准正交时分复用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽带无线通信是一种将信息化社会推向高级发展阶段的重要技术,因而在电子信息领域中颇受关注。它有多方面的先进技术作为支撑,因此其发展前景必然很好。正交频分复用技术(OFDM,Orthogonal Frequency Division Multiplexing)被认为是下一代宽带无线移动通信中不可或缺的技术,它确实有可能得到十分广泛应用,但不见得是一个到处都可以使用的万能工具,因为它也存在一些突出的缺点,例如:OFDM信号的峰值平均功率比太高,因而要求系统的线性动态范围很大,这就使得射频功率放大器的功率效率降低,设备的体积和成本提高。此外它对于载波的频偏和相位抖动以及多普勒效应很敏感,使其传输性能受到某些条件的制约。
     中国发明专利(PCT/CN2005/1845487)提出了一种准正交时分复用(QOTDM, Quasi-Orthogonal Time Division Multiplexing)传输技术,在原理上它是一种与OFDM相对偶的技术,是根据傅里叶变换的时频对偶性原理提出的。它是一种样点交织时分复用传输方法,不仅能圆满地解决多个频带有限的连续信号在一条连续信道中高效传输(即连续波时分复用传输)的难题,而且也可以像OFDM一样,能够构成一种在信道存在严重失真的条件下进行高速数据通信的方法。QOTDM不存在峰值平均功率比太高和对载波频偏敏感的缺点,并且便于通过信道估计与均衡,克服包括多径衰落在内的信道失真的影响,达到良好的性能,具有很好的发展前景。
     本文针对准正交时分复用技术的理论及其若干关键问题,以及它与多输入多输出技术相结合的情况等进行了较深入的研究和分析,取得的研究成果主要有:
     1.研究了QOTDM技术的基本理论,并针对QOTDM系统要求接收端采样点位置精度比较高的问题,根据准正交时分复用系统中样点与噪声统计独立的特点,利用独立随机变量概率密度函数的可分离特性,推导出QOTDM接收机采样位置偏差而引起的样点差错概率公式,并利用改进的Chernoff边界得到了样点差错概率的上界,为评估QOTDM系统的样点差错性能提供了一个有效的方法。
     2.研究了准正交时分复用系统的信道均衡问题,通过建立步长因子与误差信号之间的非线性函数关系,提出了一种适应于QOTDM系统的自适应变步长信道均衡算法,该算法具有初始阶段和时变阶段步长自适应增大和稳态阶段步长很小的特点,消除了不相关噪声的影响。
     3.在推导出QOTDM信号的时域和频域表达式,分析其频谱特性的基础上,分析了QOTDM系统的抗多径衰落性能,并在同等条件下仿真比较了QOTDM与OFDM的抗多径衰落性能,结果表明,它在某些情况下优于OFDM,而在另一些条件下略劣于OFDM。
     4.在分析QOTDM和空时编码技术特点的基础上,提出了一种QOTDM与空时分组编码(STBC, Space Time Block Coding)相结合的通信系统方案,即QOTDM-STBC系统方案。该系统的发送端在进行QOTDM复接后,对复接信号样点序列进行STBC编码,接收端在完成STBC译码后,进行QOTDM分接。本文还分别推导出该系统在空间不相关和相关瑞利衰落信道下由样点值误差导致的符号错误概率的闭式解。理论分析和仿真结果表明,所提出的系统在瑞利衰落信道下的传输性能明显优于Alamouti (STBC-QPSK)方案的性能。
Broadband wireless communication is an important technique for driving the informationization society toward a high level developing stage, so that it arrests people’s great attention in the area of electronics and information. It has several advanced techniques for supporting and must be promising. Orthogonal Frequency Division Multiplexing (OFDM) is supposed to be an un-replaceable technique in the next generation broadband mobile wireless communications. It is indeed possible that OFDM find very wide applications, but it will not be an universal tool to be applicable for every where, since it has some remarkable disadvantages, e.g., the PAPR(Peak-to-Average-Power-Ratio) of the OFDM signal is quite high, and it means that the system must have very great linear dynamic range, which forces the power efficiency of the radio power amplifier decreasing and its size and cost increasing. Besides, it is quite sensitive to the frequency offset and phase wobble of the carrier, which will affect its transmission performance in some situation.
     The China invention of No.1845487 proposed a Quasi-Orthogonal Time Division Multiplexing (QOTDM) technique, which is an allelomorph of OFDM in principle, i.e., it is proposed according to the principle of allelomorph between frequency and time in Fourier Transform. QOTDM is a time-division-multiplexing method based on sample-interleaving. It can not only satisfactorily solve the challenging problem of how to effectively transmit multiple continuous signals via a continuous channel with a time-division-multiplexing mode, but also constitute a broadband communication system in the case of channel with serious distortion. QOTDM has no disadvantages of high PAPR and sensitive to frequency offset like OFDM. It can conveniently overcome channel distortion including multi-path-fading to achieve very good performance by channel estimation and equalization. Therefore, it would have good prospect.
     This dissertation researches in depth on QOTDM technique, including its principle and some related key issues, as well as how to combine it with Multi-Input-Multi-Output(MIMO), etc. The author’s main contributions are as follows:
     1) Through researching the principle of QOTDM, aiming at the deficiencies of sensitivity to sampling time offset in QOTDM system, the dissertation deduces a formula for the sample error probability based on the separable features of the joint probability density function of independent variables, due to the statistical independence of samples and noise in the QOTDM system. Since the Modified Chernoff bound is significantly tighter than the Chernoff bound, the upper bound of sample error probability is also obtained, which can provide an efficient method to evaluate the sample error performance of QOTDM systems.
     2) In the research of channel equalization of QOTDM, the dissertation proposes a variable step-size adaptive channel equalization algorithm based on the nonlinear functional relationship between the step-size and the error signal. The step-size of the algorithm increases adaptively at the beginning of the algorithm or when the channel is varying with time, while it is very small during the steady state. The algorithm can avoid the effects of the irrelevant noise.
