硅薄膜微结构及悬挂键缺陷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为目前最具有发展前景的硅基薄膜太阳电池,具有原材料取之不尽、用之不竭、分布广泛、绿色环保以及成本低廉等优点,因此得到广泛的研究与应用。
     硅薄膜的结构缺陷显著影响薄膜太阳能电池的性能。硅薄膜在制备过程中往往存在晶粒间界、微空洞、悬挂键等缺陷。X射线小角散射(SAXS)已经证实了薄膜中微空洞的存在,晶界缺陷可由TEM及HR-TEM观察到,而硅薄膜中最通常的缺陷是悬挂键缺陷。悬挂键缺陷的存在对太阳电池性能的影响很大,极易成为电子和空穴的额外复合中心,使得电子的俘获截面增大、寿命下降,影响电池性能的稳定性。悬挂键中的电子是未配对的,存在自旋,电子自旋共振技术(ESR)测得在蒸发和溅射法制备非晶硅中,自旋密度达到1020 cm-3,表明悬挂键缺陷的浓度是相当高的。无掺杂的非晶硅中的悬挂键密度很高(1018cm-3或更高),电学性能很差,不能满足器件的应用要求。因此硅薄膜中悬挂键及相关缺陷的研究是十分必要的。
     本论文采用ECR-PECVD、ArF准分子激光晶化、中频磁控溅射等方法制备硅薄膜,采用透射电子显微镜(TEM)、X射线衍射(XRD)、喇曼光谱(Raman)、傅里叶红外光谱(FTIR)、电子自旋共振波谱(ESR)等检测手段,对薄膜的相结构、结晶状态、氢含量及悬挂键密度进行观察分析。了解硅薄膜中结晶度,氢含量及悬挂键密度对硅薄膜的影响规律,以寻求稳定化处理方法和工艺。
     实验结果表明,利用ECR-PECVD方法在Si基片上沉积Si薄膜,当Ar流量为70 sccm时,薄膜的悬挂键密度达到最小值4.42x 1016cm-3,且此时的氢含量也接近10 at.%,结晶度约为50%。得出最佳Ar流量值为70 sccm。本实验参数条件下,ArF激光表面处理的硅薄膜的悬挂键密度比未经过激光处理的悬挂键密度降低将近一个数量级。本实验参数下利用中频磁控溅射法在硅基片(100)及普通玻璃基片上制得硅薄膜,得出Si基片上制得的硅薄膜的悬挂键密度较普通玻璃上制得的硅薄膜的悬挂键密度低。
Si-based thin film solar cells, as the most promising solar cells now, have been intensively studied and applied in many fields,because of their advantages, such as abundant storage of Si in the earth, environmental friendly characteristic, and low manufacturing cost.
     The thin film has been found to consist of structural inhomogeneities ralated to grain boundaries, micro-voids and dangling bonds, introduced during the prepared process of the Si films.Microstructure defects significantly affect the properties of solar cells.Small-angle X-ray scattering(SAXS)measurements have revealed the presence of micro-voids in the thin films;while grain boundary defects are investigated by TEM as well as HR-TEM. However, the most important defects in the Si films are dangling bonds.The dangling bonds, which are additional combination centers for electrons and holes, increase the capture cross section and reduce life of electrons, and consequently affect the stability of cell properties.There are spins in the un-paired electrons in dangling bonds.Electron spin resonance (ESR) investigations have revealed a very high spin density, up to 1020 cm-3,in the evaporation and sputter deposited a-Si films. The un-doped a-Si films with high density of dangling bonds(1018cm-3 or even higher) possess poor electronic quality and can not fulfill the requirement in component applications.Therefore, it is essential to investigate the dangling bonds and associated defects in the Si films.
     In this work, Si films were prepared or treated with three different techniques, including ECR-PECVD,ArF excimer laser crystallization and intermediate frequency magnetic sputter deposition. The phase structure, preferential orientation, crystallinity, H concentration, and dangling bond density of the as-prepared Si films were investigated with transimission electron microscope (TEM), X-ray diffreaction (XRD), Raman spectrum, Fourier transform infrared spectrum (FTIR) and electron spin resonance (ESR).The influences of crystallinity, H content, and dangling bond density on properties of Si films were analyzed, with the purpose of achieving a stabilized preparation technique.
