原子—腔—场系统中量子纠缠信息交换、传递与保持的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子纠缠信息的交换、传递与保持问题,是当前量子光学与量子信息学领域的前沿重大课题之一,其成果在量子通信与量子光通信等高科技领域具有广阔的应用前景和重大的应用价值。本文利用全量子理论,对多种“原子-腔-场”相互作用系统中量子纠缠信息的交换、传递与保持问题进行了系统研究,由此获得了一系列既不同于现有报道又具有重要意义的新的结果和结论。本文的主要的研究结果如下:
     1.采用数值计算的方法,研究了两个偶极-偶极相互作用的耦合双能级原子分别与单模奇相干态光场、单模偶相干态光场以及两态叠加单模Schr?dinger-cat态光场相互作用系统中原子与腔场之间的量子纠缠度的时间演化特征。结果表明,场-原子系统量子纠缠度的时间演化特性不仅与光场的初始平均光子数、场-原子之间的耦合强度、原子-原子之间的耦合强度以及频率失谐量等密切相关,而且还与原子的初始状态有关,并完全由这些因素共同决定。一般而言,纠缠度的时间演化普遍呈现出振荡性;并且在初始强场的条件下,场-原子之间的纠缠与退纠缠现象周期性的交替出现,且存在量子干涉现象;随着场-原子之间耦合强度的增大,量子纠缠不规则振荡的周期逐渐减小;当原子-原子之间耦合强度取某些定值时,量子纠缠度的时间演化会呈现出周期性的崩坍-回复现象,当原子-原子之间偶极-偶极相互作用较弱时,量子场熵演化规律与单光子J—C模型的情形相似,当偶极相互作用足够强时又与双光子J—C模型的特征相似。通过控制影响因素,尽可能使原子与光场较长时间处于较大程度的纠缠态,将有利于量子纠缠信息的传递。
     2.建立了由多个相互独立的“原子-腔-场”相互作用系统的物理模型。利用全量子理论,分别研究了M个单原子分别与M个单(多)模光场依赖于强度耦合的单(多)光子相互作用过程、M个耦合双能级原子分别与M个单(多)模光场的单(多)光子相互作用过程,给出了不同情况下系统态矢的一般演化式,找到了利用原子-腔-场之间的相互作用过程来实现量子纠缠信息交换与传递的条件。结果发现:只要控制原子-腔场之间相互作用时间并使原子以特定速度穿过腔场,对于不同的模型有时还需要对出腔原子进行测量,并通过处于基态的原子与存储量子纠缠信息的腔场两者之间的相互作用最终使原子获得了量子纠缠信息。相反,纠缠原子中的量子纠缠信息也可传递给处于真空态的腔场。与此同时,作为“飞行的量子比特”的基态原子可将量子纠缠信息从一个腔场传递到另一个腔场。不仅如此,通过控制原子与腔场之间相互作用时间,也可使腔场或者原子初始量子纠缠信息被完全保持或部分保持。在不同的系统中,影响实现量子纠缠信息交换、传递与保持条件的因素各不相同。例如,通过对频率失谐量的控制,可使量子纠缠信息被完全交换、完全传递或完全保持,但原子之间的偶极相互作用会导致量子纠缠信息被非完全传递和非完全保持。由此可见:当处于基态的原子以特定速度通过处于量子纠缠态的腔场时,原子能够将光场的量子纠缠信息据为已有;反之,当纠缠原子以特定速度通过真空态腔场时,原子又能将自己携带的量子纠缠信息释放于腔场之中,这样便实现了原子-腔-场系统量子纠缠信息的交换与传递。研究还表明:利用原子能够捡起和释放量子纠缠信息的特点,可进一步实现腔-腔之间的异地量子纠缠信息的传递。
     3.提出了由相干腔场与相干原子构成的综合物理模型,研究了相干原子束与单(多)模相干光场的单(多)光子的共振(非共振)相互作用过程,利用演化因子给出了相干原子束与相干腔场相互作用系统的演化规律。结果表明:腔场与原子相互作用过程中光场纠缠态与原子纠缠态可周期性地相互转换,这样便实现了量子纠缠信息的交换与传递。且其转换周期分别与原子-腔场之间相互作用的耦合强度g、相互作用时间t、原子(或光子湮灭)算符的复系数Aξ,k( Aη,k)、各模光场参与相互作用(或初始)的光子数N j, k( n j, k)以及光场所含的纵模数q等密切相关并完全由这些因素决定。研究还发现:在普遍情况下,量子纠缠信息交换与传递的条件分别与原子的跃迁频率ωa,k及其相对相位ξ、光场的频率ωf,k及其相对相位η、场-原子之间的耦合强度g以及场-原子相互作用时间t等均有关;但当原子与光场发生共振相互作用时,其条件仅与g、t有关。由此揭示出相干腔场与相干原子束相互作用过程中量子纠缠信息交换与传递的一般特征。另外,在适当条件下,原子纠缠态或光场纠缠态可以保持初态不变。在一定条件下,上述这些普遍性结果便过渡到了非相干原子与光场相互作用的特殊情形。
     4.在考虑非线性效应的情况下,精确求解了由多个原子与多个腔场构成的联合系统态矢量随时间演化的一般表式,利用全量子理论并通过数值计算方法,详细研究了Kerr效应、Stark效应、以及虚光场效应对量子纠缠信息在原子与腔场之间周期性可逆交换与传递过程的影响。结果表明:①.Kerr介质对初始腔场为真空态或最低Fock态组成的纠缠态等一些特殊情形不产生任何影响,而对一般Fock态n k( n k≠0)都会改变其量子纠缠信息转换的相位和周期,且Kerr效应越强转换周期就越短,反之亦然,因此,通过选取不同Kerr介质并改变Kerr效应的强弱程度,可以控制量子纠缠信息交换与传递的快慢程度,还有,当考虑Kerr效应时,相位的改变也与腔场中光子数n k(k=1,2,3,…,M)的多少有关;②.Stark效应和初始场强对此过程也有着显著的影响:光场的量子纠缠程度会随着初始场强的增强而增大,在强场条件下,光场量子纠缠度可呈现出周期性的崩塌-回复现象,并且Stark移位参量越大,光场量子纠缠度振荡越剧烈,说明Stark效应破坏了光场量子纠缠度的时间稳定性;③.旋波近似对原子纠缠态与光场纠缠态两者之间的交换、传递与保持不产生任何影响;而在非旋波近似下,虚光场效应对纠缠态在腔场与原子之间相互转化的过程有着明显的影响:在光场纠缠信息传递给原子之后腔场并不能恢复到最初的真空态;伴随着纠缠态的转化和保持过程,相位有所改变并产生了多个干扰项。
In the present, the problems of exchange, transmission and maintain of quantum entangled information is always one of the foremost and important research topic in the regime of quantum optics and quantum informatics, its achievements is of broadening application prospects and great application values in the fields of Hi-technologies such as quantum optics and quantum informatics. In this thesis, the complete quantum theory is utilized to study the problems of exchange, transmission and maintain of quantum entangled information systematically within the various systems of atoms-cavities-fields interaction, and a series of new important research results is obtained that is rather different from the current scientific reports. The main research results are as follows:
     1. By using numerical calculating method, the time evolution characteristic of quantum entanglement degree of different field-atom interaction systems are studied in detail, such as the two coupled two-level atoms with dipole-dipole interaction interacting with a single-mode odd coherent state light-field, interacting with a singled-mode even coherent state light-field, and interacting with two state superposition-a single-mode Schr?dinger-cat state light-field, respectively. It is showed that the time evolution properties of quantum entanglement degree of field-atom system are decided by such major factors as the initial mean photon-number of light-field, the coupled intensity between field-atom, the coupled intensity between atom-atom, the frequency detune, and the initial state of atom. In general, the time evolution of quantum entanglement degree can present the property of oscillation; under the condition of initial intensive-field, the phenomena of entanglement and disentanglement present periodically and alternatively, and the phenomenon of quantum interference follows in the same time; with the increasing of coupled intensity between field-atom, the anomalous oscillating period of quantum entanglement degree decreases gradually; if the coupled intensity between atom-atom is some certain and fixed value, the time evolution of quantum entanglement degree can display the phenomenon of periodical collapse-reversion, while the dipole-dipole interaction between atom-atom is weaker the time evolution characteristic of quantum field-entropy is similar to the situation of one-photon Jaynes-Cummings model, while it is strong enough that is very similar to the situation of two-photon Jaynes-Cummings model. From what had said above, we can see that it is possible to make atom and light-field staying in the maximum quantum entanglement state long time, which is benefited for the transmission of quantum entangled information.
     2. The physical model of interaction system composed of multi-independent atom-cavity-field is established. The complete quantum theory is used to study the processes of M two-level atoms interacting with M single-model (or M multi-model) light-field with intensity-dependent coupling through one-photon (or any multi-photon) interaction, and M pairs of coupled two-level atoms interacting with M single-model (or M multi-model) light-field through one-photon (or any multi-photon) interaction, respectively. The general expressions evolving with time of the combined state vector of the systems mentioned is given in different situations, and the conditions to realize exchange and transfer of quantum entangled information by using the interaction process among atom-cavity-field are found out. It is found that the quantum entangled information of light-field can transfer to atom, by controlling the interacting time of atom-cavity-field system and the flying velocity of atom through cavity, and by the interaction between the atom stayed in the ground state initial and the cavity-field to be stored the quantum entangled information initially, for the different model the atom flying out of the cavity sometimes need to be detected; contrary, the quantum entangled information of atom stayed in the entangled state initially can also transfer to the cavity-field which is initially stayed in the vacuum state. Meanwhile, the ground atom as flying qubit can also transfer the quantum entangled information from one cavity to another. Otherwise, the initial quantum entanglement information possessed by cavity-field or atom can be maintained completely or partially, by controlling the interaction time between atom and cavity-field. For the different atom-cavity-field interaction system, the factors of condition to affect realizing exchange, transmission and maintain of quantum entangled information are rather different. For example, the quantum entangled information can be exchanged, transferred and maintained completely by controlling the frequency detuning, but the dipole-dipole interaction between the two coupled two-level atoms can lead the quantum entangled information to transfer and maintain incompletely. It can be seen that when the atom stayed in the ground state initially and flying at a fixed velocity passes through the cavity-field, it can possess the quantum entangled information of light-field; contrary, when atom stayed in quantum entangled state initially and flying at a fixed velocity passes through the vacuum state cavity-field, it can release its quantum entangled information to the cavity-field, so one can realize the exchange and transmission of quantum entangled information of atom-cavity-field system. By utilizing the properties of atom picking up and giving off quantum entangled information, one can further realize the transmission of that from one cavity to another.