     3) Basing on deducing the expressions of the QOTDM signal in both time and frequency domain and analyzing its frequency spectrum, the dissertation analyzes the performance of the QOTDM system in fading channels, moreover, compares its performance with that of OFDM in the same channel condition by simulation. The results show that the anti-multi-path-fading ability of QOTDM system is better than that of OFDM in some conditions, but poorer in other conditions.
     4) Based on the study of QOTDM and Space Time Block Coding (STBC), a scheme of QOTDM-STBC communication system is proposed. At sender of the system, after QOTDM is finished, the QOTDM sample sequences were encoded with Space Time Block Coding (STBC) method before transmission; at the receiver, after the received signal is decoded with STBC decoder, QOTDM demultiplexing is performed. The dissertation deduces a closed form solution for symbol error probability (SEP) of the QOTDM-STBC system due to the sample errors over spatially uncorrelated fading channels or over spatially correlated fading channels. Theoretic analysis and the results of Monte Carlo simulations show that the proposed QOTDM-STBC system has performance remarkably better than that of the Alamouti (STBC-QPSK) scheme.
引文
[1] 中国电信产业网,世界电信简史.http://www.cnii.com.cn/20020808/ca89418.htm.
    [2] 郭梯云等.数字移动通信[M].北京:人民邮电出版社,1996.
    [3] Liu G, Zhang J, and Zhang P, et al. Evolution map from TD-SCDMA to FuTURE B3G TDD [J]. IEEE Communications Magazine, Vol.44, no.3, pp.54-61, 2006.
    [4] 李建东.个人通信[M].北京:人民邮电出版社,1998.
    [5] Lutz E, Werner M, Jahn A. Satallite Systems for Personal and Broadband Communications[M]. Springger-Verlay Press, 2000.
    [6] Chang R W. Synthesis of band-limited orthogonal signals for multi-channel data transmission[J]. Bell Systems Technical Journal, Vol.45, no.12, pp.1775-1796, 1966.
    [7] Zervos N, Kalet I. Optimized decision feedback equalization versus optimized orthogonal frequency division multiplexing for high-speed data transmission over the local cable network[C]. International Conference on Communications, Boston, MA, USA. Vol.2, pp.1080-1085, 1989.
    [8] Bingham JAC. Multicarrier modulation for data transmission: an idea whose time has come[J]. IEEE Communications Magazine, Vol.28, no.5, pp.5-14, 1990.
    [9] 王文博,郑侃.宽带无线通信 OFDM 技术[M].北京:人民邮电出版社,2003.
    [10] 佟学俭,罗涛.OFDM 移动通信技术原理与应用[M].北京:人民邮电出版社,2003.
    [11] Fazel K, Kaiser S. Multi-Carrier and Spread Spectrum Systems[M]. England, John Wiley & Sons Ltd., 2003.
    [12] Branka Vucetic B, Yuan J. Space-Time Coding[M]. England, John Wiley & Sons Ltd., 2003.
    [13] Jankiraman M. Space-Time Codes and MIMO Systems[M]. London, Attech House, 2004.
    [14] Gershman A B, Sidiropoulos N D. Space-Time Processing for MIMOCommunications[M]. England, John Wiley & Sons Ltd., 2005.
    [15] Tse D, Viswanath P. Fundamentals of Wireless Communication[M]. New York, Cambridge University Press, 2005.
    [16] 易克初.带限信号时分复用传输方法[P].中国发明专利[981128467].1999 年6 月公布,2001 年授权.
    [17] 易克初,王勇,易鸿锋等.准正交时分复用传输方法及其系统[P]. 申请号: 200510042910.7, 公开号:PCT/CN2005/1845487, 2005.
    [18] Digital Audio Broadcasting (DAB) to Mobile, Portable, and Fixed Receiver[S]. ETSI ETS 300 401, May 2001.
    [19] Digital Video Broadcasting (DVB-T); Frame Structure, Channel Coding, and Modulation for Digital Terrestrial Television[S]. ETSI ETS 300 744, Dec. 2001.
    [20] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: high-speed physical layer in the 5GHz band[S]. IEEE Std. 802.11a, 1999.
    [21] IEEE Standard 802.16-2005. Part16: Air interface for fixed and mobile broadband wireless access systems-amendment for physical and medium access control layers for combined fixed and mobile operation in licensed band[S]. December 2005.
    [22] Jeffrey G A, Arunabha G, and Rias M. Fundamentals of WiMAX: Understanding Broadband Wireless Networking[M]. New York, Prentice Hall, 2007.
    [23] Broadband Radio Access Network (BRAN); HiperLAN Type 2; Physical (PHY) layer[S]. ETSI TS 101 475 V1.3.1, Dec.2001.
    [24] Ahn H J, Shin Y, Im S. A block coding scheme for peak-to-average power ratio reduction in an orthogonal frequency division multiplexing system[J]. IEEE VTC’2000, Vol.1, pp.56-60, 2000.
    [25] Wang X B, Tjhung T T, Ng C S. Reduction of peak-to-average power ratio of OFDM system using a companding technique[J]. IEEE Transactions on Broadcasting, Vol.45, no.3, pp.303-307, 1999.
    [26] Bauml R W, Fischer RFH, Huber J B. Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping[J]. Electronics Letters, Vol.32, no.22, pp.2056-2057, 1996.
    [27] Han S H, Lee J H. An overview of peak-to-average power ratio reduction techniques for multicarrier transmission[J]. IEEE Wireless Communications, Vol.12, no.2, pp. 56-65, 2005.
    [28] Muller S H, Huber J B. OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences[J]. Electronics Letters, Vol.33,no.5, pp.368-369, 1997.
    [29] Moose P H. A technique for orthogonal frequency division multiplexing frequency offset correction[J]. IEEE Transactions on Communications, Vol.42, no.10, pp.2908-2914, 1994.