     The main results are:(1)The dangling bond density in the Si films, prepared on the substrate of(100)Si plate by means of ECR-PECVD under 70 sccm Ar flow rate,is minimum of 4.42×016 cm-3,while the H concentration is-10 at.% and the crystallinity of-50%.The Ar flow rate of 70 sccm is optimum in comparison with other flow rates.(2) ArF laser surface treatment causes a reduction of dangling bond density by-1 order of magnitude, compared with un-treated Si films.(3)In the Si films prepared by intermediate frequency magnetic sputter deposition on the substrates of (100) Si and normal glass sheets, the dangling bond density is lower on the substrate of (100) Si sheet.
引文
[1]李恒德,师昌绪.中国材料发展现状及迈入新世纪对策[M].山东:山东科学技术出版社,2003.
    [2]K L M A. Photovoltaics and hydrogen:Future energy options [J].Energy Conversion and Management,1997,38(18):1881-1893.
    [3]童忠良,张淑谦,杨京京.新能源材料与应用[J].北京:国防工业出版社,2008,1
    [4]王晓晶,班群,沈辉.硅太阳电池材料的研究进展[J].能源工程,2002,(4):28-31.
    [5]Goetzbergera A. Christopher Heblinga, Hans-Werner Schockb. Photovoltaic materials, history, status and outlook[J].Materials Science and Engineering: R,2003,40:1-46
    [6]Carlson D E, Wronski C R. Amorphous silicon solar cell [J].Applied Physics Letters,1976,28(11):671-673.
    [7]Ashida Y. Single-junction a-Si solar cells with over 13% efficiency [J].Solar Energy Materials and Solar Cells,1994,34(1-4):291-302.
    [8]Meier J. On the way towards high efficiency thin:film silicon solar cells by the micromorph concept [J].Materials Research Society Symposium Proceedings,1996,420:3-14.
    [9]Yang J, Banerjee A, Guha a S.Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies [J].Applied Physics Letters,1997,70(22):2975.
    [10]Yamamoto K, Yoshimi M, Tawada Y et al.Cost effective and high-performance thin film Si solar cell towards the 21st century [J].Solar Energy Materials and Solar Cells,2001,66(1-4):117-125.
    [11]Meier J, Dubail S, Golay S et al. Microcrystalline silicon and the impact on micromorph tandem solar cells [J].Solar Energy Materials and Solar Cells, 2002,74(1-4):457-467.
    [12]Maruyama E, Okamoto S,Terakawa A et al.Toward stabilized 10% efficiency of large-area (>5000cm)a-Si/a-SiGe tandem solar cells using high-rate deposition [J].Solar Energy Materials and Solar Cells,2002,74(1-4):339-349.
    [13]Takatsuka H, Noda M, Yonekura Y et al. Development of high efficiency large area silicon thin film modules using VHF-PECVD [J].Solar Energy,2004, 77(6):951-960.
    [14]Saito K, Sano M, Okabe S et al.Microcrystalline silicon solar cells fabricated by VHF plasma CVD method [J].Solar Energy Materials and Solar Cells, 2005,86(4):565-575.
    [15]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社,2003.420.
    [16]沈辉,曾祖勤.太阳能光伏发电技术[M].北京:化学工业出版社,2005:92
    [17]Staebler D L, Wronski C R. Reversible conductivity changes in discharge-produced amorphous Si [J].Applied Physics Letters,1977, 31(4):292-294.
    [18]王永谦.硅薄膜太阳能电池技术及其应用[J].上海电力:太阳能光伏技术的新进展,2008,(2):115.
    [19]阴生毅,陈光华.a-Si:H薄膜及MWECR-CVD制备技术[J].物理,2004,33(4):272-277
    [20]Spear W E, Le Comber P G.Substitutional doping of amorphous silicon [J]. Solid State Communications,1975,17(9):1193-1196.
    [21]Paul W, Lewis A J, Connell G A N et al.Doping, Schottky barrier and p-n junction formation in amorphous germanium and silicon by rf sputtering [J]. Solid State Communications,1976,20(10):969-972.
    [22]Adler D.Origin of the photo-induced changes in hydrogenated amorphous silicon [J].Solar Cells,1983,9(1-2):133-148.