     3. The synthesized physical model consisting of coherent cavity-fields and coherent atoms is proposed, the processes of coherent atom-beam interacting with a single-model (or multi-model) coherent state light-field through one-photon (or any multi-photon) resonant and nonresonant interaction is researched, and the characteristic of time evolution on the system of coherent atom-beam interacting with coherent cavity-field is given by using time evolution operator. The results show that the cavity-field entangled state and the atom entangled state can convert periodically each other in the process of cavity-field interacting with atom, and this can realize the exchange and transmission of quantum entangled information. It is pointed out that transform period mentioned above is closely related to the following factors, such as the coupled-interacting between atom and cavity-field, the interacting time t, the complex probability amplitude Aξ,kof atomic operator, he complex probability amplitude Aη,k of photon annihilation operator, the photon-number N j, k and n j, k of interaction of each model light-field at initial time, and the total longitudinal mode number q, and so forth. It is also found that in general case, the condition of exchange and transmission of quantum entangled information are related to the circular frequencyωa,k of atomic transition and its relative phaseξ, to the circular frequencyωf ,k of light-field and its relative phaseη, and to coupled-intensity g and interaction time t between the cavity-field and atom, especially when atom interacting with cavity-field resonantly, the conditions mentioned are related to the parameter g and t too. Therefore the general characteristic of transferring the quantum entangled information is revealed in the process of coherent atom-beam interacting with coherent cavity-field. Under the proper condition, the initial atomic entangled state and the cavity-field entangled state cab be also maintained. So the results of incoherent interaction are only the specific examples of these universal results under different conditions.
     4. Considering nonlinear optical effects, the combined system state vector is solved exactly, which is made up of multi-atoms interacting with multi-cavity-field and evolving with time. By utilizing the complete quantum theory and numerical calculating method, that the Kerr effect, Stark effect and the imaginary light-field effect have important influences upon the periodical exchange and transfer of quantum entangled information between atom and cavity-field are further studied systematically. It is found that①. Kerr media have no any influence upon the entangled state which is made of initial vacuum state cavity-field or entangled superposition state of the lowest Fock state, for the general Fock state n k( n k≠0), Kerr effect can change the phase and period of transferring quantum entangled information, and the intensive Kerr effect is, the shorter converting period, vice versa. So one can control the converting rate of exchange and transfer of quantum entangled information by changing the intensity of Kerr effect. Besides, when considering Kerr effect, the phase change is also related to the photon-number n k(k=1,2,3,…,M) within cavity.②. Stark effect and initial intensity of light-field have direct influence on exchange and transmission of that, the quantum entanglement degree of light-field can increase with increasing of initial light-field intensity, the quantum entanglement degree of light-field can also present the phenomenon of collapses-revivals periodically under the condition of intensive field, the greater the Stark drift, the faster the oscillation of quantum entanglement degree of light-field. So, it is show that the time stability of quantum entanglement degree of light-field is broken.③.The Rotating-Wave Approximation(RWA) has no any influences upon the exchange, transmission and maintain between atomic entangled state and cavity-field entangled state, but the imaginary light-field effect have evident influences upon the process of entangled state converting between cavity-field and atom under the condition without RWA. After the entangled information of cavity-field transmits to atom, it can not be restored to the initial vacuum state, and its phase is changed and many disturbance items appear in the processes of transforming and maintaining entangled state.
引文
[1].杨志勇,侯洵.量子光学领域中的若干重大进展[C].参见:新世纪科学论坛,西安:陕西科学技术出版社,1999:125-139.
    [2]. Einstein A, Podolsky B, and Rosen N.Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[J].Phys. Rev.,1935, 47(10):777-780.
    [3]. Bell J S.On Einstain-Podolsky-Rosen paradox[J].Physics, (Long Island), 1964, 1(1):195-200.
    [4]. Clauser J F, Horne M A, Shimony A, et al. Proposed Experiment to Test Local Hidden-Variable Theories[J].Phys. Rev. Lett., 1969, 23:880-884.
    [5]. Aspect A, Grangier P, Roger G.Experimental Realization of Einstein-Podolsky- Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities[J].Phys. Rev. Lett., 1982, 49:91-94.
    [6].赖振讲.原子-腔-场系统中的量子信息动力学特性研究[C].西北大学博士论文,2004:20-38.
    [7]. Lee Jinhyoung, Paternostro M, Kim M S, Bose S. Entanglement Reciprocation between Qubits and Continuous Variables[J]. Phys. Rev. Lett., 2006, 96(3): 080501- 080504.
    [8]. Mohamed Bourennane, Manfred Eibl, Sascha Gaertner. et al. Entanglement Persistency of Multiphoton Entangled States[J]. Phys. Rev. Lett., 2006, 96(10): 100502.
    [9].赖振讲,杨志勇,白晋涛,孙中禹.二能级原子与相干腔场相互作用过程中的纠缠交换[J].物理学报, 2004, 53(11):3733-3738.
    [10].赖振讲,李莉莎,侯洵,白晋涛,杨志勇.多原子-腔系统中的量子信息传递[J].光子学报,2004,33(4):385-388.
    [11]. Shannon C E, Weaver W . The mathematical theory of communication [J].University of Illinois Press, Urbana, 1949.
    [12].维纳(N. Wiener).控制论[M].北京:科学教育出版社,1962,48.
    [13]. Bennett Charles H, DiVincenzo David P. Quantum information and computation[J]. Nature, 2000, 404(6775):247-255.
    [14].郭光灿.量子信息论[J].物理,2001, 30(5): 286-293.
    [15].周正威,郭光灿.量子纠缠态[J].物理,2000, 29(11):695-699.
    [16]. Furuichi S, Ohya M.Entanglement Degree in the Time Development of the Jaynes-Cummings Model[J].Letters in Mathematical Physics (Kluwer Academic Publishers), 1999, 49(4): 279-285.
    [17]. Rubin M H. Measurement of Entanglement States and State Preparation [J].Fortschritte der Physik, Volume 48, Issue 5-7, Date: May 2000, P:473-479.
    [18]. Chen Jingling, Fu Libin, Ungar A A, Zhao Xiangeng.degree of entanglement for two qubits[J].Phys. Rev. A, 2002, 65(4):044303-044306.
    [19]. Gaertner S, Bourennane M, Eibl M, et al.High-fidelity source of four-photon entanglement[J].Applied Physics B: Lasers and Optics, 2003, 77(8): 1321-1325.
    [20].潘峰,刘丹,鲁国英.关于纠缠纯态研究的新进展[J].辽宁师大学报,2003, 26(4): 364-367.
    [21]. Alexander A Klyachko, Alexander S Shumovsky.Maximum entanglement and its proper measure[J].Journal of Optics B: Quantum & Semiclassical Optics, 2004, 6(3): 29-36.
    [22]. Christian F, Reos M R, Hartmut H, et al.Control and measurement of three-qubit entangled states[J].Science, 2004, 304(5676): 1478-1480.
    [23]. Horodecki M, Horodecki P, Horodecki R.LANL e-print quantph 9908065.
    [24]. Bennett C H, DiVincenzo D P, Smolin J A, et al.Mixed-state entanglement and quantum error correction[J].Phys. Rev. A, 1996, 54:3824-3851.
    [25]. Vedral V, Plenin M B, Rippin M A, et al.Quantifying entanglement[J].Phys. Rev. Lett., 1997, 78(12):2275-2279.
    [26].查新未.量子纯态纠缠态的构成与纠缠度[J].西安邮电学院学报,2003, 8(1): 56-58.
    [27].石名俊,杜江峰,朱栋培.量子纯态的纠缠度[J].物理学报, 2000, 49(5):825-829.
    [28]. Zheng S B, Guo G C.Efficient scheme for two-atom entanglement and quantum information processing in cavity QED[J].Phys. Rev. Lett., 2000, 85(11): 2392- 2395.
    [29]. Zheng S B . One-step synthesis of multiation Greenberger-Horne-Zeilinger states[J].Phys. Rev. Lett., 2001, 87:230404-1-230404-4.
    [30]. Kn?ll L, Orlowski A.Distance between density operator: Application to the Jaynes-Commings model[J].Phys. Rev., 1995, A51:1622-1630.
    [31]. Peres A.Separability Criterion for Density Matrices[J].Phys. Rev. Lett. ,1996, 77:1413-1415.
    [32]. Horodecki P, Horodecki M, and Horodecki R. Bound Entanglement Can Be Activated[J].Phys. Rev. Lett. ,1999, 82:1056-1059.
    [33]. Schlienz J, Mahler G.Description of entanglement[J].Phys. Rev. A, 1995, 52: 4396-4404.
    [34]. Keller T E, Rubin M H, Shih Y, et al.Theory of the three-photon entangled state[J].Phys. Rev. A, 1998,57:2076-2079.
    [35].阮曼奇,徐岗,曾谨言.二粒子体系自旋最大纠缠态的3种类型[J].中国科学(G辑),2003,33(5):411-415.
    [36]. Zheng ShiBiao, Guo GuangCan.Generation of Multi-atom Entangled States via the Raman Atom-Cavity-Field Interaction[J].Chinese Physics Letters, 1997, 14(7): 485-487.
    [37]. Keller T E, Rubin M H, Shih Y H.The three-photon entangled state[J].Quantum Electronics Conference, 1998. IQEC 98. Technical Digest. Summaries of papers presented at the International ,3-8 May 1998, P:145-146.
    [38]. Keller T E, Rubin M H, Shih Y H.Three-Photon entangled state[J].Fortschritte der Physik, Volume 46, Issue 6-8, Date: November 1998, P:673-682.
    [39]. Garrett G A, Ingale A, Merlin R.Many-spin quantum entanglement induced by femtosecond pulses[J].Quantum Electronics and Laser Science Conference, 1999. Technical Digest. Summaries of Papers Presented at the ,23-28 May 1999, P: 2/1-2/2.
    [40]. Duan Luming, Giedke G., Cirac J I, et al.Entanglement purification of Gaussian continuous variable quantum states[J].Quantum Electronics Conference, 2000. Conference Digest. 2000 International, Sept. 2000: 1:10-15.
    [41]. Arno Rauschenbeutel, Gilles Nogues, Stefano Osnaghi, et al.Step-by-StepEngineered Multiparticle Entanglement[J].Science, 16 June 2000; 288: 2024- 2028.
