基于全景视觉的移动机器人同时定位与地图创建方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于视觉传感器的移动机器人同时定位与地图创建是当前机器人技术研究中非常活跃的一个研究方向。全景视觉以其视角范围大、获取信息丰富的优点在移动机器人领域得到了越来越多的应用。通常对全景视觉图像信息的处理需要对其进行展开,算法复杂、实时性差,且基于视觉的同时定位与地图创建算法的时间复杂度过高,难以达到实时性。本文针对全景视觉的丰富信息难以准确和实时处理的问题,在不需要对图像进行展开的情况下,对基于全景视觉的移动机器人同时定位与地图创建方法进行了研究。
     首先,研究全景图像特征提取及匹配方法并对其进行改进。利用尺度不变特征提取SIFT提取全景图像特征。在全景图像的有效区域内,提出一种特征匹配的角度约束准则消除错误匹配;提出一种基于采样和Mean Shift算法的改进SIFT方法,在不需要对全景图像进行展开的情况下,利用控制采样点数量来控制特征点的数量,利用Mean Shift算法主动寻找尺度空间中的局部极值点。实验证明改进算法提高了特征提取与匹配的效率,提取出的特征点在图像序列中可以进行稳定而准确的匹配。
     其次,研究了基于全景视觉的移动机器人SLAM方法。给出四轮机器人的两轮差动简化运动模型,介绍了全景视觉成像原理与全景视觉传感器设计方法,并给出了本文使用的全景视觉成像系统参数。通过对全景成像过程的分析,建立了基于全景视觉的移动机器人SLAM系统感知模型,从全景图像的像素坐标中利用初始运动信息获得了特征点相对于移动机器人的三维位置信息。将运动模型和感知模型相结合,递推地得到了移动机器人同时定位与地图创建的结果。
     再次,研究了基于贝叶斯滤波的全景视觉移动机器人SLAM方法,将含有噪声的运动模型与含有噪声的全景视觉感知模型结合起来,通过迭代得到更准确的系统状态估计。实验证明贝叶斯滤波大大提高了系统状态估计的准确性,其中以FastSLAM的时间效率为最优。其应用的主要问题在于其数据关联的时间复杂度,通过对算法精度与时间复杂度进行综合分析,选取FastSLAM算法作为全景视觉移动机器的SLAM方法。
     最后,研究了基于全景视觉的移动机器人SLAM时间优化方法。利用改进SIFT方法减少SLAM过程中的特征点数量和特征提取匹配的时间,通过实验验证了该方法对SLAM时间优化的有效性和稳定性。根据全景视觉特征点的匹配次数与连续性,提出一种特征库的动态管理方法,提高了特征库中特征的利用率和SLAM算法数据关联的效率,为基于全景视觉的移动机器人SLAM提供了一种实时性较好的解决方案。
The research on simultaneous localization and mapping (SLAM) of mobile robot with omni-directional vision is a very active subject now. Omni-directional vision sensor is more and more used in this filed because it offer a rich source of environment information in a wide angle of view. Usually, the omni-directional image is transformed to a normal visual image first, but it is a very complex process with a low efficiency. At the same time, the temporal complexity of vision-based SLAM is not real-time. So, the SLAM of mobile robot with omni-directional vision is researched in which the omni-directional image is not needed to be transformed.
     First of all, the scale invariant feature transform (SIFT) and modified algorithm for features extraction and matching in omni-directional are researched. An angle constraint is used to eliminate wrong matching in valid region of omni-directional images. A modified approach based sampling and mean shift algorithm is proposed to reduce the number of features generated by SIFT as well as their extraction and matching time. The features number is controlled by the number of sampling point, and mean shift algorithm is used to search local extrema points actively in scale space to improve the efficiency. It is demonstrated that the time of feature extraction and matching is reduced obviously by modified algorithm and the feature matching is steady and accurate.