    [23]Stutzmann M, Jackson W B,Tsai C C.Light-induced metastable defects in hydrogenated amorphous silicon:A systematic study [J].Physical Review B, 1985,32(1):23.
    [24]Street R A, Winer K. Defect equilibria in undoped a-Si:H [J].Physical Review B,1989,40(9):6236.
    [25]Powell M J, Deane S C.Improved defect-pool model for charged defects in amorphous silicon [J].Physical Review B,1993,48(15):10815.
    [26]Branz H M. Hydrogen collision model of light-induced metastability in hydrogenated amorphous silicon [J].Solid State Communications,1998, 105(6):387-391.
    [27]Sriraman S,Agarwal S,Aydil E S et al.Mechanism of hydrogen-induced crystallization of amorphous silicon [J].Nature,2002,418(6893):62-65.
    [28]廖乃镘,李伟,蒋亚东等.氢化非晶硅(a-Si:H)薄膜稳定性的研究进展[J].材料导报,2007,21(5):21-24.
    [29]张凤鸣.多晶硅薄膜太阳电池[J].太阳能学报,2003,24(4):555-564.
    [30]刘刚,余岳辉,史济群.半导体器件-电力、敏感、光子微波器件[M].北京:电子工业出版社,2000:77-78.
    [31]胡芸菲,沈辉,梁宗存等.多晶硅薄膜太阳电池的研究与进展[J].太阳能学报,2005,26(2):200-206.
    [32]Sen Z. Solar energy in progress and future research trends [J]. Progress in Energy and Combustion Science,2004,30(4):367-416.
    [33]R. Catchpole K, J. McCann M, J. Weber K et al.A review of thin-film crystalline silicon for solar cell applications. Part 2:Foreign substrates [J]. Solar Energy Materials and Solar Cells,2001,68(2):173-215.
    [34]Chukichev M V, Forsh P A, Fuhs W et al. Creation of metastable defects in microcrystalline silicon films by keV electron irradiation [J].Journal of Non-Crystalline Solids,2004,338-340:378-381.
    [35]Veprek S, Marecek V. The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport [J].Solid-State Electronics,1968, 11(7):683-684.
    [36]Roca i Cabarrocas P, Bulkin P, Daineka D et al. Advances in the deposition of microcrystalline silicon at high rate by distributed electron cyclotron resonance[J].Thin Solid Films,2008,516(20):6834-6838.
    [37]Meier J, Dubail S, Cuperus J et al.Recent progress in micromorph solar cells [J].Journal of Non-Crystalline Solids,1998,227-230(2):1250-1256.
    [38]Yamamoto K, Nakajima A, Yoshimi M et al.A high efficiency thin film silicon solar cell and module [J].Solar Energy,2004,77(6):939-949.
    [39]Gordijn A, Hodakova L, Rath J K et al.Influence on cell performance of bulk defect density in microcrystalline silicon grown by VHF PECVD [J].Journal of Non-Crystalline Solids,2006,352(9-20):1868-1871.
    [40]徐茵,顾彪,秦福文.GaN薄膜低温外延的ECR-PAMOCVD技术[J].半导体技术,1998,23(2):37.
    [41]Ma J S,Kawarada H, Yonehara T et al.Selective nucleation and growth of diamond particles by plasma-assisted chemical vapor deposition [J].Applied Physics Letters,1989,55(11):1071-1073.
    [42]Xu Y, Gu B,Qin F-W. Electron cyclotron resonance plasma enhanced metalorganic chemical vapor deposition system with monitoring in situ for epitaxial growth of group-Ⅲ nitrides [J].Vacuum Science and Technology, 2004,22(2):302-308.
    [43]Adikaari A A D T, Silva S R P. Thickness dependence of properties of excimer laser crystallized nano-polycrystalline silicon [J].Journal of Applied Physics, 2005,97(11):114305-114307.
    [44]Fogarassy E, Unamuno S d, Prevot B et al.Super-lateral-growth regime analysis in long-pulse-duration excimer-laser crystallization of a-Si films on SiO2 [J].Applied Physics A:Materials Science & Processing,1999, 68(6):631-635.
    [45]袁志军,楼祺洪,周军等.激光晶化制备多晶硅薄膜技术[J].光学薄膜,2007,44:52-57.