    [42]. Sanaka K, Kuga T.Multi-term two-photon entanglement, Quantum Electronics Conference[J].2000. Conference Digest. 2000 International, 10-15 Sept. 2000, P: 1.
    [43]. Napoli A, Messina A . Maximally entangled states of a bimodal cavity field[J].Journal of Modern Optics, 2000, 47 (12):2105-2111.
    [44]. Bertet P, Nogues G, Rauschenbeutel A.Single-photon entanglement between two modes of the electromagnetic field in a cavity[J].Quantum Electronics Conference, 2000 International Conference Digest, 10-15 Sept. 2000, P:1.
    [45]. Lukin M D, Imamoglu A.Nonlinear optics and quantum entanglement of ultra-slow photons[J].Quantum Electronics and Laser Science Conference, 2000. (QELS 2000). Technical Digest ,7-12 May 2000, P:137-138.
    [46]. Weinfurter H, Zukowski M . Four-photon entanglement from down- conversion[J].Phys. Rev., 2001, A64: 010102-010105.
    [47]. Péter F?ldi, Mihály G. Benedict, Attila Czirják.Multiatomic entanglement in a decoherence free subspace[J].Fortschritte der Physik, Volume 49, Issue 10-11, Date:October 2001, P: 961-966.
    [48]. Bertlmann R A, Grimus W.Model for decoherence of entangled beauty[J].Phys. Rev. D, 2001,64:056004.
    [49]. Tong Zhaoyang, Kuang Leman.Entanglement preserving in quantum copying of three-qubit entangled state[J].Commun. Theor. Phys, 2002, 38(5): 541-546.
    [50]. Song Tongqiang, Zhu Yuejin.N-Particle entangled states in the n-mode fock space[J].Modern Physics Letters B, 2002, 16(17): 631-636.
    [51]. Fan Hongyi, Liang Xianting, Junhua.Four-Mode EPR continuous-variable entangled state and its generation[J].Modern Physics Letters B, 2002, 16( 22): 861-869.
    [52]. Zheng ShiBiao . Test of nonlocality with an atom-field entangled state [J].Commun. Theor. Phys., 2002, 38(1):9-10.
    [53]. Fan Hongyi, Cheng Hailing.Nonlinear entangled state representation in quantummechanics[J].Physics Letters A, 2002, 295 (2/3):65-73.
    [54]. Song K H, Zang W J, Guo G C.Proposal for preparing entangled coherent states using atom-cavity-mode Raman interaction[J].The Eur. Phys. J. D- Atomic, Molecular and Optical Physics, 2002, 19(2):267-269.
    [55]. Zhou Xiaoqing, Yu Yafei, Zhan Mingsheng.Generating multi-photon entangled state in a scalable way[J].Physics Letters A, 2002, 297 (5/6):285-290.
    [56]. Duan L M, Lukin M, Zoller P.Atomic entangled states[J].Quantum Electronics and laser science conference, 2002. QELS '02. Technical Digest. Summaries of Papers Presented at the ,19-24 May 2002, P:255.
    [57]. Kwiat P G, Altepeter J B, Branning D.Two-qubit quantum state synthesis [J].Quantum Electronics and Laser Science Conference, 2002. QELS '02. Technical Digest. Summaries of Papers Presented at the 19-24 May 2002, P: 223-224.
    [58]. Peng Kunchi, Zhang Jing, Jing Jietai.Generation and application of tripartite entangled state for continuous electromagnetic field[J].Quantum Electronics Conference, 2003. EQEC '03. European,22-27 June 2003, P:398.
    [59]. Gorbachev V N, Rodichkina A A, Trubilko A I.On preparation of the atomic W-states, Physics and Control[J] . 2003. Proceedings. 2003 International Conference, 20-22 Aug. 2003,vol.3,P:851-854.
    [60]. Song Tongqiang, Zhu Yuejin . N-Particle entangled states of continuum variables[J].Commun. Theor. Phys, 2003,39(3):275-278.
    [61]. Ruan Manqi, Zeng Jinyan.Construction of the Einstein-Podolsky-Rosen entangled states[J].Chinese Physics Letters, 2003, 20(9):1420-1422.
    [62]. Li Chunhui . Four-photon five-dimensional entanglement for quantum communication [J].Physics Letters A, 2003, 313 ( 5/6):389-392.
    [63]. Biswas Asoka, Agarwal G S.Preparation of W, GHZ, and two-qutrit states using bimodal cavities[J].Journal of Modern Optics, 2004, 51(11):1627-1636.
    [64]. M Ali Can, ?zgür ?akir, Alexander Klyachko, et al.Persistent entanglement in three-level atomic systems[J].Journal of Optics B: Quantum & Semiclassical Optics, 2004, 6 (3):13-17.
    [65]. Turchette Q A.Cooling the collective motion trapped ions to initialize a quantum register[J].Phys. Rev. Lett., 1998,81:1525-1528.
    [66]. Zhan Zhiming, Yang Wenxing, Li Jiahua.Generation of an entangled state of two multilevel atoms in cavity QED[J].Chinese Physics Letters, 2004, 21(5):846-848.
    [67]. Duan Z L, Chen Z Y, Zhang J T, et al.Scheme for the generation of entangled atomic state in cavity QED[J].The European Physical Journal D - Atomic, Molecular and Optical Physics , 2004, 30(2):1-4.
    [68]. Rensen S A, Duan L M, Cirac J C, et al.Many-partical entanglement with Bose-Einstein-Condensates[J].Nature, 2001, 409:63-66.
    [69]. Cirac J I, zoller P.Preparation of macroscopic superpositions in many-atom systems[J]. Phys. Rev. A, 1994,A50:R2799-R2802.
    [70]. Phoenix S J D, Barnett S M . Non-local interatomic correlations in the micromaser[J]. J. Mod. Opt., 1993,40(6):979-983.
    [71]. Kudryavtsev I K, Knight P L.Atomic entanglement and Bell's inequality violation[J]. J. Mod. Opt., 1993,40(9):1673-1679.
    [72]. Hayley E, Maitre X, Nogues G, et al.Generation of Einstein-Podolsky-Rosen pairs of atoms[J].Phys. Rev. Lett., 1997, 79:1-5.
    [73]. Moore M G , Meystre P . Generating entangled atom-photon pairs from Bose-Einstein Condensates[J].Phys. Rev. Lett., 2000, 85:5026-5029.
    [74].宋克慧,郭光灿.通过大失谐的双光子Jaynes-Commings模的时间演化和对腔场的探测生成原子纠缠态[J].原子与分子物理学报,1999, 16(3): 309-312.
    [75]. Gerry C C.Preparation of multiatom entangled states through dispersive atom– cavity-field interactions[J].Phys. Rev. , 1996,A53:2857-2860.
    [76].宋克慧.利用原子-腔场的Raman相互作用制备多种形式的原子纠缠态[J].物理学报,2000, 49(3):441-444.
    [77].宋克慧.可控制权重因子的原子纠缠态的制备[J].光学学报,2001,21(1):4-7.
    [78]. Greenberger D M, Horne M, Zeilinger A.In Bell’s Theorem, Quantum Theory, and Conception of the Universe[M].edited by M. Kafatos. Kluwer, Dordrecht, 1989.
    [79]. Zheng S B, Guo G C.Preparation of multiatom GHZ states[J]. J. Mod. Opt., 1997,44(5):963-966.
    [80]. Tong Zhaoyang, Kuang Leman.Broadcasting of entanglement in three-particle Greenberger-Horne-Zeilinger state via quantum copying[J].Chinese Physics Letters, 2000 ,17(7):469-471.
    [81]. Chen Changhong. Generation of even-number-atome Greenberger-Horne- Zerlinger states[J].Acta Photonica Sinica, 2002, 31(7):799-801.
    [82].林秀,李洪才.利用V形三能级原子与光场Raman相互作用制备多原子GHZ态[J].物理学报, 2001, 50(9):1689-1692.
    [83]. Wodkiewicz K, Wang LW, Eberly J H.Perfect correlations of three-particle entangled states in cavity QED[J].Phys. Rev. A, 1993,47:3280-3284.
    [84]. Gerry C C.Cavity QED analog of spin[J]. J. Mod. Opt., 1997,44(11):2159-2171.
    [85].姚春梅,郭光灿.压缩相干态腔场的类自旋GHZ态的制备[J].物理学报,2001,50(1):59-62.
    [86].陈永昌.利用原子腔场的Raman相互作用制备类自旋多腔场纠缠态[J].原子与分子物理学报,2002,19(2):245-248.
    [87].杨雄,向绍华,宋克慧.利用双光学J-C模型制备三原子的W纠缠态[J].量子光学学报,2002,8(4):166-169.
    [88]. Cai.Preparation of entangled squeezed vacuum states via atom-cavity-field Raman interaction[J].Acta Photonica Sinica, 2004, 33(1):122-125.
    [89]. Gerry C C . Preparation of a four-atom Greenberger-Horne-Zeilinger state[J]. Phys. Rev. A, 1996, 53: 4591-4593.
    [90]. Zou X, Pahlke K, nad Mathis W.Generation of an entangled four-photon W state[J].Phys. Rev. A, 2002, 66:044302.
    [91].许雪梅,王发伯,匡乐满.光场纠缠态制备[J].湖南师范大学自然科学学报,1997,20(2):36-41.
    [92]. Zeilinger A, Horne M A, Weinfurter H, et al.Three-particle entanglements from two entangled pairs[J].Phys. Rev. Lett., 1997, 78:3031-3034.
    [93]. Wu S, Zhang Y.Multipartite pure-state entanglement and the generalized Greenberger-Horne -Zeilinger states[J].Phys. Rev. A, 2001, 63:012308.
    [94]. Ch. Silberhorn, Lam P K, WeiβO, et al.Generation of dontinuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber[J].Phys. Rev. Lett., 2001, 86:4267-4270.
    [95]. Guo Guangcan, ZhangYongsheng.Scheme for preparation of the W state via cavity quantum electrodynamics[J].Phys. Rev. A, 2002, 65(5):054302-054305.
    [96]. Zou X, Pahlke K, Mathis W.Grneration of entangled photon states by using linear optical elements[J].Phys. Rev. A, 2002, 66:014102.
    [97]. Wildfeuer C, Schiller D H.Generation of entangled N-photon states in a two-mode Jaynes-Cummings model[J].Phys. Rev. A, 2003, 67:053801.