    [30] Schmidl T M, Cox D C. Robust frequency and timing synchronization for OFDM[J]. IEEE Transactions on Communications, Vol.45, no.12, pp.1613-1621, 1997.
    [31] Yu J H, Su Y T. Pilot-assisted maximum-likelihood frequency-offset estimation for OFDM systems[J]. IEEE Transactions on Communications, Vol.52, no.11, pp.1997-2008, 2004.
    [32] Li J, Liu G, Giannakis G B. Carrier frequency offset estimation for OFDM-based WLANs[J]. IEEE Signal Processing Letters, Vol.8, no.3, pp.80-82, 2001.
    [33] Morelli M, Mengali U. An improved frequency offset estimator for OFDM applications[J]. IEEE Communications Letters, Vol.3, no.3, pp.75-77, 1999.
    [34] Beek J J, Sandell M, Borjesson P O. ML estimation of time and frequency offset in OFDM systems[J]. IEEE Transactions on Signal Processing, Vol.45, no.7, pp.1800-1805, 1997.
    [35] Lashkarian N, Kiaei S. Class of cyclic-based estimators for frequency-offset estimation of OFDM systems[J]. IEEE Transactions on Communications, Vol.48, no.12, pp.2139-2149, 2000.
    [36] Chiavaccini E, Vitetta G M. Maximum-likelihood frequency recovery for OFDM signals transmitted over multipath fading channels[J]. IEEE Transactions on Communications, Vol.52, no.2, pp.244-251, 2004.
    [37] Liu H, Tureli U. A high-efficiency carrier estimator for OFDM communications[J]. IEEE Communications Letters, Vol.2, no.4, pp. 104-106, 1998.
    [38] Jing L, Tung S N. A consistent OFDM carrier frequency-offset estimator based on distinctively spaced pilot tones[J]. IEEE Transactions on Wireless Commun., Vol.2, no.2, pp. 588-599, 2004.
    [39] Wang X, Wu Y, Chouinard, J.Y. On the comparison between conventional OFDM and MSE-OFDM systems[C]. IEEE GLOBECOM, Vol.1, pp.35-39, 2003.
    [40] Wang X, Wu Y, Chouinard, J.Y. et al. On the design and performance analysis of multi-symbol encapsulated OFDM systems[J]. IEEE Transactions on Vehicular Technology, Vol.55, no.3, pp. 990-1002, 2006.
    [41] Sun Enchang, Yi Kechu, Tian Bin, et al. A method for PAPR reduction in MSE-OFDM systems[C]. Advanced Information Networking and Applications(AINA’06), Vol.2, pp. 798-801, 2006.
    [42] Falconer D, Ariyavisitakul S L, Benyamin S, et al. Frequency domain equalization for single-carrier broadband wireless systems[J]. IEEE Communications Magazine. Vol.40, no.4, pp.58-66, 2002.
    [43] Czylwik A. Comparison between adaptive OFDM and single carrier modulation with frequency domain equalization[C]. Proc. VTC’97, Phoenix, pp. 865-869, 1997.
    [44] Benyami A. SC-FDE PHY Layer System Proposal for Sub 11 GHz BWA (an OFDM-Compatible Solution) [S]. IEEE 802.16.3p-01/31r2, Mar. 12, 2001.
    [45] 网 络 资 料 , MIMO 技 术 原 理 、 概 念 、 现 状 简 介 ( 移 动 通 信 在 线 ) ,http://www.3gbbs.org/3g/Article.asp?articleid=40789, 2004
    [46] Foschini G J. Layered space-time architecture for wireless communication in a fading environment when using multiple antennas[J]. Bell Labs. Tech. J., pp.41-59, Feb., 1996.
    [47] Naguib A F, Tarokh V, Seshadri N, et al. A space-time coding modem for high-data-rate wireless communications[J]. IEEE Journal on Selected Areas in Communications, Vol.16, no.8, pp.1459-1478,1998.
    [48] Wolniansky P W, Forshini G J, Golden G D, et al. V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel[C]. Proc ISSSE’98, Pisa, Italy Sep. 29, 1998.
    [49] Zheng L, Tse D N C, Diversity and multiplexing: a fundamental tradeoff in multiple antenna channels[J]. IEEE Transactions on Information Theory, Vol.49, no.5, pp.1073-1096, 2003.
    [50] Jr R W H, Paulraj A J, Switching between diversity and multiplexing in MIMO systems[J]. IEEE Transactions on Communications, Vol.53, no.6, pp.962-968, 2005.
    [51] 3GPP, TS 25.202, Physical layer-general description. 3GPP technical specification [S]. Mar., 2002.
    [52] Hottinen A, Tirkkonen O, Wichman R. Multi-antenna Transceiver Techniques for 3G and Beyond[M]. England, John Wiley & Sons Ltd., 2003.
    [53] Webb W. Wireless Communications: The Future[M]. England, John Wiley & Sons Ltd., 2007.
    [54] Glisic S G. Advanced Wireless Networks 4G Technologies[M]. England, John Wiley & Sons Ltd., 2006.
    [55] Vicente Diaz. An emerging technology: orthogonal time division multiplexing(OTDM)[C]. Proceedings Emerging Technologies and Factory Automation (ETFA’03), pp.133-136, 2003.
    [56] Golay M J E. Complementary Series[J]. IRE Transactions on Information Theory, Vol.7, no.2, pp.82-87, 1961.
    [57] Diaz V. Method Transmitter and receiver for digital spread spectrum communications using Golay sequences[P]. PCT Patent PCT/ES0100160, Aug.16, 2000.
    [58] 网 络 资 料 . The advantages of GCM/OTDM technology. http://www.gcmcom.com/newweb/webs/technology.html
    [59] Company Profile, Building the global link. GCM Communication Technology, Version2.2, Feb., 2006.
    [60] 网络资料,http://202.194.26.100/duyan/file/pub/4G 和 B3G 移动通信,山东大学.
