高频谱效率数字通信中若干传输与信号设计技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高通信速率是满足当前迅猛发展的多种通信需求的共同基础。由于通信所需的带宽资源特别是无线频谱资源昂贵而紧缺,高频谱效率成为实现高通信速率的必要条件。如何实现高频谱效率的可靠通信并降低其实现代价,是当前数字通信研究中广泛面临的课题。本论文基于重叠复用与多址技术,研究了高频谱效率数字通信中若干传输与信号设计的问题,包括零相关信号设计与应用,多天线OFDM系统的空间零相关窗导频设计与应用,以及空间零相关窗导频对系统容量的影响。
     论文第二章研究了零相关信号的设计与应用。在无线信道中,多用户之间的信号相互干扰,多径使得干扰信号到达时间存在差异,传统CDMA的正交扩频码在这种情况下失去的正交性。零相关窗码则能够保持码字之间的正交性,实现真正的无干扰传输,将干扰受限系统转化为噪声受限系统,并且降低检测的复杂度。论文总结了零相关信号设计的基本方法,讨论了基于零相关信号的CDMA技术,并为下一章的研究提供了基础。
     第三章研究了多天线OFDM系统的空间零相关窗导频设计。这是零相关窗信号在特定系统中的一个应用,同时也推广了零相关窗的内涵,使之从时间推广到空间。我们首次提出了空间零相关窗的概念,利用空间零相关窗实现导频的复用,以解决多天线蜂窝系统导频数量过大、占用资源过多的问题。针对OFDM系统的特征,我们设计了导频的周期重复结构,使得导频只占用系统的很小一部分子载波,开销达到最小。仿真结果验证了方案的可行性。论文第四章将第三章的空间零相关窗导频设计方法应用于LTE系统,提出了若干导频的实际设计方案,具有较现有方案的估计MSE高出1-2个数量级的性能。
     第五章研究了空间零相关窗导频对系统容量的影响。导频所占用的自由度和功率资源都是对信道估计代价的间接度量,而信道容量才是最终度量。因此这一章的研究具有重要意义。我们给出了引入空间零相关窗导频所导致的系统容量损失的解析表达式,并分析了其变化规律。最后,第六章总结全文,并给出了对未来研究的展望。
High data rate is the common base to meet multiple communication requirements today. Since the bandwidth resource is expensive and scarce especially wireless spectrum resource, high spectral efficiency is needed to achieve high data rate. The problem of achieving high spectral efficiency reliable communications with lower cost is paid widely attention in the researches of modern digital communications. Based on overlapped multiplexing and access techniques, this thesis studies signaling techniques and signal design techniques for high spectral efficiency digital communications, includes zero correlation signal design and application, space zero correlation window pilot signal design in mnltiantenna OFDM systems and application, and the loss of the capacity caused by space zero correlation window pilot signal.
     Chapter II considers the zero-correlation signal design techniques and their applications in detection and estimation. In a wireless channel, the signals among multiple users interferes each other. Multipath introduces differences among times of arrival. So the orthogonal spread codes of traditional CDMA lose their orthogonality. Zero correlation codes can keep their orthogonality in multipath wireless channels, which achieves real interference-free transmission. The interference-limited system is then becomes noise-limited system and the complexity of detection is reduced. The thesis reviews the basic approach of zero correlation signals, and discusses the CDMA techniques based on zero correlation signals. This gives some base onⅢ the next chapter.
     Chapter III is a key part of this thesis. This chapter studies the space zero correlation window pilot signal design in multiantenna OFDM systems. This is a special application of zero correlation signals. But this also extend the meaning of zero correlation, i.e. from time zero correlation to space zero correlation. We introduces space zero correlation window to achieve pilot reuse in cellular networks to solve the problems of large number and cost of pilots in multiple antenna OFDM systems. We design a cyclic repeat structure of pilot, which limits the subcarrier occupied by the pilots to a small subset and the cost is minimized. Numerical results demonstrate that the pilot scheme is practical. Chapter IV applies the pilot scheme of Chapter III to LTE system, and introduces multiple practical design schemes. The performace of these schemes have very low MSE which is smaller than the existing schemes.