     Secondly, the system of mobile robot SLAM with omni-directional vision sensor is researched. The motion model of four-wheel robot is simplified to two-wheel differential model. The principle and structure of the catadioptric hyperboloid omnidirectional vision sensor are researched, and the real parameters are calculated. The perceptual model is proposed by combining the omni-directional pixel coordinate and odometer data to get the three-dimensional coordinate in robot coordinate system. The SLAM result is achieved by combining the motion model and perceptual model iteratively.
     Thirdly, the of SLAM system based on Bayesian filter is researched. The motion model and perceptual model both noises included are combined to get an accurate system state estimation iteratively. It is demonstrated that the accuracy of system state estimation is improved by the uncertain information processing method, but the main problem is the temporal complexity of data association in SLAM. The FastSLAM algorithm is chose for omni-directional mobile robot SLAM because of its best temporal complexity.
     Finally, time optimization method of SLAM is researched. The modified SIFT is used to reduce the time of features extracting and matching in omni-directional image, and the number of features in SLAM is reduced too. It is demonstrated that the modified SIFT is steady and effective for SLAM time optimization. And a dynamic management method of feature database based on matching number and matching continuity is proposed. It is demonstrated that the utilization ratio of features and the efficiency of SLAM data association are both improved by the time optimization method, which is a good solution to keep real-time for the omni-directional mobile robot SLAM.
引文
[1]许俊勇.移动机器人全景vSLAM研究.上海交通大学硕士学位论文, 2008
    [2]陈晓东等编著.警用机器人.北京:科学出版社, 2008
    [3]史美萍.基于人机协同的月亮车路径规划技术研究.国防科学技术大学博士论文. 2006
    [4]西格沃特,诺巴克什著.李人厚译.自主移动机器人导论.西安:西安交通大学出版社,2004
    [5] Morales Yoichi, Carballo Alexander, Takeuchi Eijiro, Aburadani Atsushi, Tsubouchi Takashi. Autonomous robot navigation in outdoor cluttered pedestrian walkways. Journal of Field Robotics, 2009, 26(8): 609-635P
    [6] Gueaieb Wail, Miah Suruz. An intelligent mobile robot navigation technique using RFID technology. IEEE Transactions on Instrumentation and Measurement, 2008, 57(9): 1908-1917P
    [7]庄国. GPS信号和导航数据处理若干问题研究.电子科技大学硕士学位论文. 2004.
    [8] Guilherme N D, Avinash C K. Vision for mobile robot navigation: A survey. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2002, 24(2): l-31P
    [9] Thrun S. Robotic mapping: A survey. Technical Report: CMU-CS-02-111. 2002
    [10]王卫华,陈卫华,席裕庚.基于不确定信息的移动机器人地图创建研究进展.机器人. 2001, 23(6): 563-568P
    [11] Borenstein J, Feng L. Measurement and correction o fsystemati codometry errors in mobile robots. IEEE Transactions on Robotics and Automation, 1996, 12(6): 869-880P
    [12] D. Tardos, J. Neira, P. Newman. Robust mapping and localization in indoor environments using sonar data. International Journal of RoboticsResearch, 2002, 21(4): 311-330P
    [13] J. Guivant, E. Nebot, S. Baiker. Localization and map building using laser range sensors in outdoor applications. Journal of Robotic Systems, 2001, 17(10): 565-583P
    [14] A. J. Davison, D. W. Murray. Mobile robot localisation using active vision. In Proceedings of the 5th European Conference on Computer Vision, Freiburg, 1998, 809-825P
    [15] H. Ishiguro, Development of low-cost compact omnidirectional vision sensors and their applications. Proceedings of Int Conference on Information Systems, Analysis and Synthesis. USA, 1998, 433-439P