    [61] 李道本.信号的统计检测与估计理论[M].北京:科学出版社,第 2 版,2004.
    [62] 李道本.一种时间分割复用方法和系统[P].中国,PCT/CN2006/001585[P], 2006.
    [63] 赵东峰,李道本.OVTDM 系统的一个性能界[J].北京邮电大学学报,Vol.30, no.4, pp.103-106, 2007.
    [64] 王竞,李道本.高频谱效率的时分重叠复用技术[C].2007 年全国博士生学术论坛,西安,pp.166-169.
    [65] 王勇.无线通信中若干自适应基带信号处理关键技术研究[D].西安电子科技大学博士学位论文,2006.
    [66] YI Kechu, Gun C, Wang C, et al. Continuous wave time-division-multiplexing and its applications[J]. IEICE Transactions on Communications, E88-B (11): 4266-4273.2005.
    [1] Rappaport T S 著.周文安等译.无线通信原理与应用[M].北京:电子工业出版社,第 2 版,2006.
    [2] 杨大成 等编著.移动传播环境-理论基础 分析方法和建模技术[M].北京:机械工业出版社,2003.
    [3] Durgin G D. Space-Time Wireless Channels[M]. New Jersey, Prentice Hall PTR, 2003.
    [4] Stuber G L. Principles of Mobile Communication[M]. New York, Kluwer Academic Publisher, Second Edition.
    [5] Suzuki H. A statistical model for urban radio propagation[J]. IEEE Transactions on Communications, Vol. COM-25, no.7, pp.673-680, 1977.
    [6] Poor H V, Wornell G W. Wireless Communications-Signal Processing Perspectives[M]. New Jersey, Prentice Hall PTR, 1998.
    [7] 蒋秋红.移动通信信道建模与仿真的研究[D].天津大学硕士学位论文,2004年.
    [8] Clarke R H. A statistical theory of mobile-radio reception[J]. Bell Syst. Tech.J. Vol.47, pp.957-1000, 1968.
    [9] 彭林.第三代移动通信技术[M].北京:电子工业出版社,2003 年.
    [10] Kostov N. Mobile radio channels modeling in MATLAB[J]. Radio Engineering, Vol.12, no.4, pp.12-16, December 2003.
    [11] P?tzold M. A new and optimal method for derivation of deterministic simulation models for mobile radio channels[C]. IEEE 46th Veh. Technology Conference. VTC’96, Atlanta, Georgia, USA, pp.1423-1427, 1996.
    [12] Jakes W.C. Microwave Mobile Communications[M]. New York, John Wiley & Sons. Inc., 1974.
    [13] P?tzold M. Mobile Fading Channels[M]. New York, John Wiley & Sons, Inc., 2002.
    [14] Watterson C, Juroshek J, Bensema W. Experimental confirmation of an HF channel model[J]. IEEE Transactions on Communications, Vol.18, no.6, pp.792-803, 1970.
    [15] ITU-R.M. 1225-1997. Guidelines for evaluation of radio transmission technologies for IMT-2000[S], 1997.
    [16] Molisch A F 著.许希斌、赵明、粟欣等译.宽带无线数字通信[M].北京:电子工业出版社,2002 年.
    [17] Steinbauer M, Molisch A F, and Bonek E. The doubledirectional radio channel[J]. IEEE Antennas and Propagation Magazine, Vol.43, no.4, pp. 51-63, 2001.
    [18] Molisch A F, Asplund H, Heddergott R, et al. The COST 259 directional channel model A-I: overview and methodology[J]. IEEE Transactions on Wireless Communications, Vol.5, no.12, pp.3421-3433, 2006.
    [19] Burr A. Capacity bounds and estimates for the finite scatters MIMO wireless channel[J]. IEEE Journal on Selected Areas in Communications, Vol.21, no.5, pp.812-818, 2003.
    [20] Debbah M, Muller R R. MIMO channel modeling and the principle of maximum entropy[J]. IEEE Transactions on Information Theory, Vol.51, no.5, pp.1667-1690, 2005.
    [21] Sayeed A M. Deconstructing multiantenna fading channels[J]. IEEE Transactions on Signal Processing, Vol.50, no.10, pp. 2563-2579, 2002.
    [22] Chuah C.-N., Kahn J M, and Tse D. Capacity of multi-antenna array systems in indoor wireless environment[C]. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM’98), Vol.4, pp.1894-1899, Sidney, Australia, 1998.
    [23] Shiu D.-S., Foschini G J, Gans M J, et al. Fading correlation and its effect on the capacity of multielement antenna systems[J]. IEEE Transactions on Communications, Vol.48, no.3, pp. 502-513, 2000.
    [24] Kermoal J P, Schumacher L, Pedersen K I, et al. A stochastic MIMO radio channel model with experimental validation[J]. IEEE Journal on Selected Areas in Communications, Vol.20, no.6, pp. 1211–1226, 2002.
    [25] Chizhik D, Rashid-Farrokhi F, Ling J, et al. Effect of antenna separation on the capacity of BLAST in correlated channels[J]. IEEE Communications Letters, Vol.4, no.11, pp. 337-339, 2000.
    [26] Weichselberger W, Herdin M. A stochastic MIMO channel model with joint correlation of both link ends[J]. IEEE Transactions on Wireless Communications, Vol.5, no.1, pp. 90-99, 2006.
    [27] Almers P, Bonek E, Burr A, et al. Survey of channel and radio propagation models for wireless MIMO systems[J]. EURASIP Journal on Wireless Communications and Networking, Vol.2007, no.1, pp.1-19, 2007.
    [28] Molisch A F, Hofstetter H. The COST273 channel model, in COST 273 Final Report, L. Correia, Ed., Springer, New York, NY, USA, 2006.
    [29] 3GPP TR 25.996, Spatial Channel Model for Multiple Input Multiple Output (MIMO) Simulations[S]. v6.1.0 (2003-09).
