Y. ; Kuwata, S. ; Iwasaki, M. ; Ishii, Y. Organometallics 2005, 24, 2251-2254
    [6] (a) Kim, D. H. ; Ko, J. ; Park, K. ; Cho, S. ; Kang, S. O. Organometallics 1999, 18, 2738; (b) Bae, Y. ;. Park, Y. I; Ko, J. ; Park, K. I. ; Cho, S. I. ; Kang, S. O. Inorg. Chim. Acta 1999, 289, 141. (c) Herberhold, M.; Jin, G-X.; Yah, H.; Milius, W.; Wrackmeyer, B. J. Organomet. Chem. 1999, 587, 252. (d) Herberhold, M.; Jin, G.-X.; Yan, H.; Milius, W.; Wrackmeyer, B. Eur. J. Inorg. Chem. 1999, 873-875.
    [7] (a)Herberhold, M.; Yan, H.; Milius, W.; Wrackmeyer, B. Angew. Chem. Int. Ed. 1999, 38, 3689. (b)Herberhold, M.; Yan, H.; Milius, W.; Wrackmeyer, B. Chem. Eur. J. 20011, 6, 3026. (c)Herberhold, M.; Yan, H.; Milius, W.; Wrackmeyer, B. J. Chem. Soc. Dalton Trans. 2001, 1782. (d)Herberhold, M.; Yan, H.; Milius, W.; Wrackmeyer, B. Organometallics 2000, 19, 4289-4294. (e)Herberhold, M.; Yan, H.; Milius, W.; Wrackmeyer, B. Chem. Eur. J. 2002, 8, 388-395. (f) Wrackmeyer, B.; Yan, H.; Milius, W.; Herberhold, M. Russ. Chem. B, 2001, 50, 1518-1524.
    [8] (a) Bae, J. -Y.; Lee, Y. -J.; Kim, S. -J.; Ko, J.; Cho, S.; Kang, S. O. Organometallics 2000, 19, 1514-1521; (b) Lee, Y. -J.; Lee, J. -D.; Kim, S. -J.; Ko, J.; Suh, I. -H.; Cheong, M.; Kang, S. O. Organometallic 2004, 23, 1, 135-143.
    [9] Hoel, E. L.; Hawthorne, M. F. J. Am. Chem. Soc. 1974, 96, 6770-6771.
    [10] McDonald, R.; Cowie, M. Inorg. Chem. 1990, 29, 1564-1571.
    [11] Antwi-Nsiah, F. H.; Oke, O.; Cowie, M. Organometallics 1996, 15, 1042-1054.
    [12] Tang, Z.; Nomura, Y.; Ishii, Y.; Mizobe, Y.; Hidai, M. Organometallics 1997, 16, 151-154.
    [13] (a) Cai, S. Y.; Wang, J. Q.; Jin, G. -X. Organometallics 2005, 24, 4226; (b) Cai, S. Y.; Wang, J. Q.; Jin, G.-X. Organometallics 2005, 24, 5280-6286.
    [14] (a)Pinillos, M. T.; Jarauta, M. P.; Oro, L. A.; Tiripicchio, A.; Tiripicchio-Camellini, M. J. Organomet. Chem. 1988, 339, 181; (b) Claver, C.; Ruiz, A.; Masdeu, A. M.; Vinas, J.; Saballs, T.; Lahoz, F. J.; Plou. F. J. J. Organomet. Chem. 1989, 373, 269; (c) Tatsumi, K.; Kawaguchi, H.; Inoue, Y.; Nakamura, A.; Cramer, R. E.; Golen, J. A. Angew. Chem. Int. Ed. Engl. 1993, 32, 763; (d) Bisello, A.; Ceccon, A.; Gambaro, A.; Ganis, P.; Manoli, F.; Santi, S.; Venzo, A. J. Organomet. Chem. 2000, 593, 315; (e) Ceccon, A.; Ganis, P.; Manoli, F.; Venzo, A. J. Organomet. Chem. 2000, 601, 267.