    [46]刘瑞鹏,李刘合.磁控溅射镀膜技术简述[J].科技前沿,2006:56-59.
    [47]余东海,王成勇,成晓玲等.磁控溅射镀膜技术的发展[J].真空,2009,46(2):19-25.
    [48]Maniv S.Aspects for the design of sputtering systems [J].Vacuum,1983, 33(4):215-219.
    [49]Cheng H, Wu A, Shi N et al.Effect of Ar on Polycrystallne Si Films Deposited by ECR-PECVD using SiH4 [J].Journal of Materials Science and Technology, 2008,24(5):690-692.
    [50]Honda S,Mates T, Ledinsky M et al.Effect of hydrogen passivation on polycrystalline silicon thin films [J].Thin Solid Films,2005, 487(1-2):152-156.
    [51]Raha D, Das D.Hydrogen induced promotion of nanocrystallization from He-diluted SiH4 plasma. [J].Journal of Physics D:Applied Physics,2008, 41:085303.
    [52]Matsuda A, Mashima S,Hasezaki K et al.Preparation of stable and photoconductive hydrogenated amorphous silicon from a Xe-diluted silane plasma [J].Applied Physics Letters,1991,58(22):2494-2496.
    [53]Jia H, Kondo M. High rate synthesis of crystalline silicon films from SiH4+ He using high density microwave plasma [J].Journal of Applied Physics,2009, 105(10):104903-104906.
    [54]崔洪涛.在升级冶金级硅衬底上用ECR-PECVD沉积多晶硅薄膜[D].大连:大连理工大学,2007:31
    [55]Droz C.Thin Film Microcrystalline Silicon Layers and Solar Cells: Microstructure and Electrical Performances:PhD Thesis) [M].Switzerland: University of Neuchatel,2003:128
    [56]裘祖文.电子自旋共振波谱[M].北京:科学出版社,1980:24-80
    [57]陈贤镕.电子自旋共振实验技术[M].北京:科学出版社,1986:1-40
    [58]左则文,闾锦,管文田等.微晶硅薄膜的等离子增强化学气相沉积生长特征[J].南京大学学报(自然科学),2008,44(4):293-298.
    [59]Maley N, Lannin J S.Influence of hydrogen on vibrational and optical properties of a-Si1-xHx alloys [J].Physical Review B,1987,36(2):1146.
    [60]Veprek S,Sarott F A, Iqbal Z. Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon [J].Physical Review B,1987,36(6):3344.
    [61]He Y, Yin C,Cheng G et al.The structure and properties of nanosize crystalline silicon films [J].Journal of Applied Physics,1994,75(2):797-803.
    [62]Voutsas A T, Hatalis M K, Boyce J et al.Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition [J].Journal of Applied Physics,1995,78(12):6999-7006.
    [63]Ossadnik C,Veprek S,Gregora I. Applicability of Raman scattering for the characterization of nanocrystalline silicon[J].Thin Solid Films,1999, 337(1-2):148-151.
    [64]Das D, Jana M. Hydrogen plasma induced microcrystallization in layer-by-layer growth scheme [J].Solar Energy Materials and Solar Cells, 2004,81(2):169-181.
    [65]Siebke F, Yata S,Hishikawa Y et al.Correlation between structure and optoelectronic properties of undoped microcrystalline silicon [J].Journal of Non-Crystalline Solids,1998,227-230(Part 2):977-981.
    [66]Kushner M J.A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon [J].Journal of Applied Physics,1988,63(8):2532-2551.
    [67]K. Das U, Chaudhuri P, Kshirsagar S T. Effect of argon dilution on the structure of microcrystalline silicon deposited from silane [J].Journal of Applied Physics,1996,80(9):5389-5397.
    [68]Bruno G, Capezzuto P, Madan A. Plasma Deposition of Amorphous Silicon-based Materials[M].New York:Academic Press,1995.209.
    [69]Kocka J, Mates T, Stuchlov H et al.Characterization of grain growth,nature and role of grain boundaries in microcrystalline silicon--review of typical features[J].Thin Solid Films,2006,501(1-2):107-112.