    [98]. Herzog T J, Rarity J G, Weinfurter H, et al.Frustrated Two-photon Crestion via Interference[J].Phys. Rev. Lett., 1994,72:629.
    [99]. Chen Z B, Pan J W, Zhang Y D, et al.Greenberg-Horne-Zeilinger-type violation of local realism for two phontons[Z].quant-ph/0211075.
    [100]. Zhao Z, Yang T, Chen Z B, et al.Deterministic and highly efficient quantum cryptography with entangled poton pairs[Z].quant-ph/0211098.
    [101]. Shih Y H, Sergienko A V.Observation of quantum beating in a simple beam-splitting experiment: Two-particle entanglement in spin and space- time[J].Phys. Rev. A, 1994, A50:2564-2568.
    [102]. Pittman T B, Shih Y H, Strekalov D V, et. Al. Optical imaging by means of two-photon quantum entanglement[J].Phys.Rev., 1995, A52:R3429-R3432.
    [103]. Strekalov D V, Sergienko A V, Klyshko D N, Shih Y H.Observation of two-photon "ghost" interference and diffraction[J].Phys. Rev. Lett., 1995, 74:3600-3603.
    [104]. Giuseppe G D, Haiberger L, Martini F D, et al.Quantum interference and indistinguishability with femtosecond pulses[J].Phys. Rev. A, 1997, 56: R21-R24.
    [105]. Grice W P, Erdmann R, Walmsley I A, et al.Spectral distinguishability in ultrafast parametric down-conversion[J].Phys. Rev. A, 1998,57:R2289-R2292.
    [106]. Atature M, Sergienko A V, Jost B M, et al. Partial distinguishability in femtosecond optical spontaneous parameric down-conversion[J].Phys. Rev.Lett., 1999, 83:1324.
    [107]. Branning D, Grice W P, Ercmann R, et al. Engineering the indistinguishability and entangled of two photons[J].Phys. Rev. Lett., 1999, 83:995.
    [108]. Kim Y H, Berardi V, Chekhova M V, et al.Temporal indistinguishability and quantum interference[J].Phys. Rev. A, 2000, 62:043820.
    [109]. Kim Y H, Chekhova M V, Kuik S P, et al.Interferomtric Bell-state preparation using femtosecond-pulse-pumped spontaneous paramrtric down-conversion [J]. Phys. Rev. A, 2001, 63:062301.
    [110]. Eibl M, Gaertner S, BourennaneM, Kurtsiefer C, et al.Experimental observation of four-photon entanglement from parametric down-conversion [J].Phys. Rev. Lett., 2003, 90:200403.
    [111]. Eibl M, Kiesel N, Bourennane M, et al.Experimental realization of a three-qubit entangled W state[J].Phys. Rev. Lett., 2004, 92:077901.
    [112]. Kwiat, Paul G., Berglund Andrew J . Experimental Verification of Decoherence-Free Subspaces[J]. Science, 2000,290(5491):498-501.
    [113]. Sackett C A, Kielpinski D, King B E, et al.Experimental entanglement of four particles[J].Nature, 2000, 404(6775): 256-259.
    [114]. Bennett A J, Gevaux D G, Yuan Z L, Shields A J, Atkinson P, Ritchie D A. Experimental position-time entanglement with degenerate single photons [J]. Phys. Rev. A, 2008, 77(2): 023803-023807.
    [115]. Zou Xubo, Pahlke K, Mathis W.Generation of multi-photon entangled states by using linear optical elements and a projective measurement[J].Physics Letters A, 2002, 306( 1):10-13.
    [116]. Bourennane M, Eibl M, Gaertner S . Experimental demonstration of entanglement robustness in four-qubits entangled system[J] . Quantum Electronics Conference, 2003. EQEC '03. European , 22-27 June 2003, P:405.
    [117]. Aoki T, Takei N, Yonezawa H, et al. Experimental verification of continuous-variable tripartite entanglement[J]. Quantum Electronics and Laser Science, 2003. QELS. Postconference Digest ,1-6 June 2003, P:3.
    [118]. Pan Jianwei, Gasparoni Sara, Ursin Rupert, et al. Experimental entanglement purification of arbitrary unknown states[J].Nature, 2003: 417-422.
    [119]. Grishanin B A, Zadkov V N.Entangling quantum measurements. optics & spectroscopy[J].2004, 96 (5):683-690.
    [120].江云坤,李剑,史保森,等.超短脉冲偏振纠缠干涉[J].量子光学学报,2003, 9(3): 93-96.
    [121]. Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K. Teleporting an unknown quantum state via dual classical and Einstein- Podolsky- Rosen channels[J]. Phys. Rev. Lett., 1993, 70(13):1895-1899.
    [122].郭光灿,郭涛,郑仕标,等.量子隐形传态[J].物理,1999,28(2):120-126.
    [123]. Zheng S B. Teleprotation of atomic state via resonamt atom-field interaction [J].J. Mod. Opt., 1999, 167(5):111-113.
    [124]. Furusawa A, S?rensen J L, Braunstein S L, et al.Unconditional quantum teleportation[J].Science, 1998; 282: 706-709.
    [125]. Wang X.Quantum teleportation of entangled coherent state[J].Phys. Rev. A, 1998, 64:022302.
    [126]. Jinhyoung Lee, Myung Shik Kim.Entanglement teleportation[J].Lasers and Electro-Optics, 1999. CLEO/Pacific Rim '99. The Pacific Rim Conference on , 1999, 3 ,30 Aug.3 Sept., vol.3, Pages:875.
    [127]. Ikram M, Zhu S Y, Zubairy M S.Quantum teleportation of an entangled state[J].Phys. Rev. A, 2000, 62: 022307.
    [128]. P.van Loock, Braunstein S L, Uncondition teleportation of continuous- variable entanglement[J]. Phys. Rev. A, 2000, 61:010302
    [129]. Lee J, Kim M S.Entanglement teleportation via Werner states[J].Phys. Rev. Lett., 2000, 84(18):4236-4239.
    [130]. Loock P. van, Braunstein S L.Unconditional teleportation of continuous- variable entanglement[J].Quantum Electronics and Laser Science Conference, 2000. (QELS 2000). Technical Digest ,7-12 May 2000, P:223-224.
    [131]. Feng Xunli, Gong Shangqing, Wang Zhongyang, et al.Teleportation of an unknown quantum state via partly entangled states[J].Chinese Physics Letters, 2000, 17(10):703-704.
    [132]. Lloyd S, Shahriar M S, Shapiro J H, et al. Long distance, unconditional teleportation of atomic states via complete Bell state measurements[J].Phys. Rev. Lett., 2001, 87:167903.
    [133]. Kurucz Z, Koniorczyk M, Janszky J.Teleportation with Partially Entangled States[J].Fortschritte der Physik, 2001, 49(10-11):1019-1025.
    [134]. Scheel S, Welsch D G, Opatrny T . Quantum Teleportation in Noisy Environments[J].Fortschritte der Physik, 2001, 49(10-11):1089-1094.
    [135]. Shih Y H.Quantum entanglement and quantum teleportation[J].Annalen der Physik, 2001, 10(1-2):19-34.
    [136]. Janszky J, Gábris A, Koniorczyk M, et al., Coherent-state Approach to Entanglement and Teleportation[J].Fortschritte der Physik, 2001, 49(10-11): 993-1000.
    [137]. Agrawal Pankaj, Pati Arun K.Probabilistic quantum teleportation [J]. Physics Letters A, 2002, 305(1/2):12-17.
    [138]. Liu Jinming, Guo Guangcan.Quantum teleportation of a three-particle entangled state[J].Chinese Physics Letters,2002,19(4):456-459.
    [139]. Zhang Y, Kasai K, Watanabe M . Continuous variables quantum switch teleportation using two-mode squeezed light[J].The European Physical Journal D - Atomic, Molecular and Optical Physics, 2002, 21(3):361-366.
    [140]. Takeoka M, Sasaki M, Ban M.Continuous variable teleportation as a quantum channel[J].Optics & Spectroscopy, 2003, 94 ( 5):675-683.
    [141]. Ye Liu, Zhang Jin, Guo Guangcan.Teleportation of two-photon entangled state via linear optical elements[J]. Optics Communications, 2003, 218 (4-6): 333-336.
    [142]. Polzik E S, Julsgaard B, Sherson J, et al.Entanglement and quantum teleportation with multi-atom ensembles[J] . Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2003, 361(1808):1391-1399.
    [143]. Liu Jinming, Wang Yuzhu.Remote preparation of a two-particle entangled state[J].Physics Letters A, 2003, 316 (3/4):159-167.
    [144]. Gorbachev V N, Trubilko A I, Rodichkina A A, et al.Can the states of the W-class be suitable for teleportation? [J].Physics Letters A, 2003, 314 (4): 267-271.
    [145]. Cao Zhuoliang, Yang Ming, Guo Guangcan . The scheme for realizing probabilistic teleportation of atomic states and purifying the quantum channel on cavity QED[J].Physics Letters A, 2003, 308 ( 5/6):349-354.
    [146]. Sciarrino F., Lombardi E., Giacomini S., et al.Active teleportation and entanglement swapping of a vacuum-one photon qubit[J].Fortschritte der Physik, Volume 51, Issue 4-5, Date: May 2003, P:331-341.
    [147]. Gorbachev V N, Trubilko A I, and Rodichkina A A.Teleportation through W-Class States[J]. Opt. Spectrosc. 2003, 94(5): 765-769.
    [148]. Dai Hongyi, Zhang Ming, Li Chengzu.Probabilistic teleportation of an unknown entangled state of two three-level particles using a partially entangled state of three-level particles[J].Physics Letters A, 2004, 323 (5/6):360-364.
    [149]. Davidovich L,Zagury N, Brune M, et al.Teleportation of an atomic state between two cavities using nonlocal microwave fields[J].Phys. Rev. A, 1994, 50: R895-R898.
    [150]. Braunstein S L, Mann A.Measurement of the Bell operator and quantum teleportation[J].Phys. Rev. A, 1995, 51: R1727-R1730.
    [151]. Vaidman L . Teleportation of quantum states[J] . Phys. Rev. A, 1994, 49(2):1473-1476.
    [152]. Barenco A, Deutsch D, Ekert A, et al.Conditional quantum dynamics and logic gates[J].Phys. Rev. Lett., 1995, 74:4083-4086.
    [153]. Cirac J I, Parkins A S.Schemes for atomic-state teleportation[J].Phys. Rev. A, 1994, 50:R4441-R4444.