    [16] T. S. Levitt and D. T. Lawton. Qualitative navigation for mobile robots. Artificial Intelligence, 1990, 44(3):305–360P
    [17] Salichs M A, Moreno L. Navigation of mobile robots: Open questions. Robotica, 2000, 18: 227-234P
    [18] Leonard J, Durrant-Whyte H F. Mobile robot localization by tracking geometric beacons. IEEE Transactions on Robotics and Automation, 1991, 7(3): 376-382P
    [19]孟庆杰,董绪荣. GPS/DR组合导航系统故障探测与剔除(FDI)的容错设计.装备指挥技术学院学报. 2002, 13(3):40-43P
    [20]郭圣权,李杰.车辆兵器GPS/DR/DM组合导航系统的研究.火力与指挥控制. 2002, 27(5): 13-16P
    [21] Borenstein J, Feng L. UMB mark-- A method for measuring, comparing, and correcting dead-reckoning errors in mobile robots. Technical Report UM-MEAM-94-22, University of Michigan, 1994
    [22]于金霞.移动机器人定位的不确定性研究.中南大学博士论文. 2007, 19P
    [23] Figueroa J F, Mahajan A. A robust navigation system for autonomous vehicles using ultrasonics. Control Engineering Practice. 1994, 2(1): 49-59P
    [24] Shoval S, Benchetrit U, Lenz E. Control and positioning of an AGV formaterial handling in an industrial environment. Proceedings of the 27th CIRP International Seminar on Manufacturing Systems. 1995. 473-479P
    [25] Moravec H P,Elfes A. High resolution maps from wide angle sonar. Proc. of the 1985 IEEE International Conference onRobotics and Automation (ICRA’85), 1985: 116-121P
    [26] Lee S J, Lee Y C, Cho D W, et al. Evaluation of features through grid association for building a sonar map. Proceedings of the IEEE International Conference on Robots and Automation, 2006: 2615-2620P
    [27] David Silver, Deryck Morales, Loannis Rekleitis, et al. Aric carving: obtaining accurate, low latency maps from ultrasonic range sensors. In proceedings of the IEEE International Conference on Robotics and Automation(ICRA), 2004, 2: 1554-1561P
    [28] Francesco Savelli, Benjamin Kuipers. Loop-closing and planarity in topological map-building. IEEE International Conference on Intelligent Robots and systems, 2004: 1511-1517P
    [29]李群明,熊蓉,褚健.室内自主移动机器人定位方法研究综述.机器人, 2003, 25(6): 560-567, 573P
    [30] Moravec H, Elefs A. High resoulution maps from wide angle sonar. In Proceedings of the IEEE International Conference on Robotics and Automation, 1985: 116-121P
    [31] Schiele B, Crowley J. A comparison of position estimation techniques using occupancy grids. Robotics and autonomous systems. 1994, 12: 163-171P
    [32] Burgard W, et al. Estimating the absolute position of a mobile robot using position probability grids. Proceedings of the national conference on artificial intelligence. Portland, Oregon, USA, 1996, 896-901P
    [33] Drumhellor M. Mobile robot localization using sonar. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1987, 9(2): 325-332P
    [34] Mark Fiala, Anup Basu. Robot navigation using panoramic tracking. Pattern Recognition. 2004, 37: 2195-2215P
    [35] Emanuele Menegattili, Alberto Pretto, Alberto Scarpa, Enrico Pagello. Omnidirectional Vision Scan Matching for Robot Localization in Dynamic Environments. IEEE Transactions on Robotics, 2006, 22(3): 523-535P
    [36] Chong K, Kleeman L. Mobile robot map building from an advanced sonar array and accurate odometry. International Journal of Robotics Research, 1999, 18(l):20-36P
    [37] Leonard J J, Durrant-Whyt H F and Cox L J. Dynamic map building for an autonomous mobile robot. International Journal of Robotics Research, 1992, 11(4):286-298P
    [38]徐则中.移动机器人的同时定位和地图构建.浙江大学博士学位论文, 2004
    [39] JoséGaspar, Niall Winters, JoséSantos-Victor. Vision-Based Navigation and Environmental Representations with an Omnidirectional Camera. IEEE Transactions on Robotics and Automation, 2000, 16(6): 890-898P