    [30] Lucent, Nokia, Siemens, Ericsson, Jeju, Korea, A standardized set of MIMO radio propagation channels[S]. 3GPP TSG-RAN WG1 23, Nov. pp.19-23, 2001.
    [31] Erceg V. TGn channel models. Tech. Rep. IEEE P802.11, Wireless LANs, Garden Grove, Calif, USA, 2004, http://www.802wirelessworld.com/ 8802.
    [32] Baum Daniel S, El-Sallabi H, Jamsa Tommi, et al. Final report on link level and system level channel models. IST-2003-507581 WINNER, D5.4 v.1.4, https://www.ist-winner.org/DeliverableDocuments/D1.2.pdf.
    [33] Erceg V, Hari, K, Smith S, et al. Channel models for fixed wireless applications[S]. Contribution IEEE 802.16.3c-01/29r4, IEEE 802.16 Broadband Wireless Access Working Group.
    [1] Diaz V. Method Transmitter and receiver for digital spread spectrum communications using Golay sequences[P]. PCT Patent PCT/ES0100160, Aug.16, 2000.
    [2] Golay M J E. Complementary series[J]. IRE Transactions on Information Theory, Vol.7, no.2, pp.82-87, Apr.,1961.
    [3] Massey J L. Shift-register synthesis and BCH decoding[J]. IEEE Transactions on Information Theory, Vol.15, no.1, pp.122-127, 1969.
    [4] 刘洁,郑冰,刘同等.降低 OFDM 信号峰均比方法的研究及仿真[J].微计算机信息,Vol.22,no.10, pp.143-145.
    [5] 张成,赵晓群.二元互补序列的特征序列[J].电子学报,Vol.32, no.5, pp.819-824, 2004.
    [6] Diaz V, Gernanz D, Urena J. Using complementary sequences for direct transmission path identification[C]. IEEE 2002 28th Annual Conference of the Escuela Politecnica, Alcala Univ., Madrid, Spain,Vol.4, pp.2764-2767, 2002.
    [7] Diaz V, Urena J, Mazo M. Using Golay complementary sequences for multi-mode ultrasonic operation[C], 7th IEEE International Conference onEmerging Technologies and Factory Automation, 1999. Proceedings. ETFA’99. Vol.1, pp.599-604, 1999.
    [8] Andres T H, Stanton R G. Golay Sequencys[M]. New York, Sping-Verlag, 1977.
    [9] Shalorn Eliabou, Michel Kervaire, Bahman Saffari. A new restriction on the length of Golay complementary sequences[J].Journal of Combinatorial Theory, Vol. A 55, pp.49-59, 1990.
    [10] 肖国镇,梁传甲,王育民.伪随机序列及其应用[M].北京:国防工业出版社,1985.
    [11] Turyn, R. J. Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings[J]. J. Combin. Theory Ser.A, Vol.16, pp.313-333, 1974.
    [12] 佟学俭,罗涛.OFDM 移动通信技术原理与应用[M].北京:人民邮电出版社,2003.
    [13] Goldsmith Andrea. Wireless Communications[M]. Cambridge University Press, 2005.
    [14] 樊昌信,张甫翊,徐炳祥等.通信原理[M].北京:国防工业出版社,2001.
    [15] Tseng C C, Liu C L. Complementary sets of sequences[J], IEEE Transactions on Information Theory, Vol.18, no.5, pp.644-652, Sep., 1972.
    [16] 易克初等.准正交时分复用传输方法及其系统 [P] .中国,申请号:200510042910.7,公开号:PCT/CN2005/1845487, 2005.
    [17] YI Kechu, Gun C, Wang C, et al. Continuous wave time-division-multiplexing and its applications[M]. IEICE Transactions on Communications, E88-B (11): 4266-4273.2005.
    [18] 谷春燕.基于 FDMA-CWTDM 转换的卫星通信体制及关键技术研究[D].西安电子科技大学博士学位论文,2005.
    [19] 孙恩昌,田斌等.准正交时分复用及其在 Rayleigh 信道下的性能分析[C].全国博士生学术论坛,113-117, 2007.
    [20] Proakis J G 著,张力军,张宗橙,郑宝玉等译.数字通信[M].北京:电子工业出版社,第 4 版,2003.
    [21] Saltzberg B. Error probabilities for a binary signal perturbed by intersymbol interference and Gaussian noise[J]. IEEE Transactions on Communications, Vol.12, no.1, pp.117-120.1964.
    [22] O'Reilly J J, Mitchell J E. Simplified derivation of the modified Chernoff upper bound[J]. IEE Proceedings, Vol.152, no.6, pp.850-854.2005.
    [23] 沈以淡.积分方程[M].北京:北京理工大学出版社,第 2 版,2002.
    [24] Corless R M, Gonnet G H, Hare D E G, et al. On the Lambert W function[J]. Advances in Computational Mathematics, no.5, pp.329-359, 1996.
    [1] Bingham J A C. Multicarrier modulation for data transmission: An idea whose time has come[J]. IEEE Communications Magazine, Vol.28, no.5, pp.5-14, 1990.
    [2] Falconer D, S. Ariyavisitakul L, Benyamin-Seeyar A, et al. Frequency domain equalization for single-carrier broadband wireless systems[J]. IEEE Commun. Mag., Vol. 40, no.4, pp.58-66, Apr., 2002.
    [3] Wang Z, and Giannakis G B, Wireless multicarrier communications: where Fourier meets Shannon[J]. IEEE Signal Processing Magazine, pp.29-48, May 2000.
    [4] Chang R W, Gibby R A. A theoretical study of performance of an orthogonal multiplexing data transmission scheme[J]. IEEE Transactions on Communications Technology, Vol.16, no. 14, pp.529-540, Aug. 1968.
    [5] Fazel K, Kaiser S. Multi-Carrier and Spread Spectrum Systems[J]. England, John Wiley & Sons Ltd., 2003.
