氧化亚铜的控制合成及其光催化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在研究过渡金属氧化物氧化亚铜(Cu20)的合成及其光催化性质。利用室温液相还原法,成功制备了Cu20纳米颗粒和微米立方块。探讨了不同形貌氧化亚铜的形成机理。研究了纳米颗粒和微米立方块对有机染料的光催化降解性能。利用低温水热法制备了球状氧化亚铜,研究了球状氧化亚铜对阴离子染料甲基橙的光催化降解性能。在此基础上,制备了Cu2O-WO3及Cu2O-ZnO复合物,并对复合物的性质进行了研究。
     论文主要内容概述如下:
     1.Cu2O纳米颗粒和微米立方块的合成及其光催化性质
     采用室温液相还原法以抗坏血酸在碱性条件下还原硫酸铜,成功制备了Cu2O纳米颗粒和微米立方块。无需添加表面活性剂,合成方法简单可行。考察了OH-浓度对合成产物形貌的影响。通过研究OH-浓度对氧化亚铜{100}面的生长情况的影响,探讨了两种形貌氧化亚铜的形成机理。利用XRD,IR,SEM等手段对产物进行了表征。利用固体紫外可见光谱测试不同形貌Cu2O的带隙能,经测定,微米立方块状氧化亚铜的带隙能小于纳米小颗粒的带隙能。研究了两种形貌合成产物对阳离子染料和阴离子染料的光催化降解性能,结果表明,合成产物对阴离子染料有较好的降解效果,对阳离子染料降解效果不明显,氧化亚铜微米立方块的光催化活性高于氧化亚铜纳米颗粒。比较了两种形貌的样品光致发光性质。此外,还对氧化亚铜的抑菌性能做了初步研究。在金黄色葡萄球菌和大肠杆菌培养过程中加入氧化亚铜,可形成明显的抑菌圈。表明所合成氧化亚铜有显著的抑菌效果。
     2.低温水热法制备球状氧化亚铜及其光催化性质
     利用低温水热法分别以抗坏血酸和葡萄糖为还原剂制备了球形氧化亚铜。通过控制反应条件,使氧化亚铜晶体以聚集生长模式为主,爆发式成核,得到球形产物。并考察了反应温度对产物形貌的影响。利用X射线衍射、扫描电子显微镜对合成产物进行了表征。以合成产物光催化降解偶氮染料甲基橙为模型,研究了球状Cu2O的光催化性能,结果表明球状氧化亚铜对甲基橙的脱色率达89.0%。探讨了氧化亚铜光催化降解甲基橙的机理。此外,研究了球状氧化亚铜/Fenton复合体系的光催化性质。结果表明,此体系中甲基橙的脱色率高达98.1%。
     3. Cu2O-WO3及Cu2O-ZnO复合物的制备及其光催化性质
     采用室温液相还原法制备了Cu2O-WO3及Cu2O-ZnO复合物。利用XRD对产物进行了表征,研究了太阳光照下两种复合物对阳离子染料次甲基蓝的光催化降解性能。结果表明,两种复合物比单纯的氧化亚铜对阳离子染料次甲基蓝的光催化效果有了明显的提高。分析了复合物能提高阳离子染料次甲基蓝的光催化效果的原因,探讨了Cu2O复合物光催化降解次甲基蓝的机理。
In this thesis, the synthesis and property of Cu2O were investigated. Cuprous oxide (Cu2O) nanoparticles and microcubes have been successfully fabricated by solution-phase reducing method. The mechanism of the formation of different morphology of cuprous oxide was discussed. Novel Cu2O nanospheres were prepared by hydrothermal treatment. Moreover, the Cu2O-WO3 and Cu2O-ZnO particles were prepared successfully. The properties of as-synthessized products were discussed. The details are summarized as follows:
     1. Cuprous oxide (Cu2O) nanoparticles and microcubes have been successfully fabricated by reduce of CUSO4 using ascorbic acid at room temperature. The synthesis of Cu2O was simple. There were no template or surfactant has been introduced. It suggested that OH- have effects on stability of{100} which lead to morphology of cubic. All of the samples were characterized by X-ray powder diffractometer (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FT-IR). The band gaps of as-prepared products were determined by UV-vis absorption spectra, the band gap of cuprous oxide microcubes was lower. The photocatalytic activities of as-synthesized Cu2O nanoparticles and microcubes for dyes were studied. The effects of different conditions on decoloration rate of dyes were discussed. Moreover, the photoluminescence properties of the products were investigated.