    [40] Nicola Tomatis , Illah Nourbakhsh , Roland Siegwart. Hybrid simultaneous localization and map building: a natural integration of topological and metric. Robotics and Autonomous System, 2003, 44: 3-14P
    [41] Lu F, Milios E. Robot pose estimation in unknown environments by matching 2d range scans. Journal of Intelligent and Robotic Systems. 1997, 18: 249-275P
    [42] Dorit Borrmann, Jan Elseberg, Kai Lingemann. Globally consistent 3D mapping with scan matching. Robotics and Autonomous System, 2008, 56(2): 130-142P
    [43] Lazkano E, Sierra B, Astigarraga A, Martínez-Otzeta J M. On the use of Bayesian Networks to develop behaviours for mobile robots. Robotics and Autonomous Systems, 2007, 55(3): 253-265P
    [44] Tay M K, Mekhnacha Kamel, Yguel M, CouéC. The Bayesian occupation filter. Springer Tracts in Advanced Robotics, 2008, 46: 77-98P
    [45] Smith R, Self M, Chesseman P. Estimating uncertain spatial relationshipsin robotics. Proceedings of Conference on Uncertainty in Artificial Intelligence. Amsterdam: North-Holland, 1988: 435-461P
    [46] Csorba M. Simultaneous Localization and Map Building. Oxford: University of Oxford, 1997
    [47] Dissanayake G, Newman P M, et al. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 2001, 17(3): 229-241P
    [48] Leonard J J, Durrant-Whyte F. Simultaneous map building and localization for an autonomous mobile robot. Proceedings of the IEEE International workshop on Intelligent Robots and Systems. Osaka, Japan, 1991. 1442-1447P
    [49] Ashokaraj Immanuel, Tsourdos Antonios, Silson Peter, White Brian. Sensor based robot localisation and navigation: Using interval analysis and nonlinear kalman filters. Transactions of the Canadian Society for Mechanical Engineering, 2005, 29(2): 211-227P
    [50] Panzieri Stefano, Pascucci Federica, Setola Roberto. Simultaneous localisation and mapping of a mobile robot via interlaced extended Kalman filter. International Journal of Modelling, Identification and Control, 2008, 4(1): 68-78P
    [51] Rigatos G G. Particle filtering for state estimation in industrial robotic systems. Systems and Control Engineering, 2008, 222(6): 437-455P
    [52] Pan Wei, Cai Zi-Xing, Chen Bai-Fan. Approach to mobile robot simultaneous localization and mapping based on improved particle filter. Pattern Recognition and Artificial Intelligence, 2008, 21(6): 843-848P
    [53] Gordon N, Salmond D. Novel approach to non-linear and non-Gaussian Bayesian state estimation. Proc of Institute Electric Engineering, 1993, 140(2): 107-113P
    [54] Holz D, Lorken C, Surmann H. Continuous 3D Sensing for Navigation and SLAM in Cluttered and Dynamic Environments. Proceedings of the International Conference on Information Fusion, 2008
    [55] Hahnel D, Triebel R, Burgard W, et al. Map building with mobile robots in dynamic environments. In IEEE International Conference on Robotics and Automation, 2003: 1557-1563P
    [56] Wang C C, Thorpe C, Thruns. On-line simultaneous localization and mapping with detection and tracking of moving objects. In IEEE International Conference on Robotics and Automation, 2003: 2918-2924P
    [57] Montemerlo M, Thrun S, Koller D. FastSLAM: A factored solution to the simultaneous localization and mapping problem. Proceedings of the Eighteenth National Conference on Artificial Intelligence. Edmonton, Canada: AAAI Press, 2002: 593-598P
    [58] Bailey T. Mobile Robot Localization and Mapping in Extensive Outdoor Environments. The doctoral thesis of Sydney University, 2002.