    [6] Hill F S, Blanco M A. Random geometric series and intersymbol interference[J]. IEEE Transaction on Information Theory, Vol. IT-19, pp.326-335, May 1973.
    [7] Stuber G L. Principles of Mobile Communication[M]. New York, Kluwer Academic Publishers, Second Edition, 2002.
    [8] Proakis John G.著.张力军等译.数字通信[M].北京:电子工业出版社,第 4版,2003 年.
    [9] Taylor D P, Vitetta G M, Hart B D, et al. Wireless channel equalization[J]. Europe Transactions on Telecommunications, Vol.9, no.2, pp.117-137, 1998.
    [10] Qureshi S U H, Adaptive equalization[J]. Proc. IEEE, Vol.73, no.9, pp.1349–1387, Sep. 1985.
    [11] 王文博,郑侃.宽带无线通信 OFDM 技术[M].北京:人民邮电出版社,2003.
    [12] 佟学俭,罗涛.OFDM 移动通信技术原理与应用[M].北京:人民邮电出版社,2003.
    [13] Chang R W, Synthesis of band limited orthogonal signal for multichannel datatransmission[J]. Bell Syst. Tec. J, Vol.45, pp. 1775-1796, Dec., 1969.
    [14] Salzberg B.R., Performance of an efficient parallel data transmission system[J]. IEEE Trans. on Comm., Vol.com-15, pp.805-813, Dec. 1967.
    [15] Muquet B, Wang Z, Giannakis G B, et al. Cyclic prefixing or zero padding for wireless multicarrier transmissions[J]. IEEE Trans. on Comm., Vol.50, no.12, pp.805-813, Dec. 2002.
    [16] Glisic S G. Advanced Wireless Networks 4G.Technologies[J]. England, John Wiley & Sons Ltd., 2006.
    [17] Weinstein S B, Ebert P M. Data transmission by frequency-division multiplexing using the discrete Fourier transform[J]. IEEE Transactions on Communication Technology, Vol. COM-19, no.5, Oct. 1971.
    [18] Peled A, Ruiz A. Frequency domain data transmission using reduced computational complexity algorithms[J]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Volume 5, pp.964-967, Apr 1980.
    [19] Jeffrey G A, Arunabha G, and Rias M. Fundamentals of WiMAX: Understanding Broadband Wireless Networking[M]. New York: Prentice Hall, 2007.
    [20] Wang Z, Ma X, and Giannakis G B. OFDM or single-carrier block transmissions[J]. IEEE Transactions on Communications, Vol.52, no.3, Mar., 2004.
    [21] Czylwik A. Comparison between adaptive OFDM and single carrier modulation with frequency domain equalization[C]. Proc. 47th IEEE Vehicular Technology Conference (VTC’97), Vol.2, pp.865-869, Phoenix, Ariz, USA, May 1997.
    [22] 易克初,王勇,易鸿峰等.准正交时分复用及其系统[P].中国:发明专利,No.200510042910. 7, 2005.
    [23] Rappaport T S 著.周文安等译.无线通信原理与应用[M].北京:电子工业出版社,第 2 版,2006.
    [24] 樊昌信,詹道庸,徐炳祥等.通信原理[M].北京:国防工业出版社,第 4 版,1995.
    [25] YI Kechu, GU Chunyan, WANG Chunting. Continuous wave time-division-multiplexing and its applications[J]. IEICE Transactions on Communications, E88-B (11), pp. 4266-4273, 2005.
    [26] Crochiere R, and Rabine L. Multirate Digital Signal Processing[M]. Englewood Cliffs, NJ, Prentice-Hall, 1983.
    [27] Vaidyanathan P P, Multirate Systems and Filter Banks[M]. Englewood Cliffs, NJ: Prentice-Hall, 1993.
    [28] Jovanovic-Dolecek G. Multirate Systems: Design and Applications[M]. London,Idea Group Publishing, 2002.
    [29] R.E.克劳切 著.酆广增译.多抽样速率数字信号处理[M].北京:人民邮电出版社,1988.
    [30] 李颖,魏急波.OFDM 抗多径机理分析与系统仿真[J].国防科技大学学报,Vol.26, no.5, pp.34-38, 2004.
    [1] Rappaport T S. Wirelwss Communications: Principles and Practice[M]. 北京:电子工业出版社,影印版,1998 年.
    [2] Proakis J G 著.张力军等译.数字通信[M].北京:电子工业出版社,第四版,2003 年.
    [3] 张贤达,保铮.通信信号处理[M].北京:国防工业出版社,2000 年.
    [4] Manolakis D G, Ingle V K 著.周正等译.统计与自适应信号处理[M].北京:电子工业出版社,2003 年.
    [5] 董华.样点交织连续波时分复用传输系统及其应用研究[D].西安电子科技大学硕士论文,2006 年.
    [6] 王勇.无线通信中若干自适应基带信号处理关键技术研究[D].西安电子科技大学博士论文,2006 年.
    [7] Widrow B, Hoff M. Adaptive switching circuits[J]. IRE Wescon Convension Record, New York, Institute of Radio Eng, Part 4, pp: 96-104, 1960.
    [8] Widrow B. Thinking about thinking: the discovery of the LMS algorithm[J]. IEEE Signal Processing Magazine, Vol. 22, no.1, pp.100-106, 2005.
    [9] Gelfand S B, Wei Y, Krogmeie J Vr. The stability of variable step-size LMS algorithms [J]. IEEE Trans. on Signal Processing (S1053-587X), Vol.47, no12, pp. 3277-3288, 1999.
    [10] Kwong R H, Johnston E W. A variable step size LMS algorithm[J]. IEEE Trans. on Signal Processing, Vol.40, no.7, pp.1633-1642, July 1992.
    [11] Abounasr T, Mayas K. A robust variable step size LMS type algorithm: analysis and simulation[J]. IEEE Trans. on Signal Processing, Vol.45, no.3, pp.631-639, March 1997.