    [15] Hernandez-Gruel, M. A. F.; Perez-Torrente, J. J.; Ciriano, M. A.; Lanoz, F. J.; Oro. L. A.Angew. Chem. Int. Ed. 1999, 38, 2769.
    [16] Cai, S. Y. ; Hou, X. F. ; Weng, L. -H. ; Jin. G. -X. J. Organomet. Chem. 2005, 690, 910.
    [17] Polo, A. ; Claver, C. ; Castillon, S. ; Ruiz, A. ; Bayon, J. C. ; Real, J. ; Mealli, C. ; Masi. D. Organometallics 1992, 11, 3525.
    [18] Cruz-Garritz, C. ; Rodriguez, B. ; Torrens, H. Transition Met. Chem. 1984, 9, 284.
    [19] Claver, C. ; Masdeu, A. M. ; Ruiz, N. ; Foces-Foces, C. ; Cano, F. H. ; Apreda, M. C. ; Oro, L. A. ; Garcia-Alejandre, J. ; Torrens, H. J. Organomet. Chem. 1990, 398, 177.
    [20] Casado, M. A. ; Perez-Torrente, J. J. ; Ciriano, M. A. ; Edwards, A. J. ; Lahoz. F. J. ; Oro, L. A. Organometallics 1999, 18, 5299.
    [21] Perez-Torrente, J. J.; Casado, M. A.; Ciriano. M. A.; Edwards, A. J.; Lahoz. F. J.; Oro, L. A. Inorg. Chem. 1996, 35, 1782.
    [22] Teixidor, F.; Flores, M. A.; Vinas, C.; Sillanpaa, R.; Kivekas, R. J. Am. Chem. Soc. 2000, 122, 1963-1973.
    [23] (a) Farrugia, L. J.; Orpen, A. G.; Stone, F. G. A. Polyhedron, 1983, 2, 171-173; (b) Giacomo, B.; Gianfranco, S.; Renzo, R.; Raymond, R.; Fabrizia, G; Dario. B. Helv. Chim. Acta 1993, 76, 2913-2925; (c) Galsworthy, J. R.; Hattersley, A. D.; Housecroft, C. E.; Rheingold, A. L.; Waller, A.J. Chem. Soc. Dalton Trans. 1995, 4, 549-557.
    [24] (a)Pannetier, G.; Fougeroux, P.; Bonnaire, R.; Platzer, N. J. Less-Common Metals, 1971, 24, 83-92; (b) Uson, R.; Oro, L. A.; Cabeza, J. A. Inorg. Synth. 1985, 23, 126-130; (c) Green, L. M.; Meek, D. W. Organometallics 1989, 8, 659-666.
    [1] (a) Grimes, R. N. Carboranes; Academic Press: New York, 1970; p 54. (b) Hawthorne, M. F. In Advances in Boron and the Boranes; Liebman, J. F., Grenberg, A., Williams, R. S., Eds.; VCH: New York, 1988; p 225, and references therein. (c) Bregadze, V. I. Chem. Rev. 1992, 92, 209-223; (d) Hawthorne, M. F.; Zheng, Z. Acc. Chem. Res. 1997, 30, 267-276; e) Xie, Z. Acc. Chem. Res. 2003, 36, 1-9.
    [2] (a) Lee, H.-S.; Bae, J.-Y.; Kim, D.-H.; Kim, H. S.; Kim, S.-J.; Cho, S.; Ko, J.; Kang, S. O. Organometallics 2002, 21, 210-219; (b)Won, J.-H.; Kim, D. -H.; Kim, B. Y.; Kim, S. -J.; Lee, C.; Cho, S.; Ko, J.; Kang, S. O. Organometallics 2002, 21, 1443-1453; (c) Lee, Y. -J.; Lee, J. -D.; Kim, S. -J.; Ko, J.; Suh, I. -H.; Cheong, M.; Kang. S. O. Organometallics 2004, 23, 135-143; (d) Lee, Y. -J.; Lee, J. -D.; Kim, S. -J.; Yoo, B. W.; Suh, I. -H.; Cheong, M.; Kang. S. O. Organometallics 2004, 23, 490-497.