    [59] Thrun S, Fox D, Burgard W. A probabilistic approach to concurrent mapping and localization for mobile robots. Machine Learning, 1998, 31(1-3): 29-53P
    [60] Davey S J. Simultaneous Localization and Map Building Using the Probabilistic Multi-Hypothesis Tracker. IEEE Transactions on Robotics, 2007, 23(2): 271-280P
    [61] Nieto J, Guivant J, Nebot E, et al. Real time data association for FastSLAM. IEEE International Conference on Robotics and Automation, 2003: 412-418P
    [62] Perera L D L, Wijesoma W S, Adams M D. Data Association in Dynamic Environments Using a Sliding Window of Temporal Measurement Frames. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2005: 753-758P
    [63] Wijesoma W S, Perera L D L, Adams M D. Toward Multidimensional Assignment Data Association in Robot Localization and Mapping. IEEE Transactions on Robotics, 2006, 22(2): 350-365P
    [64] C. Harris, M. Stephens. A combined corner and edge detector, In Fourth Alvey Vision Conference, Manchester, UK, 1988: 147-151P
    [65] L. Alvarez, F. Morales. Ane morphological multiscale analysis of corners and multiple junctions, Internaltional Journal of Computer Vision, 1997, 25(2): 95-107P
    [66] Mikolajczyk K, Schmid C. Scale& affine invariant interest point detectors. International Journal of Computer Vision, 2004, 60(l): 63-86P
    [67] K. Mikolajczyk, C. Schmid. An affine invariant interest point detector, European Conference on Computer Vision, 2002: 128-142P
    [68] F.Schaffitzky, A. Zisserman. Multi-view matching for unordered image sets,“How do I organize my holiday snaps?”, In Proceedings of the 7th European Conference on Computer Vision, 2002: 414-431P
    [69] Lowe D. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60 (2): 91–110P
    [70] Ke Y, Sukthankar R. PCA-SIFT: A more distinctive representation for local image descriptors. Proceedings of the Conference on Computer Vision and Pattern Recognition, Washington, USA, 2004: 511-517P
    [71] Mikolajezyk K, Schmid C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligenee, 2005, 27(10): 1615-1630P
    [72] Se S, Lowe D. Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks. International Journal of Robotics Research, 2002, 21(8): 735-738P
    [73] Kosecka J, Li Fayin. Vision based topological Markov localization. Proceedings of the IEEE International Conference on Robotics and. Automation. Barcelona, 2004: 1481-1486P
    [74] Yang Xiaolong, Kosecka J. Experiments in location recognition using scale invariant SIFT features. Technical Report GMU-TR-2004-2, George Mason University. 2004
    [75] Jae-Hean Kim, Myung Jin Chung. SLAM with Omni-directional Stereo Vision Sensor. Proceedings of the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, 2003, 1: 442-447P
    [76] M.Pollefeys, L. Van Gool, M. Vergauwen. Visual modeling with a hand-held camera. International Journa lof Computer Vision, 2004, 59(3): 207-232P
    [77] Biber Peter, Andreasson Henrik, Duckett Tom, Schilling Andreas. 3D modeling of indoor environments by a mobile robot with a laser scanner and panoramic camera. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2004, 4: 3430-3435P
    [78] Fleck Sven, Busch Florian, Biber Peter, Straer Wolfgang. Omnidirectional 3D modeling on a mobile robot using graph cuts. Proceedings of IEEE International Conference on Robotics and Automation, 2005, 2005: 1748-1754P
    [79] Y. Boykov, V. Kolmogorov. An experimental comparison of mincut/ max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 1124–1137P