    [12] Harris R W, Chabries D M, Bishop F A. A variable step (VS) adaptive filter algorithm[J]. IEEE Trans. on Acoustics Speech and Signal Processing, Vol. ASSP-34, no.2, pp.309-316, April 1986.
    [13] Shan T J, Kailath T. Adaptive algorithms with automatic gain control feature[J]. IEEE Trans. on Circuits and Systems, Vol.35, no.1, pp.122-127, January 1988.
    [14] Koike S. A novel adaptive step size control algorithm for adaptive filters[C]. Int. Conf. on Acoustics, Speech and Signal Processing, Vol.4, pp.1-4, 1999.
    [15] Lopes C G, Bermudez J C M. Evaluation and design of variable step size adaptive algorithms[C]. Int. Conf. on Acoustics, Speech and Signal Processing, Vol.6, pp.3845-3848, May 2001.
    [16] Costa M H, Bermudez J C M. A robust variable step size algorithm for LMS adaptive filters[J]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings, Vol.3, pp.93-96, 2006.
    [17] Yasukawa H, Shimada S, Furukrawa I, et al. Acoustic Echo Canceller with HighSpeech Quality[C]. Proceedings-ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing. United States, pp.2125-2128, 1987.
    [18] 叶华,吴伯修.变步长自适应滤波算法的研究[J].电子学报,Vol.18, no.4, pp. 63-69, 1990.
    [19] Shan T J, Kailaith T. Adaptive algorithm with an automatic gain control feature [J]. IEEE Trans. on Acoust, speech, and signal processing (S0096-3518), Vol.35, no.1, pp.122-127, 1991.
    [20] 罩景繁,欧阳景正.—种新的变步长自适应滤波算法[J].数据采集与处理,Vol.12, no.3, pp.171-194, 1997.
    [21] 高鹰,谢胜利.一种变步长 LMS 自适应滤波算法及分析[J].电子学报,Vol.29, no.7, pp.1094-1097, 2001.
    [22] 兰瑞明,唐普英.一种新的变步长 LMS 自适应算法[J].系统工程与电子技术,Vol.27, no.7, pp.1307-1310, 2005.
    [23] 罗小东,贾振红,王强.一种新的变步长 LMS 自适应滤波算法[J].电子学报,Vol.34, no.6, pp.1123-1126, 2006.
    [24] 邓江波,侯新国,吴正国.基于箕舌线的变步长 LMS 自适应算法[J].数据采集与处理,Vol.19, no.3, pp.282-285, 2004.
    [25] 蒋明峰,郑小林,彭承琳.一种新的变步长 LMS 自适应算法及其在自适应噪声对消中的应用[J].信号处理,Vol.17, no.3, pp.282-286, 2001.
    [26] 成磊,葛临东.变步长 LMS 算法性能比较与仿真[J].信息工程大学学报,Vol.4, no.4, pp.70-73, 2003.
    [27] Golay M J E. Complementary series[J]. IRE Transactions on Information Theory, Vol.7, no.2, pp.82-87, Apr., 1961.
    [28] Tseng C C, Liu C L. Complementary sets of sequences[J], IEEE Transactions on Information Theory, Vol.18, no.5, pp.644-652, Sep.,1972.
    [29] Sivaswamy R. Multiphase complementary codes[J]. IEEE Transactions on Information Theory, Vol.24, no.5, pp.546-552, Sep., 1978.
    [30] Frank R L. Polyphase complementary codes[J]. IEEE Transactions on Information Theory, Vol.26, no.6, pp.641-647, Nov., 1980.
    [31] Spasojevic P and Georghiades C N. Complementary sequences for ISI channel estimation[J]. IEEE Transactions on Information Theory, Vol.47, no.3, pp.1145-1152, March 2001.
    [32] Diaz V, Hernanz D and Ure?a J. Using Complementary sequences for Direct transmission path estimation[C]. Proc. of the 28th Annual Conference of the IEEE Industrial Electronics Society (IECON’2002), pp.2764-2767, Seville, Spain, 5-8Nov., 2002.
    [33] Alvarez F J, Urena J, Hernandez A, et al. Using complementary sets of sequences for Direct channel estimation in asynchronous systems[C]. IEEE International Symposium on Intelligent Signal Processing (WISP 2005), Faro (Portugal), 2005.
    [34] Karm S, Zeng G. A new convergence factor for adaptive filters[J]. IEEE Trans. on Circuits and Systems, Vol.36, no.7, pp.1011-1012, 1989.
    [35] Haykin S 著.郑宝玉等译.自适应滤波器原理[M].北京:电子工业出版社,2003 年.
    [1] Shannon C E. A mathematical theory of communication[J]. Bell Sys. Tech. J., Vol. 27, pp. 379-423 and 623-656, 1948.
    [2] Telatar E. Capacity of multiantenna Gaussian channels[J]. AT&T Bell Laboratories, Tech. Memo., Jun. 1995.
    [3] Foschini G J and Gans M J. On limits of wireless communication fading environment when using multiple antennas[J]. Wireless Personal Communications, Vol.10, no.6, pp.311-335, 1998.
    [4] Hottinen A, Tirkkonen O, Wichman R. Multi-antenna transceiver techniques for 3Gand beyond[M]. England, John Wiley & Sons Ltd., 2003.
    [5] Webb W. Wireless Communications: The Future[M]. England, John Wiley & Sons Ltd., 2007.
    [6] Tse D. Viswanath P. Fundamentals of Wireless Communication[M]. New York, Cambridge University Press, 2005.
    [7] Vucetic B, Yuan J. Space-Time Coding[M]. England, John Wiley & Sons Ltd., 2003.
    [8] Jankiraman M. Space-Time Codes and MIMO Systems[M]. London, Artech House Inc., 2004.
    [9] Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communications: Performance criterion and codes construction[J]. IEEE Trans. Inform. Theory, Vol.44, no.2, pp.744-765, 1998.