     2. Novel Cu2O nanospheres were prepared by hydrothermal treatment. The products were characterized via X-ray diffraction (XRD) and field emitted scanning electron microscopy (FESEM). The photocatalytic activities of as-synthesized Cu2O nanospheres for methyl orange were studied. The decoloration rate of methyl orange in as-synthesized Cu2O nanospheres system was 89.0%. In the Cu2O/Fenton composite system, the decoloration rate of methyl orange could reach 98.1%. The photocatalytic degradation mechanism of Cu2O for methyl orange was suggested. Moreover, the antibacterial performance of Cu2O was studied as well. The result suggested Cu2O have good antibacterial performance for staphylococcus and E. coli.
     3. Cu2O-WO3 and Cu20-ZnO complexes were successfully fabricated by solution-phase reducing method. The products were characterized via X-ray diffraction (XRD). The photocatalytic activities of as-synthesized complexes for methylene blue were studied. It was found that as-synthesized complexes have higher photocatalytic activity than Cu2O. Moreover, photocatalytic degradation mechanism of the complexes for methylene blue was discussed.
引文
[1]Han C H, Li Y, Shen J. Photocatalytic degradation of dodecyl-benzenesulfonate over TiO2-Cu2O under visible irradiation[J]. Journal of Hazardous Materials.2009, 168:215-230
    [2]Li J Y, Xiong S L, Pan J, et al. Hydrothermal Synthesis and Electrochemical Properties of Urchin-Like Core-Shell copper (Ⅰ) oxide Nanostructures [J]. J Phys Chem. C,2010,114 (21):9645-9650
    [3]Jerome Devoy, Alain Walcarius. Jacques Bessiere. Chemical mechanisms responsible for the immobilization of selenite species from an aqueous medium in the presence of copper (Ⅰ) oxide particles [J]. Langmuir,2002,18:8472-8480
    [4]Chun J, Lee H S, Jung G, et al. Cu2O:A Versatile Reagent for Base-Free Direct Synthesis of NHC-copper Complexes and Decoration of 3D-MOF with Coordinatively Unsaturated NHC-copper Species [J]. Organometallics,2010,29 (7):1518-1521
    [5]Zhu J W, Bi H P, Wang Y P, et al. Solution-phase synthesis of Cu2O cubes using CuO as a precursor [J]. Materials Letters,2008,62:2081-2083
    [6]Zhang Y P, Pan L Q, Zhu H, et al. Fabrication and characterization of Mn-doped Cu2O thin films grown by RF magnetron sputtering [J]. Journal of Magnetism and Magnetic Materials,2008,320:3303-3306
    [7]曹茂盛,关长斌.纳米材料导论[M].哈尔滨:哈尔滨工业出版社.2001,8-20
    [8]顾宁,付德刚.纳米技术与应用[M].北京:人民邮电出版社.2002,26-38
    [9]Kubo R. Electronic ProPerties of metallie fine Partieles [J]. Phys Soe JaP.1962,17: 975-980
    [10]翟庆洲,裘式纶.纳米材料研究进展-纳米材料结构与化学性质[J].化学研究与应用,1998,10(3):226-235
    [11]柏振海,罗兵辉,金晓鸿.氧化亚铜粉末的制备[J].矿冶工程,2001,21(4): 67-69
    [12]张炜,许小青,郭承育,等.低温固相法制备Cu2O纳米晶[J].青海师范大学学报,2004,3:53-56
    [13]汪志勇,崔舜,康志君,等.碱性NaCl溶液中制取氧化亚铜[J].海湖盐与化工,2001,30(3):4-7
    [14]Hara M, Konodo T, Komoda M, et al. Cu2O as a photo-catalyst for overall water splitting under visible light irradiation [J]. Chem Commun,1998,13:357-361
    [15]朱红飞,陈乾旺,牛和林,等.在酸性条件下合成氧化亚铜纳米立方体[J].无机化学学报,2004,20(10):1172-1176