    [154].方曙东,汪贤才,王长春.概率隐形传送原子态的腔QED方案[J].量子电子学报,2004,21(4):459-463.
    [155].郑亦庄,戴玲玉,郭光灿.三粒子纠缠W态的隐形传态[J].物理学报,2003,52(11):2678-2682.
    [156]. Chen Libing.Probabilistic teleportation of a three-partical entangled W-type state[J].Acta Photonica Sinica, 2002, 31(11):1308-1311.
    [157]. Zheng Yizhuang, WangXiaohong, Guo Guangcan.Teleportation of a tripartite entangled coherent state[J].Acta Photonica Sinica, 2003, 32(6): 765-768.
    [158]. Li Min, Yao Chunmei.Teleportation of an unknown two-partical partly entangled state[J].Acta Photonica Sinica, 2001, 30(8):918-920.
    [159].叶柳,郭光灿,利用原子与光场的非最大纠缠态传送薛定谔猫态[J].光学学报,2002, 22(4):407-409.
    [160]. Li W L, Li C F, Guo G C.Probabilistic teleportation and entanglement matching[J].Phys. Rev. A, 2000, 61(3):034301-1-034301-3.
    [161]. Lu H, Guo G C.Teleportation of two-particle entangled state via entanglement swapping[J].Phys. Rev. A, 2000, 276(6):209-212.
    [162]. Lu H . Probabilistic teleportation of three-particle entangled state via entanglement swapping[J].Chinese Phys. Lett., 2001, 18(8):1004-1006.
    [163]. Shi B S, Jiang Y K, Guo G C. Probabilistic teleportation of two-particle entangled state[J].Phys. Rev. A, 2000, 268(3):161-164.
    [164]. Ye L, Guo G C.Scheme for the generation of three-atom Greenberge-Horne- Zeilinger states and teleportation of entangled atomic states[J].J. Opt. Soc. Am. B, 2003, 20(1):97-99.
    [165].林秀,李洪才.传送未知原子态的一种新方法[J].光子学报,2001, 30(2): 129-131.
    [166].林秀,李洪才.利用Raman型的Jaynes-Cummings模型传送光场的福克叠加态[J].光子学报,2001, 23(4): 403-405.
    [167].林秀.利用Raman型的Jaynes-Cummings模型传送未知原子态[J],物理学报,2001, 50(4):686-689.
    [168].林秀,李洪才.V型原子与光场拉曼相互作用传送未知原子态[J].光学学报,2001, 21(12):1451-1453.
    [169].林秀,李洪才.利用拉曼型JC模型传送两比特未知原子态[J].光学学报,2003, 23(2): 137-141.
    [170].熊狂炜,叶柳,章文,等.利用∧型三能级原子与相干态光场Raman相互作用传递两比特的求知原子态[J].量子电子学报,2004, 21(4):464-467.
    [171].陈永昌.利用V型三能级原子与相干态光场Raman相互作用传送未知原子态[J].光子学报,2002,31(11):1317-1320.
    [172]. Li Hongcai, Lin Xiu, Wu Longquan.A scheme for teleportation of an unknown atomic state via Raman interaction[J].Acta Photonica Sinica, 2003, 32(7): 876-878.
    [173]. Almeida N G, Maia L P, Villas-B?as C J, Moussa M H Y.One-cavity scheme for atomic-state teleportation through GHZ states[J]. Phys. Lett. A, 1998, 241(4-5):213-217.
    [174]. Zheng S B., Guo G C.Teleprotation of an unknown atomic state through the Raman atom cavity field interaction[J].Phys. Lett. A, 1997, 232(4):171-174.
    [175]. Zheng S B., Guo G C.Teleprotation of superpositions of macroscopic state a cavity field[J].Phys. Lett. A, 1997, 236(10):180-182.
    [176]. Moussa M H Y.Teleportation of a cavity-radiation-field state: An alternative scheme[J].Phys. Rev. A, 1996, 54:4661-4669.
    [177].许雪梅,罗文东.利用V型三能级原子与光场Raman相互作用传送光场的福克叠加态[J].物理学报,1999,48(12):1202.
    [178].戴宏毅,陈平形,梁林梅,等.利用Λ型原子与光场的纠缠态传送腔场的奇偶相干态的叠加态[J].物理学报,2004, 53(2):441-444.
    [179]. Bouwmeester D, Pan J W, Mattle K, et al . Experimental quantum teleportation[J]. Nature, 1997,390(6660):575-579.
    [180]. Boschi D, Sranca, Martini F De, et al.Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein- Podolsky-Rosen Channels[J].Phys. Rev. Lett., 1998, 80:1121-1125.
    [181]. Furusawa A, S?rensen J L, Braunstein S L, et al.Unconditional quantum teleportation[J]. Science, 1998, 282:706-709.
    [182]. Nielsen M A, Knill E. Complete quantum teleportation using nuclear magnetic resonance[J]. Nature, 1998, 396(6706):52-55.
    [183]. Pan J W, Bowmeester D, Weinfurter H, et al.Experimental entanglementswapping:entangling photons that never interacted[J].Phys. Rev. Lett., 1998, 80: 3891.
    [184]. Bouwmeester D, Pan J W, Daniell M, et al.Observation of three-photon Greenberger-Horne-Zeilinger entanglement[J]. Phys. Rev. Lett., 1999,82:1345.
    [185]. Pan J W, Ouwmeester D, Daniell M, et al.Experimental test of quantum nonlocality in three-photon GHZ entanglement[J].Nature, 2000, 403:515.
    [186]. Bouwmeester D, Mattle K, Pan J W, et al.Experimental quantum teleportation of arbitrary quantum states[J]. Applied Physics B: Lasers & Optics, 1998, 67 (6):749-752.
    [187].郭光灿,段路明.量子克隆与量子复制[J].物理,1999,27(10):54-58.
    [188]. Gisin N, Massar S.Optimal Quantum Cloning Machines[J].Phys. Rev. Lett., 1997, 79:2153-2156.
    [189]. Buzek V, Hillery M.Quantum copying: Beyond the no-cloning theorem[J].Phys. Rev. A, 1996, 54:1844-1852.
    [190]. Duan L M, Guo G. C.Probabilistic Cloning and Identification of Linearly Independent Quantum States[J].Phys. Rev. Lett., 1998, 80:4999-5002;Phys. Lett. A, 1998, 243:261.
    [191]. Gao Ting, Yan Fengli, Wang Zhixi . Probabilistic cloning and quantum computation[J].Chinese Physics Letters,2004, 21(6):995-998.
    [192]. Philippe Grangier, Georges Reymond, Nicolas Schlosser.Implementations of quantum computing using cavity quantum electrodynamics schemes [J].Fortschritte der Physik, 2000, 48(9-11): 859-874.
    [193]. Milburn G J, Schneider S, James D F V.Ion Trap Quantum Computing with Warm Ions[J].Fortschritte der Physik, 2000, 48(9-11):801-810.
    [194]. Poyatos J F, Cirac J I, Zoller P.Schemes of quantum computations with trapped ions, Fortschritte der Physik[J].2000, 48,(9-11):785-799.
    [195]. Monroe C, Itano W M, Kielpinski D, et al.Quantum computing with trapped ions[J].Quantum Electronics and Laser Science Conference, 1999. Technical Digest. Summaries of Papers Presented at the, 23-28 May 1999, P:4.
    [196]. Beth T.Quantum computing: an introduction, Circuits and Systems[J]. 2000Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on , 28-31 May 2000, 1, P:735-736.
    [197]. Lidar D A, Chuang I L, Whaley K B.Decoherence-Free Subspaces for Quantum Computation[J].Phys. Rev. Lett., 1998, 81(12):2459-2597.
    [198]. Shor P W . Scheme for reducing decoherence in quantum computer memory[J].Phys. Rev. A., 1995, 52(4): R2493-R2496.
    [199]. Duan L M, Guo G C.Preserving Coherence in Quantum Computation by Pairing Quantum Bits[J].Phys. Rev. Lett., 1997, 79(10):1953-1956.
    [200]. Duan L M, Guo G C.Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment[J].Phys. Rev. A., 1998, 57(2): 737-741.
    [201]. Duan L M, Guo G C.Prevention of dissipation with two particles[J].Phys. Rev. A., 1998, 57(4): 2399-2402.
    [202]. Duan L M, Guo G. C.Optimal quantum codes for preventing collective amplitude damping[J].Phys. Rev. A, 1998, 58(5):3491-3495.
    [203]. Vaidman L, Goldenberg L, Wiesner S.Error prevention scheme with four particles[J].Phys. Rev. A, 1996, 54:R1745-R1748.
    [204]. Shor P W.Algorithms for quantum computation: discrete logarithms and factoring[J].In:Proceedings of the 35th Annual Symposium on the Foundation of Computer Science. Los Alamos, CA: IEEE Computer Science Press. 1994, 124-133.
    [205]. Grover L K.Quantum mechanics helps in searching for a needle in a haystack [J].Phys. Rev. Lett., 1997, 79(2): 325-328.
    [206]. Giovannetti V, Vitali D, Tombesi P, Ekert A. Scalable quantum computation with cavity QED system[J]. Phys. Rev. A, 2000, 62(3):032306-032316.
    [207]. Anders S. S?rensen, Klaus M?lmer. Measurement induced entanglement and quantum computation with atoms in optical cavities[J]. Phys. Rev. Lett., 2003, 91(9): 097905-097908.
    [208]. Anders S. S?rensen, Klaus M?lmer. Probabilistic generation of entanglement in optical cavities[J]. Phys. Rev. Lett., 2003, 90(12):127903-127906.
    [209]. Romero J L, Roa L, Retamal J C, Saavedra C. Entanglement purification in cavity QED using local operation[J]. Phys. Rev. A, 2002, 65(5):052319.
    [210]. Liu Tangkun, Wang Jisuo, Feng Jian, Zhan Mingsheng. Entanglement swapping and disentanglement via an entangled state of atoms interacting with a cavity field[J]. Chin. Phys. Lett., 2002, 19(11):1573.
    [211]. Barnett S M, Phoenix S J D.Entropy as measure of quantum optical correlation[J].Phys. Rev. A, 1989, 40(5):2404-2409.
    [212]. Shannon C E.A mathematical theory of communication.[J].Bell Sys Tech J. 1948, 27:379-433 &623-659.
    [213].王成志,方卯发.双模压缩真空态与原子相互作用中的量子纠缠和退相干[J].物理学报, 2002 ,51 :1989.