    [3] (a) Bae, J. -Y.; Park, Y. -I.; Ko, J.; Park, K. -I.; Cho, S. -I.; Kang, S. O. Inorg. Chim. Acta, 1999, 289, 141-148; (b) Herberhold, M.; Jin, G. X.; Yan, H.; Milius, W.; Wrackmeyer, B. J. Organomet. Chem. 1999, 587, 252-257; (c) Herberhold, M.; Jin, G. X.; Yan, H.; Milius, W.; Wrackmeyer, B. Eur. J. Inorg. Chem. 1999, 873-875; (d) Herberhold, M.; Yan, H.; Milius, W.; Wrackmeyer, B. Angew. Chem. Int. Ed. Engl, 1999, 38, 3689 - 3691; (e) Herberhold, M.; Yan, H.; Milius, W.; Wrackmeyer, B. Chem. Eur. J. 2000, 6, 3026 - 3032; (f) Herberhold, M.; Yan, H.; Milius, W.; Wrackmeyer, B. Chem. Eur. J. 2002, 8, 388-395.
    [4] Jin, G. -X. Coord. Chem. Revo 2004, 248, 587-602.
    [5] Jin, G. -X.; Wang, J. -Q.; Zhang, Z.; Weng, L. H.; Herberhold, M. Angew. Chem. Int. Ed. 2005, 44, 259-262.
    [6] (a) Wang, J. -Q.; Hou, X. F.; Weng, L. H.; Jin, G. -X. Organometallics 2005, 24, 826-830; (b) Cai, S.; Wang, J. -Q.; Jin, G. -X. Organometallics 2005, 24, 4226-4231.
    [7] (a) Wang, J. -Q.; Weng, L. H.; Jin, G. -X. J. Organomet. Chem. 2005, 690, 249-252; (b) Cai, S.; Jin, G. -X. Organometallics 2005, 24, 5280-5286.
    [8] Wang, J. -Q.; Cai, S. Y.; Weng, L. H.; Herberhold, M.; Jin, G. -X. Chem. Euro. J. 2006, 11, 7342-7350.
    [9] Venturelli, A.; Rauchfuss, T. B. J. Am. Chem. Soc. 1994, 116, 4824-4831.
    [10] Lobana, T. S.; Isobe, K.; Kitayama, H.; Nishioka, T.; Doe, M.; Kinoshita, I. Organometallics 2004, 23, 5347-5352.
    [11] Tanaka, K.; Kushi, Y.; Tsuge, K.; Toyohara, K.; Nishioka, T.; lsobe, K. Inorg. Chem. 1998, 37, 120-126.
    [12] Nishio, M.; Matsuzaka, H.; Mizobe, Y.; Hidai, M. Inorg. Chim. Acta, 1997, 263, 119-123.
    [13] Nagao, S.; Seino, H.; Hidai, M.; Mizobe, Y. J. Organomet. Chem. 2003, 669, 124-134.
    [14] (a) Hu, C. H.; Yong, W.; Dou, J. M.; Sun, J.; Hu, K. J.; Jin, R. S.; Zheng, P. J. Chin. J. Chem. 2002, 20, 536; (b) Nie, Y.; Hu, C. H.; Li, X.; Yong, W.; Dou, J. M.; Sun, J.; Jin, R. S.; Zheng, P. J. Acta Crystallogr. 2001, C57, 897; (c) Bould, J.; Laromaine, A.; Vinas, C.; Teixidor, F.; Barton, L.; Rath, N. P.; Winter, R. E. K.; Kivekas, R.; Sillanpaa R. Organometallics 2004, 23, 3335-3342.
    [15] (a) Nagao, S.; Seino, H.; Mizobe, Y.; Hidai, M. Chem. Commun. 2000, 207-208; (b) Nagao, S.; Seino, H.; Okada, T.; Mizobe, Y.; Hidai, M. J. Chem. Soc. Dalton Trans. 2000, 3546-3553.
    [16] Herberhold, M.; Jin, G. -X.; Rheingold, A. L. Chem. Bet. 1991, 124, 2245-2248.