    [16]He P, Shen X H, Gao H C. Size controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption [J]. Journal of Colloid and Interface Science,2005,284:510-515
    [17]Zhang X, Xie Y, Xu F, et al. Shape-controlled synthesis of submicro-sized cuprous oxide octahedra [J]. Inorganic chemistry communications,2003,6: 1390-1392
    [18]Tu H B, Wang J Q. An XPS investigation of thermal degradation and charring processes for PVC and PVC/Cu2O systems in the condensed phase [J]. Polymer Degradation and Stability,1996,54:195-203
    [19]Ram S, Mitra C. Formation of stable Cu2O nanocrystals in a new orthorhombic crystal st ructure [J]. Mater Sci Eng A,2001,304:805-810
    [20]Gou L, Murphy C J. Solution phase synthesis of Cu2O nanovcubes [J]. Nano Lett, 2003,3:231-236
    [21]Wang W, Varghese O K, Ruan C, et al. Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates[J]. J Mater Res,2003,18: 2756-2760
    [22]Luo F, Wu D, Gao L, et al. Shape controlled synthesis of Cu2O nanocrystals assisted by Triton X-100 [J]. J Cryst Growth,2005,28:534-538
    [23]张萍,刘恒,李大成.亚硫酸钠还原法制备超细氧化亚铜粉末[J].四川有色金属,1998,2(2):16-18
    [24]吴会军,朱冬生,李军等,蓄热材料的研究进展[J],材料导报,2005,8:96-98
    [25]裴立宅,唐元洪,郭池等,硅纳米线的电学特性[J],电子器件,2005,28:949-953
    [26]毛铭华,涂桃枝.水热还原法制取氧化亚铜的研究[J].化工冶金,1990,11(3):216-220
    [27]Tang Q, Li T, Chen X, et al. Efficient field emission from well oriented Cu2O film [J]. Solid State Commum,2005,59:2423-2427
    [28]Steigerwald M L, Alivisators A p, Gibson J M, et al. Surface Derivatization And Isolation of Semiconductor cluster Molecules [J]. Am.Chem.Soe,1988,110: 3046-3050
    [29]Wang Y, Liu H F, Jiang Y Y, A New Method for Lmmobilization of Polymer-Protective Colloidal Platinum Metals via Coordination Capture with anchored Ligands [J]. Chem. Soe., Chem.Cornmun,1989,53:1878-1879
    [30]Borreli N F, Hall D W, Holland H J, et al. Quantum confinement effects of semiconducting microcrystallites in glass [J]. Appl. Phys,1987,61:5399-5409
    [31]Dameron C T, Reese R N, Mehra R K, el al. Biosynthesis of Cadmium Sulphide Quantum Semiconductor Crystallites [J]. Nature,1989,62:596-598
    [32]吴正翠,邵明望,张文敏,等.微波辐照下均分散氧化亚铜超细粒子的制备[J].安徽师范大学学报,2001,24(4):356-358
    [33]He P, Shen X, Gao H. Size controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption [J]. J Colloid Interf Sci, 2005,28:510-515
    [34]Xia Z, XiaoJun T, Zhi-Shen Z, et al. Synthesis and Characterization of Cu2O Single-Crystal by Sonochemical Method [J]. Chinese Journal of Inorganic Chemlstry,2005,21(7):1098-1100
    [35]舒余德.电解法制备氧化亚铜的研究[J].沈阳化工,1991,53(3):11-13.
    [36]柳建设,舒余德,陈白珍.电解法制取氧化亚铜的研究[J].湖南冶金,199612(6):12-14
    [37]汪志勇,曾庆学,康志君等.电化学法制备氧化亚铜的研究[J].湖北化工,2000,36:28-30
    [38]舒余德,孟爱东.碱性NaCl溶液中铜阳极生成Cu2O的机理[J].有色金属,1996,48(4):58-62
    [39]翟慕衡,张文敏,郑伟威,等.微波辐照下制备均分散Cu2O纳米粒子[J].化学世界2000,12:632-635
    [40]Romero M, Blanco J, Sanchez B, et al. Solar photocatalytic degradation of water and air pollutants:Challenges and perspectives[J]. Solar Energy,1999,66(2): 169-182.
    [41]韩世同,习海玲,史瑞雪,等.半导体光催化研究进展与展望[J].化学物理学报,2003,16(5):339-349.