    [214]. Wootters W K. Entanglement of formation of an arbitrary state of two qubits [J]. Phys. Rev . Lett ,1998, 80(10): 2245-2248.
    [215].刘王云,安毓英,杨志勇.失谐量对多模场非简并多光子Jaynes-Cummings模型量子场熵演化的影响(英文)[J].光子学报,2008,37(5):1057-1062.
    [216].刘王云,杨志勇,安毓英,曾晓东.与两等同Bell态纠缠原子相互作用光场的量子场熵[J].光子学报,,2008,37(3):594-599.
    [217].冯勋立,何林生.两能级原子在压缩真空态光场中双光子过程的细致平衡和熵的演化[J].物理学报,1997,46(10):1926-1931.
    [218]. Fang Maofa, Zhou Peng, et al.Information entropy and squeezing of quantum fluctuation in a two-level atom[J].Chin. Phys. Lett. 2000, 17(11): 798-800.
    [219].刘金明,陶向阳,刘三秋,聂义友.克尔介质中场与级联三能级原子相互作用的熵特性[J].光学学报, 2000, 20(11): 1456-1460.
    [220]. Yi Xuexi, Sun Changpu.The influence of dynamics and field entropy evolution with dipole interaction of the atom[J].Chinese Science Bulletin, 1996, 41(13)(7): 1165-1169.
    [221].周青春,祝世宁.与准Λ型四能级系统互作用光场的熵演化[J].物理学报, 2005, 54(3):1184-1189.
    [222]. Neumann Von.Thermodynamik quantum mechanischer gesamtheiter [J]. Goett. Nach., 1927, 1(2):273-291.
    [223]. Wehrl A. General properties of entropy[J].Rev. Mod. Phys., 1978, 50(2): 221-260.
    [224]. Deutsh D.Uncertainty in Quantum Measurements[J].Phys.Rev. Lett. 1983, 50(9): 631-633.
    [225]. Orlowski A.Classical entropy of quantum states of light[J].Phys. Rev. A, 1993,48(1): 727-731.
    [226]. Buzek V, Keitel H, Knight P L.Sampling entropies and operational phase-space measurement[J].Phys. Rev. A, 1995, 5(3):2575-2593.
    [227].方卯发,刘惠恩.附加克尔介质Jaynes-Cummings模型的场熵演[J].光学学报, 1994, 14(5):475-479.
    [228].方卯发,周鹏.附加克尔介质双光子Jaynes-Cummings模型的场熵特性[J].物理学报, 1994, 43(4):570-579.
    [229].刘金明,陶向阳,刘三秋,聂义友.克尔介质中场与级联三能级原子相互作用的熵特性[J].光学学报, 2000, 20(11): 1456-1460.
    [230].彭金生,李高翔.近代量子光学导论[M].北京:科学出版社,1996,P:410-433.
    [231]. Liu Wangyun, An Yuying, Yang Zhiyong. Properties of field quantum entropy evolution in the Jaynes-Cummings model with initial squeezed coherent states field[J].Chinese Physics B, 2007 16(12):3704-3709.
    [232]. Ekert A K. Quantum cryptography based on Bell’s theorem [J] . Phys. Rev . Lett . ,1991 ,67(6):661-663.
    [233]. Horodecki M , Horodecki P, Horodecki R. Limits for entanglement measures[J]. Phys. Rev . Lett . , 2000, 84(9): 2014-2017.
    [234].左战春,夏云杰. Tavis-Cummings模型中三体纠缠态纠缠量的演化特性[J].物理学报, 2003 ,52 (11):2687-2693.
    [235]. Phoenix S J D, Knight P L. Establishment of an entangled atom-field state in the Jaynes-Cummings model[J ] . Phys Rev A , 1991 , 44(9) :6023-6029.
    [236]. Vedral V, Plenio M B. Entanglement measures and purification procedures[J]. Phys Rev , 1998 , A57 (3):1619-1633.
    [237].卢道明.原子与频率随时间变化场相互作用系统中量子纠缠的演化[J].光子学报,2007,36(11):2142-2147.
    [238].刘王云,杨志勇,安毓英.单模真空场-耦合双原子系统的量子纠缠演化特性[J].光电子.激光,2007,18(9):1124-1127.
    [239].周并举,刘小娟,方卯发,周清平,刘明伟.负值量子条件熵与双量子系统一类混合态纠缠量度[J].物理学报,2007,56(7):3937-3944.
    [240].赵杰,郭红.原子和光场线性熵的演化特性[J].物理学报,2007, 56(5): 2647-2651.
    [241].张亚利,董传华.T-C模型中有耦合的两二能级原子的纠缠度[J].上海大学学报(自然科学版),2007, 13(1):73-76.
    [242].高云峰,冯健,张桂明.与原子依赖强度耦合双模压缩真空态的量子纠缠[J].原子与分子物理学报,2006,23(5):887-891.
    [243].曾明生,谢芳森,江辉明.压缩真空场与运动二能级原子相互作用的量子纠缠[J].量子电子学报,2006,23(5):647-651.
    [244]. Jaynes E T, Cummings F W. Comparison of quantum and semi-classical radiation theories with application to the beam maser[J]. Pro. IEEE, 1963, 51(1): 89-109.
    [245]. Liu J R, Wang Y Z. Velocity-selective population and quantum collapse-revival phenomena of the atomic motion for a motion-quantized Raman-coupled Jaynes-Cummings model[J]. Phys. Rev. A, 1996, 54(3): 2444-2450.
    [246].黄燕霞,赵朋义,黄熙,詹明生.压缩真空场与原子非线性作用过程中的纠缠与消纠缠[J].物理学报,2004,53(1): 75-81.
    [247]. Zheng Shibiao, Guo Guangcan. Teleportation of atomic states within cavities in thermal states[J]. Phys. Rev. A. 2001, 63(4):044302-044305.
    [248]. Guo Guoping, Li Chuanfeng, Li Jian, Guo Guangcan. Scheme for the propavtion of the multi-particle entanglement in cavity QED[J]. Phys. Rev. A, 2002, 65(4): 042102-042105.
    [249].谭华堂,甘仲惟,李高翔.与压缩真空库耦合的单模腔内三量子点中激子纠缠[J].物理学报2005, 54(3):1178-1183.
    [250].谭霞,张成强,夏云杰.双模场与原子相互作用中的量子纠缠和内禀退相干[J].物理学报,2006, 55(5):2263-2268.
    [251].姜春蕾,方卯发,吴珍珍.双纠缠原子在耗散腔场中的纠缠动力学[J].物理学报, 2006, 55(9): 4647-4651.
    [252]. Sun Y H, Kuang L M. Quantum entanglement and quantum nonlocality for N-photon entangled states[J]. Chin. Phys. 2006, 15(4):681-686.
    [253]. Yuan C H, Ou Y C, Zhang Z M. Entanglement swapping with atoms separated by long distance[J]. Chin. Phys.2006, 15(8):1793-1797.
    [254]. Jin L J, Fang M F. Entanglement in a system of two two-level atoms[J]. Chin. Phys. 2006, 15(9): 2012-2017.
    [255]. Lin X, Li H C, Yang R C, Huang Z P. Entanglement swapping without joint measurement via a∧–type atom interacting with bimodal cavity field[J]. Chin. Phys. 2007, 16(4):919-922.
    [256]. Chen A X, Deng L. Entanglement swapping between atom and cavity and generation of entangled state of cavity fields[J]. Chin. Phys 2007, 16(4): 1027-1030.
    [257]. Raimond J. M, Brune M, Haroche S. Manipulating quantum entanglement with atoms and photons in a cavity[J]. Rev. Mod. Phys., 2001, 73(3):565-582.
    [258].方曙东,曹卓良.三能级原子与奇偶纠缠相干光作用的光场压缩[J].光学学报,2005, 25(12): 1697-1701.
    [259].周明,黄春佳.原子间相互作用对双模原子激光压缩性质的影响[J].光学学报,2006, 26(10): 1575-1579.
    [260].方家元,厉江帆,黄春佳,等.克尔介质中压缩真空场与耦合双原子依赖强度耦合系统光场的压缩特性[J].光学学报,2006, 26(6): 921-927.
    [261]. Xiao Liantuan, Jiang Yuqiang; Zhao Yanting, Et al. Photon statistics measurement by use of single photon detection[J]. Chinese Science Bulletin, 2004, 49(9):875-878.
    [262].周鲁,李高翔.加光子双模SU(2)相干光场的制备及其与Λ型三能级原子相互作用的性质[J].光学学报,2003, 23(3): 261-267.
    [263]. Vogel W, Welsch D G. K-photon Jaynes-Cummings model with coherent atomic prearation: squeezing and coherence[J]. Phys. Rev. A, 1989, 40(12): 7113-7120.
    [264]. Zhou Peng, Peng Jinsheng. Dressing multiphoton hamitonian[J]. Chin. Phys. Lett., 1992, 9(1):13-16.
    [265].刘堂昆,王继锁,柳晓军,等.纠缠态原子与相干光场作用的量子信息保真度[J].光学学报,2000, 20(11):1449-1455.
    [266]. Li Weijun, Li Shangbin, Xu Jingbo. Influence of multi-photon process on entanglement of interacting system of the qubit and thermal field[J]. Chin. Phys. Lett., 2004, 21(5):774-777.
    [267]. Ge Xianhui, Shen Yougen. Quantum information measurements for Garfinkle-Horne dilaton black holes[J]. Chin. Phys. Lett., 2004, 21(8): 1413-1416.
    [268]. Chen Libing, Lu Hong, Chen Weicheng. Constructing a universal set of quantum gates via probabilistic teleportation[J]. Chin. Opt. Lett., 2005, 3(4): 240-243.
    [269]. Eibl M, Kiesel N, Bourennane M, et al.Experimental realization of a three-qubit entangled W state[J].Phys. Rev. Lett., 2004, 92(7):077901.
    [270]. Wu Xiaodong, Fei Zhengle, Guo Jianyou. Preparation of W class states of multiparticle by adiabatic passage[J]. Journal of Atomic and Molecular Physics, 2006, 23(4):742-748.
    [271]. Wang Zifeng, Zhang Wenhai, Ye Liu. Remote preparation of multipartite pure state[J]. Journal of Atomic and Molecular Physics, 2006, 23(3):545-550.
    [272]. Pellizzari T, Gardiner S, Cirac J, et al. Decoherence continuous observation and quantum computing: a cavity QED model[J]. Phys. Rev. Lett., 1995, 75: 3788-3791.