    [17] Wilkinson, G.; Stone, F. G. A.; Abel, E. W. Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, England, 1982, pp. 411-542 and references therein.
    [18] (a) Wiesboeck, R. A.; Hawthorne, M. F. J. Am. Chem. Soc. 1964, 86, 1642-1643; (b) Hawthorne, M. F.; Young, D. C.; Wegner, P. A.; J. Am. Chem. Soc. 1965, 87, 1818-1819; (c) Hawthorne, M. F.; Pilling, R. L. J. Am. Chem. Soc. 1967, 89, 470-471; (d) Hawthorne, M. F.; Young, D. C.; Garrett, P. M.; Owen, D. A.; Schwerin, S. G.; Tebbe, E N.; Wegner, P. A. J. Am. Chem. Soc. 1968, 90, 862-868.
    [19] General reviews: (a) Hawthorne, M. F.; Acc. Chem. Res. 1968, 1, 281-288; (b) Dunks, G. B.; Hawthorne, M. F. Acc. Chem. Res. 1973, 6, 124-131; (c) Hawthorne, M. F. J. Organometal. Chem. 1975, 100, 97-110; (d) Grimes, R. N. J. Organometal. Chem. 1999, 581, 1-12; (e) Hosmane, N. S. J. Organometal. Chem. 1999, 581, 13-27; (f) Hosmane, N. S.; Maguire, J. A. Eur. J. Inorg. Chem. 2003, 3989-3999; (g) Xie, Z. Acc. Chem. Res. 2003, 36, 1-9; (h) Jin, G.-X. Coord. Chem. Rev. 2004, 248, 587-602.
    [20] Selected papers: (a) Teixidor, F.; Flores, M. A.; Vinas, C.; Sillanpaa, R.; Kivekas, R. J. Am. Chem. Soc. 2000, 122, 1963-1973; (b) Tutusaus, O.; Vinas, C.; Nunez, R.; Teixidor, F.; Demonceau, A.; Delfosse, S.; Noels, A. F.; Mata, I.; Molins, E. J. Am. Chem. Soc. 2003, 125, 11830-11831; (c) Tutusaus, O.; Vinas, C.; Kivekas, R.; Sillanpaa, R.; Teixidor, F. Chem. Commun. 2003, 2458-2459; (d) Cheung, M. -S.; Chan, H. S.; Xie, Z. Organometallic, 2005, 24, 4207-4215.
    [21] (a) Grimes. R. N. Coord. Chem. Rev. 2000, 200-202, 773-811;
    (b) Collman, J. P.; Boulatov. R. Angew. Chem. Int. Ed. 2002,41, 3948-3961.
    [22] (a) Pinillos, M. T.; Elduque, A.; Oro, L. A.; Lahoz, F. J.; Bonati, E; Tiripicchio, A.; Tiripicchio-Camellini, M.J. Chem. Soc. Dalton Trans. 1990, 989-994;
    (b) Nagao, S.; Seino, H.; Hidai, M.; Mizobe, Y. J. Organomet. Chem. 2003, 669, 124-134;
    (c) Casado, M. A.; Perez-Torrente, J. J.; Ciriano, M. A.; Dobrinovitch, I. T.; Lahoz, F. J.; Oro, L. A. Inorg. Chem. 2003, 42, 3956-3964.
    [23] (a) Chizhevsky, I. T.; Lobanova, I. A.; Petrovskii, P.V.; Bregadze, V. I.; Dolgushin, F. M.;
    Yanovsky, A. I.; Struchkov, Y. X; Chistyakov, A. L.; Stankevich, I. V; Knobler, C. B.; Hawthorne, M. F. Organometallics 1999, 18, 726-735;
    (b) Safronov, A. V.; Zinevich, T. V.; Dolgushin, F. M.; Tok, O. L.; Vomontsov, E. V.; Chizhevsky, I. T. Organometallic, 2004, 23, 4970-4979.