    [70]Maley N.Critical investigation of the infrared-transmission-data analysis of hydrogenated amorphous silicon alloys [J].Physical Review B,1992, 46(4):2078.
    [71]Manfredotti C, Fizzotti F, Boero M et al.Influence of hydrogen-bonding configurations on the physical properties of hydrogenated amorphous silicon [J].Physical Review B,1994,50(24):18046.
    [72]Brodsky M H, Cardona M, Cuomo J J. Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering [J].Physical Review B,1977,16(8):3556.
    [73]Jana M, Das D, Barua A K. Promotion of microcrystallization by argon in moderately hydrogen diluted silane plasma [J].Solar Energy Materials and Solar Cells,2002,74(1-4):407-413.
    [74]Lim P K, Tam W K, Yeung L F et al.Effect of hydrogen on dangling-bond in a-Si thin film [J].Journal of Physics:Conference Series,2007,61:708-712.
    [75]Zhu M, Cao Y, Guo X et al.Microstructure of poly-Si thin films prepared at low temperatures [J].Solar Energy Materials and Solar Cells,2000, 62(1-2):109-115.
    [76]Martinet C,Devine R A B.Comparison of experimental and calculated TO and LO oxygen vibrational modes in thin SiO2 films [J].Journal of Non-Crystalline Solids,1995,187:96-100.
    [77]Shanks H, Fang C J, Ley L et al.Infrared Spectrum and Structure of Hydrogenated Amorphous Silicon [J].Physica Status Solidi b,1980, 100(1):43-56.
    [78]Langford A A, Fleet M L, Nelson B P et al.Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon [J].Physical Review B, 1992,45(23):13367.
    [79]Das U K, Middya A R, Rath J K et al.Nanostructures and defects in silicon-hydrogen alloys prepared by argon dilution [J].Journal of Non-Crystalline Solids,2000,276(1-3):46-55.
    [80]Huang R,Lin X, Huang W et al.Effect of hydrogen on the low-temperature growth of polycrystalline silicon film deposited by SiCl4/H2 [J].Thin Solid Films,2006,513(1-2):380-384.
    [81]赵谦,王波,严辉等.退火处理对掺饵氢化非晶硅悬挂键密度和光致荧光的影响[J].物理学报,2004,53(1):151-155.
    [82]Ehara T, Ikoma T, Akiyama K et al.Electron paramagnetic resonance studies on microcrystalline silicon prepared by sputtering method [J].Journal of Applied Physics,2000,88(3):1698-1700.
    [83]Matsuda A, Takai M, Nishimoto T et al.Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate [J].Solar Energy Materials and Solar Cells,2003,78(1-4):3-26.
    [84]Cicala G,Bruno P, Losacco A M. PECVD of hydrogenated diamond-like carbon films from CH4-Ar mixtures:growth chemistry and material characteristics [J].Diamond and Related Materials,2004,13(4-8):1361-1365.
    [85]Ohring M. The Materials Science of Thin Films [M].New York:Academic Press,2002.387.
    [86]Awazu K. Ablation and compaction of amorphous SiO2 irradiated with ArF excimer laser [J].Journal of Non-Crystalline Solids,2004,337(3):241-253.
    [87]崔连武.a-Si薄膜的激光表面晶化行为研究[D].沈阳:中国科学院金属研 究所,2009:40
    [88]Sameshima T, Watakabe H, Andoh N et al.Pulsed laser crystallization of very thin silicon films [J].Thin Solid Films,2005,487(1-2):63-66.
    [89]Cern R, Vydra V, Prikryl P et al. Theoretical and experimental studies of a-Si:H recrystallization by XeCl excimer laser irradiation [J].Applied Surface Science,1995,86(1-4):359-363.
    [90]程华.PECVD硅烷分解法制备硅层基本规律的研究[D].沈阳:中国科学院金属研究所,2009:42
    [91]Math E L, Naudon A, Elliq M et al. Influence of hydrogen on the structure and surface morphology of pulsed ArF excimer laser crystallized amorphous silicon thin films [J].Applied Surface Science,1992,54:392-400.
    [92]Su T, Taylor P C, Ganguly G et al. Direct Role of Hydrogen in the Staebler-Wronski Effect in Hydrogenated Amorphous Silicon [J].Physical Review Letters,2002,89(1):015502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700