    [273]. Noques G, Rauschenbenbeutel A, Osnaghi S, et al. Seeing a single photon without destroying it[J]. Nature, 1999, 400:239-242.
    [274].杨志勇,张纪岳.两等同双能级原子与q模腔场任意NΣ光子共振相互作用辐射谱研究[J].光子学报,1997,26(6):481-492.
    [275].张纪岳,杨志勇.两等价二能级原子与三模腔场共振相互作用的辐射谱[J].量子光学光学学报,1995,1(1):75-84.
    [276].杨志勇.两等同双能级原子与三模腔场六光子共振相互作用的辐射谱研究[J].光子学报,1997,26(5):513-519.
    [277].杨志勇,张卓德,魏忠才,等.两等同双能级原子与三模腔场任意多光子共振相互作用辐射谱的一般研究[J].渭南师范专科学校学报,1996,11(1): 12-21.
    [278]. Skornia C, von Zanthier J, Agarwal G S et al. Monitoring the dipole-dipole interaction via quantum jumps of individual atoms[J]. Phys. Rev. A, 2001, 64(5):053803-1~053803-4.
    [279]. Hillery M. Sum and difference squeezing of the electromagnetic field[J]. Phys. Rev.(A), 1989, A40(6):3147-3155.
    [280]. Zhang Zhiming, Lei Xu, Jinlin Chai, and Fuli Li. A new kind of higher-order squeezing of radiation field[J]. Phys. Lett. (A), 1990, A150(1):27-30.
    [281].杨志勇,侯洵.多模辐射场的广义非线性不等阶高阶压缩的一般理论[J].光子学报,1999,28(5)385-392.
    [282].杨志勇,侯洵.多模辐射场的广义非线性高阶差压缩——N次方X压缩的一般理论[J].光子学报,1998,27(12):1065-1069.
    [283].李永平.耦合双原子与压缩真空场Raman相互作用系统的量子纠缠[J].原子与分子物理学报,2006,23(5):919-925.
    [284].杨雄,向少华,宋克慧.双光子Jaynes-Cummings模型中的纠缠演化和热纠缠现象[J].原子与分子物理学报,2004 ,21(1) :68-72.
    [285].方曙东,曹卓良. GHZ类原子体系与FOCK态相互作用的动力学[J].量子电子学报,2006,2(2):197-205.
    [286]. Simon chelkowski, Henning Vahlbruch, Boris Hage, et al. Experimental characterization of frequency-dependent squeezed light[J]. Phys. Rev. A, 2005, 71(1):013806-013813.
    [287].彭堃墀,黄茂全,刘晶,等.郭光灿.双模光场压缩态的实验研究[J].物理学报,1993,42(7):1079-1085.
    [288].王菊霞,杨志勇,侯洵.两类多模叠加态的振幅不等幂次压缩特性研究[J].光电子·激光,2002,13(7):749-752.
    [289].王菊霞,杨志勇,安毓英.两态叠加多模叠加态光场的二阶不等幂次高次差压缩效应(英).光散射学报,2006,18(4):365-370.
    [290].王菊霞,杨志勇,申正民,等.两类新型多模叠加态光场的二阶不等幂次Nj次方H压缩[J].量子电子学报,2002, 19(5): 450-456.
    [291].杨志勇,安毓英,苗润才,等.第I类三态叠加多模叠加态高次和压缩特性[J].陕西师范大学学报(自然科学版),2003,31(1):48-54.
    [292].王菊霞,杨志勇,王丽军,等.多模虚共轭相干态的相反态与多模真空态的叠加态的等阶N次方Y压缩[J],量子光学学报,2001,7(3):118-123.
    [293].王菊霞,杨志勇,苗润才,等.MSCS光场的广义非线性不等幂次差压缩的理论结果[J].陕西师范大学学报(自然科学版),2002,30(3):51-56.
    [294].孙中禹,陈光德,杨志勇.多模薛定谔猫态光场的高次差压缩效应[J].陕西师范大学学报(自然科学版),2004,32(1):36-40.
    [295].刘宝盈,杨志勇,许定国,陈永庄,张继良,侯洵.一种新型的多模虚偶相干态的N次方Y压缩与N次方H压缩,光子学报,1999,29(5):402-410.
    [296].王菊霞,杨志勇,皇甫国庆,等.第I类两态叠加多模叠加态光场的等幂次N次方X压缩[J].光子学报,2002,31(8):919-923.
    [297].侯洵,杨志勇,许定国,等.第III类及第IV类两态叠加多模叠加态光场的等阶N次方Y压缩与等阶N次方H压缩——兼论“相似压缩”与“压缩简并”现象[J].光子学报,2000,29(5):385-395.
    [298].杨志勇,侯洵,一种双模叠加态光场的两种非线性高阶压缩特性研究[J],光子学报,1998,27(4):289-299.
    [299].侯洵,杨志勇.第I类两态叠加多模叠加态光场的非线性高阶压缩特性研究[J],光子学报,1998,27(10):865-878.
    [300].夏云杰,郭光灿.光场高阶压缩的非经典性与独立性[J],物理学报,1990,39(7):1070-1074.
    [301].杨志勇,张书玲,侯瑶,等.第V类两态叠加多模叠加态光场的广义非线性等阶N次方Y压缩[J].光子学报,2001,30(6):661-650.
    [302].侯瑶,董庆彦,田来科,等.第VI类两态叠加多模叠加态光场的等阶N次方Y压缩特性研究[J].光子学报,2001,30(9):1064-1072.
    [303].侯瑶,孟继德,田来科,等.第VII类两态叠加多模叠加态光场的偶数阶等阶N次方Y压缩[J].光子学报,2001,30(10):1194-1199.
    [304].韩小卫,曹大刚,田来科,等.第I种非对称两态叠加多模叠加态光场的N次方H寄数压缩[J].西北大学学报(自然科学版),2002,32(5):486-488.
    [305].薛红,杨志勇.真空场注入三态叠加MFSS光场广义电场的等幂次Y压缩[J].光散射学报,2007,19(3):262-267.
    [306].白少民,许定国,刘生春,等.任意两态叠加多模叠加态光场的等幂次H压缩[J].西北大学学报(自然科学版),2001,33(4):405-409.
    [307].陶向阳,刘金明,刘三秋,等. Kerr介质中三能级原子与双模场非共振相互作用的量子统计性质[J].物理学报,2000, 49(8):1464-1470.
    [308].郑小虎,史守华,曹卓良.双模纠缠相干光场与V型三能级原子相互作用系统的光子统计性质[J].原子与分子物理学报, 2005,22(2):325-331.
    [309].张桂明,李悦科,高云峰.非等同双原子与双模腔场拉曼相互作用模型的腔场谱[J].物理学报,2004, 53(11):3739-3743.
    [310]. Guo G C, Yang C P. Spontaneous emission from two two-level entangled atoms[J]. Physica A, 1998, 260:173-185.
    [311]. Wang J F, Wang Y M, Li X Q. Brea known of entanglement during the teleportation[J]. High Energy Physics and Nuclear Physics, 2005, 29(1): 14-18.
    [312]. Humble T S, Grice W P. Spectral effects in quantum teleportation[J]. Phys. Rev. A, 2007, 75(2):022307-022314.
    [313]. Chen Meifeng, Ma Songshe. A scheme for teleportation of an unknown multi-atom entangled state via Raman interaction[J]. Acta Photonica Sinica, 2007, 36(6):1152-1155.
    [314].熊学仕,付洁,沈柯.二粒子部分纠缠未知态的量子受控传递[J].光子学报,2006,35(5):780-782.
    [315]. Cai Xinhua, Nie Jianjun, Guo Jierong. Entanglement translation and quantum teleportation of the single-photon entangled state[J]. Acta Photonica Sinica, 2006, 35(5):776-779.
    [316]. Chen Jianlan, Kuang Leman. Quantum dense coding in multiparticle entangled states via local measurements[J]. Chin. Phys. Lett., 2004 ,21(1):12-14.
    [317]. Shi Yu, Wu Yongshi. Perturbative formulation and nonadiabatic corrections in adiabatic quantum- computing schemes [J]. Phys. Rev. A, 2004, 69(2): 024301- 024304.
    [318]. Howard E B. Entangled eavesdropping in quantum key distribution[J]. Journal of Modern Optics, 2006, 53(16-17/10–20):2251-2257.
    [319]. Kok P, Munro W J, Nemoto K, Milburn G J. Linear optical quantum computing with photonic qubits[J]. Rev. Mod. Phys., 2007, 79:135-174.
    [320].陈立冰,刘玉华,白宜红,路洪.用三粒子纠缠态和Bell态作量子信道实现非局域的态交换(英文)[J].量子电子学报, 2006, 23(4):489-493.
    [321].方曙东,曹卓良. GHZ类态原子体系与Fock态光场相互作用的动力学[J].量子电子学报, 2006, 23(2):197-202.
    [322].宋军,曹卓良. Fock态腔场与Bell态原子相互作用的动力学特性[J].量子电子学报, 2004, 21(6): 783-787.
    [323].曾明生,谢芳森,江辉明.压缩真空场与运动二能级原子相互作用的量子纠缠[J].量子电子学报, 2006, 23(5):647-651.
    [324].姚春梅,郭光灿.压缩相干态腔场的类自旋GHZ态的制备[J].物理学报, 2001,50(1):59-62.
    [325].曹卓良,李英群,汪贤才,杨名.量子信息中的腔QED方案简介[J].量子电子学报, 2004, 21(2):244-256.
    [326].江云坤,李剑,史保森,郭光灿.超短脉冲偏振纠缠干涉[J].量子光学学报, 2003, 9(3): 93-96.
    [327].王菊霞,安毓英,杨志勇.多“原子-腔场”系统中的纠缠交换与纠缠保持,西安电子科技大学学报,2007, 34(5):763-767.
    [328].王菊霞,杨志勇,安毓英.利用依赖强度的非共振相互作用实现纠缠信息的完全交换(英文),量子光学学报,2008,14(3):293-297.
    [329].王菊霞,杨志勇,安毓英.耦合双原子与单模光场相互作用系统中量子信息的传递,激光杂志,2007,28(2):48-51.
    [330].王菊霞,杨志勇,安毓英.失谐下量子信息的不失真保持,激光杂志,2007,28(4):22-23.