    [42]宋桂明,周玉,白后善.纳米陶瓷粉体的制备技术及产业化[J].矿冶,2001,10(2):55-60
    [43]Matteazzi P, Wolf F. Mechanomaking of nanostructured hypereutectic white irons:powder fabrication [J]. Materials Science and Technology,1999,15(7): 779-790
    [44]Matteazzi P, Le C G, Bauer G E. Mechanosynthesis of carbides and silicides [J]. Mater Sci Monogr,1991,66:793-802
    [45]Calka A, Nikolov J I. Direct synthesis of AlN and Al-AlN composites by room temperature magnetoball miling:the effect of milling condition on formation of nanostructures [J]. Nanostruct Mater,1995,6:409-412
    [46]Wexler D, Calka A, Mosbah A Y. Microstructure and properties of Ti-TiN in-situ composites prepared by reactive ball milling of Ti in ammonia followed by hot pressing [J]. Materials Science Forum,2000,33:343-346
    [47]陈金毅,刘小玲,李间轮,等.纳米氧化亚铜可见光催化分解亚甲基蓝[J].华中师范大学学报(自然科学版),2002,36(2):200-203
    [48]Jia L, Li L. Preparation of highly photocatalytic active nano-size TiO2-Cu2O particle composites with a novel electrochemical method [J]. Electrochemistry Communications,2004,6:940-943
    [49]Ikeda S, Takata T, Kondo T, et al. Mechano-catalytic overall water split ting [J]. Chem Commun,1998,16:2185-2191
    [50]何星存,梁伟夏,黄智,等.可见光响应的“Cu核-Cu2O壳”型光催化剂性能的研究[J].现代化工,2005,25(11):38-41
    [51]梁宇宁,黄智,覃思晗,等.Cu2O光催化降解水中对硝基苯酚的研究[J].环境污染治理技术与设备,2003,4(10):36-39
    [52]李晓勤,方涛,罗永松,等.电解法制备纳米Cu2O及其光催化性能的研究[J].化学通报,2006,14:290-293
    [53]Mahalingama T, Chitra J S P, Ravi G, et al. Characterization of pulse plated Cu2O thinfilms [J]. Surface and Coatings Technology,2003,168:111-114
    [54]Huaming Y, Jing Ouyang, Aidong T, et al. Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles [J]. Materials Research Bulletin.2006,41:1310-1318
    [55]代小英,许欣,陈昭斌,等.纳米抗菌剂的概况.现代预防医学,2008,35(13):2513-2515
    [56]Chen F N, Yang X D, Wu Q. Antifungal capability of TiO2 coated film on moist wood [J]. Building and Environment.2009,44 (5):1088-1093
    [57]沈成灵,李原芳,祁文静,黄承志.氧化亚铜纳米微粒与金黄色葡萄球菌的相互作用[J].中国科学,2008,38(12):1100-1104
    [58]王长波,李斌.氧化亚酮和三氧化钼对PVC阻燃和抑烟作用[J].化学与粘合,2002,3:120-122
    [59]黄险波,张亮,李定华,等.氧化亚铜在聚氯乙烯燃烧热降解中的作用[J].北京理工大学学报,1997,17(5):590-594
    [60]李斌,王建祺,张爱英.用锥形量热仪研究Cu2O和MoO3对PVC阻燃抑烟的作用[J].科学通报,1998,43(8):836-840
    [61]刘静峰,田德余,邓鹏图.超微细Cu2O对RDX/AP/HTPB推进剂组分热分解特性影响的研究[J].火炸药学报,1998,2:1-4
    [62]朱俊武,陈海群,谢波,等.纳米Cu2O的制备及其对高氯酸铵热分解的催化性能[J].催化学报,2004,25(8):637-640
    [63]于振花.氧化亚铜的制备、表征及其氧化动力学[D]:[硕士学位论文].山东: 中国海洋大学,2005
    [64]浦宝康.IMO与船底防污[J].交通环保,2000,21(4):42-43
    [65]倪余伟,王贵森.无毒防污涂料的进展[J].涂料工业,1999,7:32-33
    [66]曾德芳.海洋污损生物与船体防污涂料[J].交通环保,1996,17(6):37-39
    [67]付玉斌.氧化亚铜防污漆表面附着的异养细菌的研究[J].材料开发与应用,2000,15(1):13-15
    [68]邵文柱,沙德生,V.V.伊万诺夫,等.氧化亚铜基金属陶瓷导电性的试验研究[J].材料科学与工艺,1999,7(2):109-112
    [69]王学峰,张勇,高同春.井冈霉素与氧化亚铜复配制剂对水稻稻曲病防效测定[J].安徽农业科学,2005,33(9):1601-1622