    [10] Naguib A F, Calderbank A R, and CalderbankA R. Space-time coding and signal processing for high data rate wireless communications[J]. IEEE Signal Processing Magazine, Vol.17, no.3, pp.76-92, 2000.
    [11] Foschini G J. Layered space-time architecture for wireless communication in fading environment when using multiple antennas[J]. Bell Labs Technical Journal, pp.41-59, Autumn, 1996.
    [12] Golden G D, Foschini G J, Valenzuela R A, et al. Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture[J]. Electronics Letters, Vol.35, no.1, pp.6-7, 1999.
    [13] Wolniansky P W, Foschini G J, Golden G D, et al. V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel[C]. Conference Proceedings of the International Symposium on Signals, Systems and Electronics, Pisa, Italy, pp.295-300, Oct. 1998.
    [14] TarokhV, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communications: Performance criterion and codes construction[J]. IEEE Trans. Inform. Theory, Vol.44, no.2, pp.744-765, 1998.
    [15] Naguib A F, Tarokh V, Seshadri N, et al. Calderbank, A space-time coding modem for high-data-rate wireless communications[J]. IEEE J. Select. Areas Commun., Vol.16, no.2, pp.1462-1478, 1998.
    [16] Alamouti S. M. A simple transmitter diversity scheme for wireless communication[J], IEEE J. Select. Areas Commun., Vol.16, no.10, pp.1451-1458, 1998.
    [17] Tarokh V, Jafarkhani H, Calderbank A R. Space-time block coding for wirelesscommunications: Performance results[J]. IEEE J. Select. Areas Commun., Vol.17, no.3, pp.451-460, 1999.
    [18] Tarokh V, Jafarkhani H, Calderbank A R. Space-time block codes from orthogonal designs[J]. IEEE Trans. Inform. Theory, Vol.45, no.5, pp.1456-1467, 1999.
    [19] 3GPP. Technical Specification 25.211, vol.3.2.0, Physical channels and mapping of transport channels onto physical channels (FDD)[S]. Mar., 2000.
    [20] Hochwald B M, Marzetta T L. Unitary space-time modulation for multiple -antenna communication in Rayleigh flat-fading[J]. IEEE Trans. Inform. Theory, Vol.46, no.2, pp. 543-564, Mar., 2000.
    [21] Agrawal D, Richardson T J, Urbanke R. Multiple-antenna signal constellations for fading channels[J]. IEEE Trans. Inform. Theory, Vol.47, no.6, pp.2618-2626, Sep., 2001.
    [22] Thomas L M, Hochwald B M. Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading[J]. IEEE Trans. Inform. Theory, Vol.45, no.1, pp.139-176, 1999.
    [23] 易克初,王勇,易鸿锋等.准正交时分复用传输方法及其系统[P].申请号:200510042910.7,公开号:PCT/CN2005/1845487,2005.
    [24] 孙恩昌,易克初,王勇等.多径衰落信道下准正交时分复用的研究[J].西安交通大学学报,Vol.40, no.12, pp.1424-1427, 2006.
    [25] 罗涛,乐光新编著.多天线无线通信原理与应用[M].北京:北京邮电大学出版社,2005 年.
    [26] 张贤达著.矩阵分析与应用[M].北京:清华大学出版社,2004 年.
    [27] Weisstein E. Worlfram MathWorld[EB/OL]. http://mathworld.wolfram.com/ Chi-SquaredDistribution.html. 2007-07-13.
    [28] Goldsmith A.Wireless Communications[M], Cambridge, Cambridge University Press, 2005.
    [29] Proakis J G.数字通信[M].北京:电子工业出版社,第 4 版,2003 年.
    [30] Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[M]. Washington, National Bureau of Standards, applied Mathematics Series 55, 4th printing, 1965.
    [31] Salz Jack, Winters J. Effect of fading correlation on adaptive arrays in digital mobile radio[J]. IEEE Transactions on Vehicular Technology, Vol.43, no.4, pp.1049-1057, Nov., 1994.
    [32] Lee W. Mobile Communications Engineering[M]. New York, McGraw-Hill, 1982.
    [33] Shiu D-S, Foschini G J, M. J. Gans, et al. Fading correlation and its effect on thecapacity of multielement antenna systems[J]. IEEE Transactions on Communications, Vol. 48, no. 3, pp. 502-513, 2000.
    [34] Kermoal J P, Schumacher L, Pedersen K I, et al. A stochastic MIMO radio channel model with experimental validation[J]. IEEE Journal on Selected Areas in Communications, Vol.20, no.6, pp.1211-1226, 2002.
    [35] Chuah C N, Tse D N C, Kahn J M, et al. Capacity scaling in MIMO wireless systems under correlated fading[J]. IEEE Trans. Inform Theory, Vol.48, no.3, pp.637-650, 2002.
    [36] Almers P, Bonek E, Burr A, et al. Survey of channel and radio propagation models for Wireless MIMO systems[J]. EURASIP Journal on Wireless Communications and Networking, Vol.2007, no.1, pp.1-19, 2007.
    [37] Zhang Q T. Correlated Nakagami Channels with different fading farameters: A generic. characterization with applications[C]. Proc. of International Conference on Communications, New York, USA, pp.704-708, 2002.
    [38] Nabar R U, Bolcskei H, Paularaj A. Outage properties of space-time block codes in correlated Rayleigh or Rician fading environments[C]. IEEE International Conf. on Acoustics, Speech, and Signal Processing, Orlando, Vol.3, pp.2381-2384, 2002.
    [39] Simon M K. Digital Communication over Fading Channels[M]. New Jersey, John Wiley & Sons, 2005.
    [40] Zhao Y, Adve R, Lim T J. Optimal STBC precoding with channel covariance feedback for minimum error probability[J]. EURASIP Journal on Applied Signal Processing,Vol.2004, no.1, pp.1257-1265, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700