    [25] (a) Tang, Z.; Nomura, Y; Ishii, Y; Mizobe, Y; Hidai. M. Organometallics 1997,16,151-154;
    (b)Kuwata, S.; Andou, M.; Hashizume, K.; Mizobe, Y.;. Hidai. M. Organometallics 1998, 17, 3429-3436;
    (c) Kabashima, S.; Kuwata, S.; Ueno, K.; Shiro, M.; Hidai. M. Angew. Chem. Int. Ed. 2000, 39, 1128-1131;
    (d) Herbst, K.; Monari, M.; Brorson, M. Inorg. Chem. 2001, 40, 2979-2985;
    (e) Takagi, E; Seino, H.; Mizobe, Y; Hidai, M. Organometallics 2002,21, 694-699. [25] (a) Jelliss, P. A.; Stone, F. G. A. J. Organometal. Chem. 1995, 500, 307-323, and references therein.
    (b) Du, S.; Kautz, J. A.; McGrath, T. D.; Stone, F. G A. Angew. Chem. Int. Ed. 2003,42, 5728-5730.
    [26] (a) Pannetier, G; Fougeroux, P.; Bonnaire, R.; Platzer, N. J. Less-Common Metals 1971, 24, 83-92;
    (b) Uson, R.; Oro, L. A.; Cabeza, J. A. Inorg. Synth.. 1985, 23, 126-130;
    (c) Green, L. M.; Meek, D. W. Organometallics 1989,8, 659-666.
    [1] Steed, J. W.; Atwood, J. L. Supramolecular Chemistry John Wiley & Sons, Ltd: England, 2000.
    [2] (a) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853; (b) Swiegers, G. F.; Malefetse, T. J. Coord. Chem. Rev. 2002, 225, 91.
    [3] (a) Roland, B. K.; Selby, H. D.; Carducci, M. D.; Zheng, Z. J. Am. Chem. Soc. 2002, 124, 3222; (b) Roland, B. K.; Carter, C.; Zheng, Z. J. Am. Chem. Soc. 2002, 124, 6234; (c) Selby, H. D.; Roland, B. K.; Zheng, Z.Acc. Chem. Res. 2003, 36, 933.
    [4] (a) Vicente, M. G. H.; Nurco, D. J.; Sherry, S. J.; Medforth, C. J.; Smith, K. M. Chem. Commun. 2001, 483-484; (b) Lauceri, R.; Purrello, R.; Shetty, S. J.; Vicente, M. G. H. J. Am. Chem. Soc. 2001, 123, 5835-5836; (c) Isaac, M. F.; Kahl, S. B.J. Organomet. Chem. 2003, 680, 232-243; (d) Frixa, C.; Mahon, M. F.; Thompsona, A. S.; Threadgill, M. D. Org. Biomol. Chem. 2003, 1, 306-317; (e) Hao, E.; Vicente, M. G. H. Chem. Commun. 2005, 1306-1308.
    [5] (a) Hou, X. -F.; Wang, X. -C.; Wang, J. -Q.; Jin, G. -X. J. Organomet. Chem. 2004, 689, 2228-2235; (b) Kim, D.-H.; Ko, J.; Park, K.; Cho, S.; Kang, S. O. Organometallics, 1999, 18, 2738-2740; (c) Bae, J. Y.; Park, Y. I.; Ko, J.; Park, K. I.; Cho, S. I.; Kang, S. O. Inorg. Chim. Acta 1999, 289, 141-148. (d) Wang, J. -Q.; Ren, C. -X.; Jin, G. -X. Chem. Commun. 2005, 4738-4740.