    [70]刘勋,陈时洪.用氧化亚铜从人发水解液中沉淀胱氨酸的研究[J].氨基酸和生物资源,2003,25(1):55-57
    [71]周玉华,黄熙怀.氧化亚铜在玻璃中的着色[J].硅酸盐学报,1965,4(1):66-69
    [72]王现全.杀菌组合物.中国专利,00109476,2000-12-13
    [73]近藤保夫,金田润也,青野泰久,等.复合材料及其应用[P].中国专利,02119923,2003-03-12
    [74]近藤保夫,金田润也,青野泰久,等.半导体器件[P].中国专利,02119922,2002-10-30
    [75]Jiatao Z, Junfeng L, Qing P, et al. Nearly Monodisperse Cu2O and CuO Nanospheres:Preparation and Applications for Sensitive Gas Sensors[J]. Chem. Mater,2006,18:867-871
    [76]Lee Y H, Leu L C, Chang S T, et al. The electrochemical capacities and cycle retention of electrochemically deposited Cu2O thin film lm toward lithium[J]. Electrochimica Acta,2004,50:553-559
    [77]陈琰,褚万学.一种耐极压重负荷润滑脂[P].中国专利,94118783,1996-06-12
    [78]Manoj S V, Madhu Sharma, Gupta K S. Role of cuprous oxide in the autoxidation of aqueous sulphur dioxide and its atmospheric implications [J]. Atmospheric Environment,1999,33:1503-1512
    [79]Akimoto K, Ishizuka S, Yanagita M, et al. Thin film deposition of Cu2O and application for solarcells [J]. Solar Energy,2006,80:715-722
    [80]Georgieva V, Ristov M. Electrodeposited cuprous oxide on indium tin oxide for solar applications [J]. Solar Energy Materials&Solar Cells,2002,73:67-73
    [1]魏明真,霍建振,伦宁等.一种新型的半导体光催化剂-纳米氧化亚铜[J].材料导报,2007,21(6):130-133
    [2]Yu Y, Du J, Yu J C, et al. One-dimensional shape-controlled preparation of porous Cu2O nano-whiskers by using CTAB as a template [J]. J Solid State Chem,2004, 177:4640-4647
    [3]张卫国,刘伟星,氧化亚铜纳米线的制备及其光电性能[J],化工学报,2007,58:12-16
    [4]Wood B J, Wise H, Yolles R S. Selectivity and stoichiometry of copper oxide in propylene oxidation [J]. J Catalys,1969,15:355-360
    [5]Huang L, Peng F, Yu H, etal. Synthesis of Cu2O nanoboxes, nanocubes and nanospheres by polyol process and their adsorption characteristic [J]. Materials Research Bulletin,2008,43:3047-3053
    [6]Huang L, Peng F. Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion [J]. Solid State Sciences 2008,11:129-139
    [7]Zhu J W, Bi H P, Solution-phase synthesis of Cu2O cubes using CuO as a precursor [J]. MaterialsLetters,2008,62:2081-2083
    [8]隆金桥,黎远成,杨汉雁等,Cu2O光催化降解苯酚[J].化工设计,2004,14:42-47
    [9]D. Paul Joseph, T Premkumar, David S. Phase stabilization and characterization of nanocrystalline Fe-doped Cu2Omaterlals characterizatinn,2008,59: 1137-1139
    [10]Zhang Y P, Pan L Q, et al. Fabrication and characterization of Mn-doped Cu2O thin films grown by RF magnetron sputtering [J]. Magnetism and Magnetic Materials.2008,33,303-3306
    [11]Xu Y H, Liang D H, et al. Preparation and characterization of Cu2O-TiO2: Efficient photocatalytic degradation of methylene blue [J]. Materials Research Bulletin,2008,43:3474-3482