     Chapter V considers the loss of the capacity caused by space zero correlation window pilot signal. The overhead on the degree of freedom and power is an indirect measure of the cost of channel estimation. The direct measure, however, is the channel capapcity. We give the capacity loss caused by space zero correlation window pilot signal and its asymptotic behavior. At last, chapter VI reviews the thesis and gives some perspectives on future research.
引文
[1]C. E. Shannon, "A mathematical theory of communication", Bell System Technical Journal,27,1948,379-423 and 623-656.
    [2]A. El Gamal, Y. H. Kim, Network Information Theory, Cambridge University Press,2012.
    [3]R. W. Yeung, Information Theory and Network Coding, Springer,2008.
    [4]李道本.一种时间分割复用方法和系统.中国专利,申请号200680055248.1.
    [5]王竞.空、时、频重叠复用技术的研究.博士学位论文,北京邮电大学,2008.
    [6]戴维琴.递归重叠时分复用技术研究.硕士学位论文,北京邮电大学,2011.
    [7]李道本.一种编码复用与多址传输方法.中国专利,申请号200780050698.6.
    [1]H. J. Zepernick and A. Filger, Pseudo Random Signal Processing, Theory and Application, John Wiley & Sons, Ltd.,2005.
    [2]P. Fan, M. Darnell, Sequence Design for Communications Applications, Research Studies Press, John Wiley & Sons Ltd., London,1996.
    [3]M. A. Richards, Fundamentals of Radar Signal Processing, McGraw-Hill,2005.
    [4]D. Tse and P. Viswanath, Fundamentals of wireless communications, Cambridge University Press, New York, NY,2005.
    [5]C. Suh, C. Hwang, H. Choi, "Preamble design for channel estimation in MIMO-OFDM systems", In:Proc. IEEE 2003 Global Telecommunications Conference (GLOBECOM'03), vol.1, pp.317-321,2003.
    [6]R. L. Frank and S. A. Zadoff, "Phase shift pulse codes with good periodic correlation properties," IRE Trans. Inform. Theory (Corresp.), vol. IT-S, pp:381-382, Oct.1962.
    [7]D. C. Chu, "Polyphase codes with good periodic correlation properties(Corresp.)," IEEE Trans. Inform. Theory, vol.18, no.4, pp 531-532, July 1972.
    [8]S. Golomb, Shift Register Sequences, Holden-Day, San Francisco,1967.
    [9]R. H. Barker, " Group synchronizing of binary digital systems," in Communication Theory, W.Jackson, Ed. London:Butterworth,1953, pp. 213-281.
    [10]L. Welch, "Lower bounds on the maximum cross correlation of signals," IEEE Trans. Inform. Theory, vol.20, no.3, pp.397-399, May 1974.
    [11]D. V. Sarwate, "Bounds on crosscorrelation and autocorrelation of sequences," IEEE Trans. Inform. Theory, vol.25, no.6, pp.720-724,1979.
    [12]曾凡鑫,葛利嘉.无线通信中的序列设计原理.北京:国防工业出版社,2007.
    [13]D. Li, "The perspective of large area synchronous CDMA technology for the fourth-generation mobile Radio," IEEE Communications Magazine, vol.34, no.10, pp.114-118,2003.
    [14]CWTS, "LAS CDMA Presentation", Tech. Rep.3GPP2-C00-20000327-005, 3GPP2 TSG-C, March 2000.
    [15]M. G. Parker, K. G. Paterson and C. Tellambura, "Golay complementary sequences," in Encyclopedia of Telecommunications, John Wiley & Sons,2003.
    [16]李道本.多址编码、传输、译码的方法、装置及系统.中国专利,申请号:200910092522.8.