    [6] (a)Stockhause, S.; Wickleder, M. S.; Meyer, G.; Orgzall, I.; Schulz, B. J. Mol. Stru. 2001, 561, 175-183; (b)Du, M.; Lam, C. -K.; Bu, X. -H.; Mak, T. C. W. Inorg. Chem. Commun. 2004, 7, 315-318; (c)Hou, H.; Xie, L.; Li, G.; Ge, T.; Fan, Y.; Zhu, Y. New J. Chem. 2004, 28, 191-199; (d)Du, M.; Cai, H.; Zhao, X.-J. Inorg. Chim. Acta 2005, 358, 4034-4038; (e)Ma, J.-P.; Dong, Y.-B.; Huang, R.-Q.; Smith, M. D.; Su, C.-Y. Inorg. Chem. 2005, 44, 6143-6145; (f)Al-Anber, M.; Vatsadze, S.; Holze, R.; Lang, H.; Thiel, W. R. Dalton Trans. 2005, 3632-3637; (g)Cheng, J.-Y.; Dong, Y. -B.; Ma, J. -P.; Huang, R. -Q.; Smith, M. D. Inorg. Chem. Commun. 2005, 8, 6-8.
    [7] (a) Dybtsev, D. N.; Hyungphil, C.; Kim, K. Chem. Commun. 2004, 14, 1594; (b) Ma, B. -Q.; Coppens, P. Chem. Commun. 2004, 8, 932; (c) Crowley, J. D.; Goshe, A. J.; Bosnich, B. Chem. Comm. 2003, 22, 2824; (d) Ma, B. -Q.; Coppcns, P. Chem. Commun. 2003, 18, 2290; (e) Fraser, C. S. A.; Jennings, M. C.; Puddephatt, R. J. Chem. Commun. 2001, 14, 1310; (f) Sun, S. -S.; Lees, A. J. Chem. Commun. 2001, 1, 103; (g) Batten, S. R.; Hoskins, B. E; Robson, R.; Moubaraki, B.; Murray, K. S.; Chem. Commun. 2000, 13, 1095; (h) Abrahams, B. F.; Batten, S. R.; Hamit, H.; Hoskins, B. F.; Robson, R. Chem. Commun. 1996, 11, 1313; (i) Yoshizawa, M.; Nakagawa, J.; Kumazawa, K.; Nagao, M.; Kawano, M.; Ozeki, T.; Fujita. M. Angew. Chem. Int. Ed. 2005, 44, 1810, and references therein.
    [8] Herberhold, M.; Jin, G. -X.; Yah, H.; Milius, W.; Wrackmeyer, B. Eur. J. Inorg. Chem. 1999, 873-875.
    [9] Herberhold, M.; Jin, G. -X.; Yah, H.; Milius, W.; Wrackmeyer, B.J. Organomet. Chem. 1999,587, 252-257.
    [10] Anderson, H. L.; Anderson, S.; Sanders, J. K. M. J. Chem. Soc. Perkin Trans 1. 1995,2231-2245.
    [11] Brown, E. V.; Granneman, G. R. J. Am. Chem. Soc. 1975, 97, 621-627.
    [12] Nash, J. A.; Gray, G. W. Mol. Cryst. Liq. Cryst. 1974, 25, 299-321.
    [13] Shao, X. -B.; Jiang, X. -K.; Zhao, X.; Zhao, C. -X.; Chen, Y.; Li, Z. -T. J. Org. Chem. 2004, 69,899-907.
    [1] (a) Soloway, A. H.; Tjarks, W.; Barnum, F.-G. R.; Barth, R. F.; Codogni, I. M.; Wilson, J. G. Chem. Rev. 1998, 98, 1515. (b) Hawthorne, M. F. Mol. Med. Today, 1998, 174.
    [2] (a) Soloway, A. H.; Wright, R. L.; Messner, J. R. J. Pharmacol. Exp. Ther. 1961, 134, 117. (b) Wong, H. S.; Tolpin, E. I.; Lipscomb, W. N.J. Med. Chem. 1974, 17, 785.
    [3] Auler, H.; Branzer, G. Z. Krebsforsch. 1942, 53, 65.
    [4] Dougherty, T. J. Photochem. Photobiol. 1983, 38, 377.
    [5] Frixa, C.; Mahon, M. F.; Thompson, A. S.; Threadgill, M. D. Org. Biomol. Chem. 2003, 1,306-317.
    [6] Vicente, M. G. H. Curr. Med. Chem. Anti-Cancer Agents, 2001, 1,175-194. (b) Hao, E.; Vicente,M. G. H. Chem. Commun, 2005, 1306-1308;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700