    [12]Yueh-Hsun Lee, Ing-Chi Leu et al, The structural evolution and electrochemical properties of the textured Cu2O thin films [J]. Alloys and Compounds,2007,436: 241-246
    [13]Li X D, Gao H S. Nanoindentation of Cu2O Nanocubes [J]. Nano Lett,2004,4: 1903-1907
    [14]Rawlings J B, Miller S M, Witkowski W R. Optimal Operation of a Seeded Pharmaceutical Crystallization with Growth-Dependent [J]. DispersionIndustrial & Engineering Chemistry Researeh,1993,32 (7):1275-1279
    [15]吴慧芳.氧化银、银、氧化亚铜微纳米颗粒的形貌和尺寸控制[D].厦门:厦门大学,2007
    [16]曹艳.葡萄糖还原法制备氧化亚铜的研究[D].长沙,中南大学,2009
    [17]Song H C, Cho Y D. Morphology-controlled synthesis of Cu2O microcrystal [J]. Mater Letts,2008,62:1734-1736
    [18]Ng C H B, Fan W Y. Shape Evolution of Cu2O Nanostructures via Kinetic and Thermodynamic Controlled Growth [J]. J Phys Chem B,2006,110 (42): 20801-20807
    [19]Matthew J,Siegfried, Elucidating the Effect of Additives on the Growth and Stability of Cu2O Surfaces via Shape Transformation of Pre-Grown Crystals [J]. J.Am.Chem.Soc.2006,128,10357-10362
    [20]赵华涛,王栋,张兰月等.高反应浓度下制备不同形貌氧化亚铜的简易方法[J].无机化学学报,2009,25(1):142-146
    [21]Xu Y Y, Chen D R, Jiao X L. Nanosized Cu2O/PEG400 composite hollow spheres with mesoporous shells [J]. J. Phys. Chem. C,2007,111:16284-16289
    [22]Wu W T, Wang Y S, Shi L. Propeller-like Multicomponent Microstructures: Self-Assemblies of Nanoparticles of Poly (vinyl alcohol)-Coated Ag and/or Cu2O [J]. J. Phys. Chem. B.2006,110:14702-14708
    [23]C H B, Fan W Y. Shape Evolution of Cu2O Nanostructures via Kinetic and Thermodynamic Controlled Growth [J]. J Phys Chem B,2006,110 (42): 20801-20806
    [24]Borgohain K, Murase N, Mahamuni, S. Synthesis and properties of Cu2O quantum particles [J]. J Appl Phys 2002,92:1292-1297
    [25]Huang L, Peng F, Yu H, et al. Synthesis of Cu2O nanoboxes, nanocubes and nanospheres by polyol process and their adsorption characteristic [J]. Materials Research Bulletin 2008,43:3047-3053
    [26]Huang Y, Ju X. Study on photocatalytic degradation of organic pollutants in water by using nanometer titanium dioxide [J]. Modern Chemical Industry,2001, 21(4):45-48
    [27]Liu H J, Peng T Y, Ke D N et al, Preparation and Photocatalytic Activity of Dys prosium Doped Tungsten Trioxide Nanoparticles Materials Chemistry and Physics,2007,104 (2-3):377-383
    [28]曹广胜,俞庆森,董喜贵等,过渡元素钼掺杂氧化钨纳米棒的合成.无机材料学报,2005,20(4):815-820
    [29]宋娟,宋继梅,胡媛,陈盼盼,王为.MoO3掺杂WO3催化剂的制备及其光催化性能[J].环境化学,2008,27:721-726
    [30]魏秋华.抗菌剂的研究进展.中国消毒学杂志,2003,20(1):31-34
    [31]李炜罡,吕维平,王海滨,等.抗菌材料进展.化工新型材料.2003,31(3)7-10
    [32]李梅,王庆瑞.抗菌材料的发展及其应用.化工新型材料,1998,26(5):8-11
    [33]商成杰,邹承淑,张洪杰.国内外织物抗菌卫生整理的进展.印染助剂,2003,20(5):1-4
    [34]谢瑜,张昌辉,徐旋.有机硅季按盐抗菌剂的研究进展.国胶黏剂,2008,17(2):52-55