    [1]A. J. Viterbi, Principles of Spread Spectrum Communication, Addison Wesley, 1995.
    [2]M. K. Ozdemir and H. Arslan, "Channel estimation for wireless OFDM systems," IEEE Communications Surveys& Tutorials, vol.9, No.2, pp.18-48,2nd Quarter, 2007.
    [3]J.-J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O.Borjesson, "On channel estimation in OFDM systems," In:Proc.45th IEEE Vehicular Technology Conf, Chicago, IL, July 1995, pp.815-819.
    [4]S. Coleri, M. Ergen, A. Puri, and A. Bahai, "Channel estimation techniques based on pilot arrangement in OFDM systems," IEEE Trans. Broadcast, vol.48, pp. 223-229, Sept.2002.
    [5]G J. Foschini, "Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas", Bell Labs Technical Journal,1(2),1996,41-59.
    [6]G J. Foschini and M. J. Gans, "On limits of wireless communication in a fading environment when using multiple antennas", Wireless Personal Communications, 6(3),1998,311-335.
    [7]E. Telatar, "Capacity of the multiple antenna Gaussian channel", European Transactions on Telecommunications,10(6),1999,585-595.
    [8]P. W. Wolniansky, G J. Foschini, G D. Golden and R. A. Valenzuela, "V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel", Proceedings of the URSI International Symposium on Signals, Systems, and Electronics Conference, pp.295-300, New York,1998.
    [9]3GPP TS 36.211, "Physical Channels and Modulation(Release 8), V8.9.0", Dec. 2009.
    [10]3GPP TS 36.211, "Physical Channels and Modulation(Release 10),V.10.3.0", Sept.2009.
    [11]C. Suh, C. Hwang, H. Choi, "Preamble design for channel estimation in MIMO-OFDM systems", In:Proc. IEEE 2003 Global Telecommunications Conference (GLOBECOM'03), vol.1, pp.317-321,2003.
    [12]J. Tugnait and W. Luo, "On channel estimation using superimposed training and first-order statistics, " IEEE Communications Lett., vol.7(9), pp413-415, Sept.2003.
    [13]A. G Orozco-Lugo, M. M. Lara and D. C. McLernon, "Channel estimation using implicit training," IEEE Trans. Signal Processing, vol.52(1), pp240-254, Jan.2004.
    [14]M. Ghogho and A. Swami, "Estimation of doubly-selective channels in block transmissions using data-dependent superimposed training," in Proc.14th European Signal Processing Conference(EUSIPCO 2006), Florence, Italy, September 4-8,2006.
    [15]ITU-R, "Report ITU-R M.2135-1:Guidelines for Evaluation of Radio Interface Technologies for IMT-Advanced," ITU Tech. Rep., Dec.2009 [16] S. Sesia, I. Toufik and M. Baker, LTE-The UMTS Long Term Evolution, John Wiley and Sons,2009.
    [17]李道本.数字无线通信系统中的导频处理方法及装置.中国专利,申请号201110027505.3.
    [18]李道本.数字无线通信系统中的连续导频处理方法及装置.中国专利,申请号201110027501.5.
    [1]李道本.数字无线通信系统中的导频处理方法及装置.中国专利,申请号 201110027505.3.
    [2]李道本.数字无线通信系统中的连续导频处理方法及装置.中国专利,申请号201110027501.5.
    [3]3GPP TS 36.211, "Physical Channels and Modulation(Release 8), V8.9.0", Dec.
    [4]3GPP TS 36.211, "Physical Channels and Modulation(Release 10),V.10.3.0", Sept. 2009.
    [1]数学手册,高等教育出版社1979年版.
    [2]D. Tse and P. Viswanath, Fundamentals of wireless communications, Cambridge University Press, New York, NY,2005.
    [3]李道本,超越仙侬界的OVTDM编码,2013.2.18第14次修改稿,道本实验室内部文档.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700