    [331]. Sergey A. Podoshvedov, Ba An Nguyen and Jaewan Kim. A simple scheme for conditional generation of macroscopic entangled states usingχ(2) nonlinearity[J]. Optics Communications, 2007, 270(2): 290-295.
    [332].张天才,王军民,彭堃墀.光学腔量子电动力学的实验进展[J].物理, 2003,32(11): 751-756.
    [333]. Xia Yunjie, Guo Guangcan. Aqueezing and entanglement in contiuous variablesystem[J]. Chin. Phys. Lett., 2004, 21(10):1877-1880.
    [334].林继成,郑小虎,曹卓良.双模纠缠相干光与Bell态原子系统的光子统计[J].光子学报, 2007, 36(6):1156-1161.
    [335]. Chen Meifeng; Ma Songshe. Generation of w-type entangled coherent states of three-cavity field by Raman interaction[J]. Acta Photonica Sinica, 2007, 36(5): 950-954
    [336]. Braunstein S L, Kimble H J. Teleportation of continuous quantum variables[J]. Phys . Rev. Lett . 1998, 80 (4): 869-872.
    [337].夏云杰,王光辉,杜少将.双模最小关联混合态作为量子信道实现量子隐形传态的保真度[J].物理学报,2007,56(8):4331-4336.
    [338].周小清,邬云文.利用三粒子纠缠态建立量子隐形传态网络的探讨[J].物理学报, 2007, 56(4):1881-1887.
    [339].王菊霞,杨志勇,安毓英.耦合原子与腔场多光子相互作用过程中的量子信息传递[J],高能物理与核物理,2007,31(2):204-208.
    [340].王菊霞,杨志勇,安毓英.多模光场与二能级原子相互作用的纠缠交换与保持[J].物理学报, 2007,56(11):6420-6426.
    [341].王菊霞,安毓英,杨志勇.多模腔场与耦合原子之间量子信息的传递规律[J],光子学报,2007, 36(12):2355-2359.
    [342].王菊霞,杨志勇,安毓英.利用多光子相互作用实现量子信息传递[J],光学学报,2007,27(8):1508-1512.
    [343]. Jozsa R. Fidrlity for mixed quantum states[J]. Journal of modern optics, 1994, 41(12):2315-2323.
    [344]. Buck B, Sukumar C V. Exactly soluble model of atom-phonon coupling showing periodic decay and revival[J]. Phys. Lett. A, 1981, 81(2~3):132-135.
    [345]. Buzek V, Jex I. Dynamics of a two-level atom in a Kerr-like medium[J]. Opt Comm., 1990, 78(5/6):425-435.
    [346]. Joshi A, Puri R R, Lawande S V. Effect of dipole interaction and phase-interrupting collisions on the collapse-and revival phenomenon in the Taynes-Cummings model[J]. Phys. Rev. A, 1991, 44(3):2135-2140.
    [347].王菊霞,杨志勇,薛红,等.非对称多模量子态光场的广义非线性差压缩特性研究[J].量子光学学报,2002,8(2):57-62.
    [348].万慧军,杨志勇,胡艳芳,等.新型量子光场态ψ(3)q中广义磁场的偶次Y压缩[J].陕西师范大学学报(自然科学版),12004,32(3):58-61.
    [349].张佩荣,安毓英,杨志勇.第I种强度不对称三态叠加多模叠加态光场的高次和压缩[J].光子学报,2003,32(3):231-237.
    [350].韩小卫,杨志勇,侯洵.第Ⅰ种非对称两态叠加多模叠加态光场的奇次幂N次方Y压缩[J].光子学报,2002,31(11):1297-1301.
    [351].王菊霞,杨志勇,安毓英,邱建文.两等同二能级原子与单模偶相干态光场相互作用过程中的熵演化特性[J].西北大学学报(自然科学网络版),2005,3(9):0183.
    [352].王菊霞,杨志勇,安毓英,权志华.单模奇相干态光场与耦合双能级原子相互作用系统的量子场熵演化特性[J].陕西师范大学学报(自然科学网络版),2006,34(1):54-59.
    [353].王菊霞,安毓英,杨志勇. Schrodinger-cat态光场与耦合双原子相互作用系统的量子场熵演化[J].原子与分子物理学报,2007,24(2):403-407.
    [354].刘王云,杨志勇,安毓英,等.压缩相干态光场两耦合双原子系统的量子场熵[J].陕西师范大学学报(自然科学网络版),2008,36(3):44-48.
    [355].刘王云,杨志勇,安毓英.皮秒亮基孤子态Jaynes - Cummings模型量子场熵演化特性[J].激光杂志,2008,29(2):50-52.
    [356].刘王云,杨志勇,安毓英,等.双模真空场与两耦合双能级原子相互作用系统的量子场熵演化特性[J].西北大学学报(自然科学网络版),2005,3(9):0182.
    [357]. Góra P, Jedrzejek C. Nonlinear Jaynes-Cummings model[J]. Phys. Rev. A, 1992, 45(9): 6816-6828.
    [358].黄燕霞,郝东山,汪毅. Kerr效应对非线性Jaynes-Cummings模型场熵和缠结的影响[J].光子学报,2002,31(12):1448-1452.
    [359].孙平,王若桢,王引书,等. CdS0.1Se0.9纳米晶体共振电吸收谱的线形分析[J].光学技术,2006,26(6):519-523.
    [360].刘正东,郑军,刘志荣,等.弱光下的非线性效应[J].光学技术, 2005,31(3):344-348.
    [361].徐大海,彭金生,田永红等.高Q克尔介质中依赖强度耦合的J-C模型中光场相位特性[J].光学学报,2000,20(1):56-61.
    [362].林继成,曹卓良,何龙庆.克尔介质中双模纠缠相干光与贝尔态原子相互作用系统的光子统计特性[J].光学学报,2007,27(4):727-734.
    [363].郑小虎,曹卓良.克尔介质中纠缠光与三能级原子作用的光子统计[J].光学学报, 2005, 25(3): 419-424.
    [364]. Zhang Jing, Wang Junmin, Zhang Tiancai. Entanglement and nonclassicality evolution of the atom in a squeezed vacuum[J], Opt. Commun. 2007, 277(2):353-358.
    [365].陈志新,唐志列,魏正军,等. QKD系统在Breidbart基窃听下BB84协议的信息量研究[J].光子学报,2004,33(12): 1469-1472.
    [366]. Huang Xiaoli, Cheng Lihong Entanglement distillation for mixed states using particle statistics[J]. Chinese Physics Letters, 2006, 23(4):772-774.
    [367].王菊霞,杨志勇,安毓英. Stark效应对量子纠缠信息交换传递的影响.光子学报,2008, 37(4): 833-838.
    [368].王菊霞,杨志勇,安毓英.相干耦合腔场中纠缠信息交换传递机理研究(英文),光子学报,2008, 37(5): 1038-1045.
    [369].王菊霞,杨志勇,安毓英.相干原子束-相干腔场相互作用系统中量子信息的交换传递,原子与分子物理学报,2008,25(2):462-466.
    [370].王菊霞,杨志勇,安毓英.在相干耦合原子与单模相干腔场系统演化过程中纠缠态的制备.量子电子学报,2008,25(1):71-75.
    [371].王丹翎,龚旗煌,汪凯戈,等.光学简并参量振荡中的量子非破坏性测量[J].物理学报, 2000, 49(8):1484-1489.
    [372]. Xie Hongwei, Zhang Zhiming, Ma Aiqun, et al. AΛtype three level atom interacting with a two mode field and its two level approximation[J]. Acta Photonica Sinica, 1999, 28(1):11-16.
    [373]. Moya-Cessa H, Buzek V, Knight P L, Power broadening and shifts of micromaser lineshapes[J]. Opt. Commun., 1991,85(2-3):267-274.
    [374]. Zhang Jingtao, Feng Xunli, Xu Zhiznan. Energy split of two-photonJaynes-Cummings model with atomic motion[J]. Acta Photonica Sinica, 2000, 29(6): 487-491.
    [375].周玲,宋鹤山,姚丽.双模双光子系统的虚光场效应和Stark效应对原子布居的影响[J].量子电子学报,2001,18(6):503-507.
    [376]. Guo S C, Dynamics of the two-mode Jaynes-Cummings model modified Stark shifts[J]. Phys. Lett. A, 1990, 147(4):218-222.
    [377]. Zhan Youbang. Dipole squeezing in the two-photon Jaynes-Cummings model with squeezed vacuum states[J]. Phys. Lett. A, 1994, 192(1):60-66.
    [378]. Schr?dinger Die. Gegenw?rtige situation in der quantenm chanik[J]. Naturwissenschaften, 1935, 23(50):807-812.
    [379]. Bennett Charles H, DiVincenzo David P. Quantum information and computation[J]. Nature, 2000, 404(6775):247-255.
    [380].但有全,祝颂军,张彬.厄米-高斯光束在吸收介质中的传输特性[J].四川大学学报(自然科学版), 2005,42(4): 749-754.
    [381].查新未,张淳民.三体纯态的纠缠度及其分类[J].西安交通大学学报, 2006,40(2):243-245.
    [382]. Casperson L W. Few-cycle pulses in two-level media[J]. Phys. Rev, A . 1998 , 57(1): 609-621.
    [383].彭金生,李高翔,周鹏.虚光场在原子的周期衰变和回复效应中的影响[J].物理学报,1991,40(7):1042-1045.
    [384]. Zheer K, Zubairy M S. Atom-field interaction without the rotating-wave approximation:A path-integral approach[J]. Phys. Rev. A, 1988, 37(5): 1628-1633.
    [385].黄春佳,历江帆,周明等.虚光场对双模压缩真空场与原子相互作用系统中光子统计性质的影响[J].物理学报,2001, 50(10):1920-1924.
    [386]. Peng Jinsheng, Li Gaoxiang. Influence of the virtual-photon processes on the squeezing of light in the two-photon Jaynes-Cummings model[J]. Phys. Rev. A, 1993, 47(4):3167-3172.
    [387]. Peng Jinsheng, Li Gaoxiang. Phase fluctuations in the Jaynes-Cummings model with and without rotating-wave approximation [J]. Phys. Rev. A, 1992, 45(5):3289-3293.
    [388]. Compagno G, Passante R, Persico F. Virtual photons causality and atomic dynamics in the spontaneous emission[J]. J. Mod. Opt. 1990, 37:13787.
    [389].万琳,刘三秋,陶向阳.虚光子过程对“两个二能级原子-单模光场”相互作用系统场熵演化特性的影响[J].光子学报,2001, 30(6):651-656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700