    [35]代小英,许欣,陈昭斌,等.纳米抗菌剂的概况.现代预防医学,2008,35(13):2513-2515
    [36]金宗哲.无机抗菌材料及应用[M].北京:化学工业出版社,2004,266-278
    [1]Jerome Devoy, Alain Walcarius. Jacques Bessiere. Chemical mechanisms responsible for the immobilization of selenite species from an aqueous medium in the presence of copper (Ⅰ) oxide particles [J]. Langmuir,2002,18:8472-8480
    [2]Han C H, Li Y, Shen J. Photocatalytic degradation of dodecyl-benzenesulfonate over TiO2-Cu2O under visible irradiation[J]. Journal of Hazardous Materials.2009, 168:215-230
    [3]梅光军,师伟,解科峰,夏洋.纳米氧化亚铜的制备及其光催化性能研究[J]资源环境与工程,2007,21(3):1671-1676
    [4]刘传银,胡福军,李学强.纳米氧化亚铜的制备及其电化学性质[J].化学研究,2005,16(4):55-60
    [5]Luo F, Wu D, Gao L, et al. Shape-controlled synthesis of Cu2O nanocrystals assisted by Triton X-100 [J]. J Cryst Growth,2005,28:534-541
    [6]Gou L F, Catherine J Murphy. Solution-Phase Synthesis of Cu2O Nanocubes, Nano Letters [J],2003,3:231-237
    [7]Zhang H W, Zhang X, Li H Y, et al. Hierarchical Growth of Cu2O Double Tower-Tip-likeNanostructures in Water/Oil Microemulsion[J]. Crystal Growth & Design,2007,7:821-826
    [8]Zheng Z K, Huang B B, Wang Z Y, et al. Crystal Faces of Cu2O and Their Stabilities in Photocatalytic Reactions [J] J Phys Chem C,2009,113: 14448-14453
    [9]Matthew J, Siegfried J. Elucidating the Effect of Additives on the Growth and Stability of Cu2O Surfaces via Shape Transformation of Pre-Grown Crystals [J]. J Am Chem Soc,2006,128:10357-10362
    [10]魏明真,伦宁,马西骋,等.溶剂热法制备铜与氧化亚铜纳米晶[J].无机盐工业,2007,39(1):21-28
    [11]Ram S, Mitra C. Formation of stable Cu2O nanocrystals in a new orthorhombic crystal st ructure [J]. Mater Sci Eng A,2001,33:805-810
    [12]翟慕衡,张文敏,郑伟威,等.微波辐照下制备均分散Cu2O纳米粒子[J].化学世界2000,12:632-635
    [13]张炜,许小青,郭承育,等.低温固相法制备Cu2O纳米晶[J].青海师范大学学报,2004,33:53-56
    [14]张克从,张乐溥.晶体生长科学与技术[M].北京:科学出版社.1996,63-89
    [15]施尔畏,陈之战,元如英等.水热结晶学[M].北京:科学出版社.2004,56-76
    [16]于锡铃.晶体生长机理研究的新近进展[J].中国科学基金,2002,4:215-218
    [17]王继扬.晶体生长的缺陷机制[J].物理化学学报,2001,30(6):332-339
    [18]李广慧,韩丽,方奇.晶体结构控制晶体形态的理论及应用.人工晶体学报,2005,34(3):546-549
    [19]周祖康.胶体化学基础[M].北京:北京大学出版社.1989,33-56
    [20]Rawlings J B, Miller S M, Witkowski WR. Model identification and control Solulion crystallization Proeesses:a review. Industrial&Engineering Chemistry Researeh,1993,32(7):1275-1296
    [21]吴慧芳.氧化银、银、氧化亚铜微纳米颗粒的形貌和尺寸控制[D].厦门:厦门大学,2007
    [22]Zhao K Z, Huang B B, Wang Z Y, et al. Crystal Faces of Cu2O and Their Stabilities in Photocatalytic Reactions [J]. J Phys Chem C 2009,113: 14448-14453
    [23]Guo X Z, Zhang S Y, Jin B K, et al. Synthesis, Characterization, and Properties of the Fringy CdSe Wurtzite Nanocrystals [J]. J. Phys. Chem. C,2008,112, 17899-17905
    [24]Xiao N, Yang Y, Journal of Wuhan University (Natural Science Edition) [J], 2006,52 (4):453-460
    [25]Liu H J, Peng T Y, Ke D N et all, Preparation and Photocatalytic Activity of Dysprosium Doped Tungsten Trioxide Nanoparticlesl [J]. Materials Chemistry and Physics,2007,104 (2-3):377-383
    [26]谷威,鲍建国,洪军,可见光-芬顿降解甲基橙效果的正交试验研究[J],安全与环境工程,2009,16(5):65-68
    [27]Zhang Y G, Ma L L, et al. Situ Fenton Reagent Generated from TiO2/Cu2O composite film:a new way to utilize TiO2 under visible light irradiation [J]. Sci. Technol.2007,41:6264-6269
    [28]Wang J Y, Su D, Chen F, Du, et al. Journal of of Wuhan University (Natural Science Edition),2009,55(5):505-510
    [29]张卫国,刘伟星,李贺,姚素薇.氧化亚铜纳米线的制备及其光电性能[J].化工学报,2007,58(12):3206-3209
    [30]Jacho O, Yongsug T, Jacyoung L. Elect rochemically deposited nanocolumnar junction of Cu2O and ZnO nanowiresl Electrochemical and Solid State Letters, 2005,8 (6):81-84
    [31]张立德,牟季美.纳米材料与纳米结构[M].北京:科学出版社,2001.26-33
    [1]顾宁,付德刚.纳米技术与应用[M].北京.人民邮电出版社.2002.23-33
    [2]翟庆洲,裘式纶.纳米材料研究进展Ⅰ-纳米材料结构与化学性质[J].化学研 究与应用.1998,10(3):226-235
    [3]闫俊萍,张中大,唐子龙,等.半导体纳复合材料光催化研究进展[J].无机材料学报,2003,18(5):980-987
    [4]曹茂盛,关长斌.纳米材料导论[M].哈尔滨.哈尔滨工业出版社.2001.15-18
    [5]Kubo R. Eleetronic ProPerties of metallie fine Partieles [J]. Phys Soe Jape,1962, 33(17):975-980
    [6]Roy R, Komameni S, RoyDM, Cation-exchange Properties of hydrated Cements [J]. Mater Res Soe SymP Proc,1984,32:347-352
    [7]孙晓君,蔡伟民,井立强.二氧化钛半导体光催化技术研究进展[J].哈尔滨工业大学学报,2001,23(4):534-541
    [8]Baliglul A, Kmehmet A. Applieation of Photoeatalytie oxidation treatme to Pretreatedan draw effluents from the kraft bleaching Process and textile industry [J]. Environmental Pollution,1998,103(2):261-268
    [9]王艳芹,等.掺杂过渡金属离子的TiO2复合纳米粒子光催化剂-罗丹明B的光催化降解[J].高等学校化学学报,2000,2 1(6):958-960
    [10]关敏,李彦生.国内外纳米ZnO研究和制备概况[J].化工新型材料,2005,33(2):18
    [11]Zheng Z K, Huang B B, Wang Z Y, et al. Crystal Faces of Cu2O and Their Stabilities in Photocatalytic Reactions [J]. J Phys Chem C 2009,113: 14448-14453
    [12]解仁国,庄家骥,王凌凌,等.一种具有高效光致变色性能的WO3/ZnO纳米粒子复合体系[J].2003,24:2086-2088
    [13]Matthew J, Siegfried J. Elucidating the Effect of Additives on the Growth and Stability of Cu2O Surfaces via Shape Transformation of Pre-Grown Crystals [J] J Am. Chem. SOC,2006,128:10357-10361
    [14]Liu H J, Peng T Y, Ke D N, et al. Preparation and Photocatalytic Activity of Dys prosium Doped Tungsten Trioxide Nanoparticles [J]. Materials Chemistry and Physics,2007,104:377-383
    [15]宋娟,宋继梅,胡媛,陈盼盼,王为.MoO3掺杂WO3催化剂的制备及其光 催化性能[J].环境化学,2008,27:721-726
    [16]Federal Register, National Recommended Water Quality Criteria [J]. Fed Regist 1998,63:67547-67558
    [17]清山哲郎[日]金属氧化物及其催化作用[M].合肥:中国科学技术大学出版社1988,99-110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700