    [80] V. Kolmogorov, R. Zabih. Computing visual correspondence with occlusions using graph cuts. International Conference on Computer Vision (ICCV’01), 2001
    [81] V. Kolmogorov, R. Zabih. What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004
    [82] S. Paris, F. Sillion, L. Quan. A surface reconstruction method using global graph cut optimization. Asian Conference of Computer Vision, 2004
    [83] Y. Boykov, O. Veksler, R. Zabih. Fast Approximate Energy Minimization via Graph Cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001
    [84]王玉全.基于全景视觉的移动机器人粒子滤波定位方法研究.哈尔滨工程大学硕士学位论文. 2009
    [85]胡志萍.图像特征提取匹配和新视点图像生成技术研究.大连理工大学博士学位论文. 2005: 20-50页
    [86] Fishchler M A. Random SamPle Consensus: a paradigm for model fitting with application to image analysis and automated cartography. Communication Association Machine, 1981, 24(6): 381-395P
    [87]马颂德,张正友.计算机视觉:计算理论与算法基础.科学出版社, 2004: 78-80页
    [88] Takaki Masanari, Fujiyoshi Hironobu. Traffic sign recognition using SIFT features. IEEE Transactions on Electronics, Information and Systems, 2009, 129(5): 824-831P
    [89] Wang Yu, Wang Yong-Tian, Liu Yue. Image stitch algorithm based on SIFT and wavelet transform. Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology,2009, 29(5): 423-426P
    [90] Sirmacek Beril, Unsalan. Urban-area and building detection using SIFT keypoints and graph theory. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(4): 1156-1167P
    [91]孙剑,徐宗本.计算机视觉中的尺度空间方法.工程数学学报. 2005, 22(6): 951-962P
    [92] Koenderink. The stucture of images. Biological Cybemetics, 1984: 363-396P
    [93] Lindeberg T. Scale-space theory in computer vision. The Kluwer International Series in Engineering and Computer Science. Dordrecht, Netherlands: Kluwer Acaddemy Publishers, 1994
    [94]李冰.水下机器人焊缝图像识别算法的研究.南昌大学硕士学位论文. 2007
    [95] K Fukunaga, L D Hostetler. The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition. IEEE Trans. Information Theory, 1975, 21(1): 32-40P
    [96] Y. Cheng. Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799P
    [97] Dorin Comaniciu, Visvanathan Ramesh, Peter Meer. Real-time Tracking of Non-rigid Objects using Mean Shift. IEEE Computer Vision andPattern Recognition, 2000,4(2): 142-149P
    [98] Dorin Comaniciu, Peter Meer. Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619P
    [99] Comaniciu D,Ramesh V,Meer P.The variable bandwidth mean shift and data-driven scale selection. Proc. of the IEEE Int’l Conf. on Computer Vision(ICCV). 2001: 438-445P
    [100]李乡儒,吴朝福,胡占义.均值漂移算法的收敛性.软件学报, 2005, 16(3): 365-374P
    [101]文志强,蔡自兴. Mean Shift算法的收敛性分析.软件学报, 2007, 18(2): 205-212P
    [102] F. Lin?ker, M. Ishikawa. Real-time Appearance-based Monte Carlo Localization. Robotics and Autonomous Systems (S0921-8890), 2006, 54(3): 205–220P
    [103]张广军.机器视觉.科学出版社, 2005, 106-107P
    [104]武二永.基于视觉的机器人同时定位与地图创建.浙江大学博士论文. 2007, 81P
    [105]陈伟,吴涛,李政,贺汉.基于粒子滤波的单目视觉SLAM算法.机器人, 2008, 30(3): 242-247, 253P
    [106] Wan Eric A, Merwe R. The unscented kalman filter for nonlinear estimation. Proceedings of International Symposium on Adaptive Systems for Signal Processing, Communications and Control, Alberts, Canada, 2000: 153-158P
    [107]杨峰,潘泉,梁彦,叶亮.多源信息空间配准中的UT变换采样策略研究.系统仿真学报, 2006, 18(3): 713-717P
    [108]邓翔.移动机器人同时定位与地图创建算法研究.南京理工大学硕士学位论文. 2008
    [109] Julier S J, Uhlmann J K. A consistent, Debiased method for converting between polar and Cartesian coordinate systems. Proc. AeroSense: Acquisition, Tracking and Pointing XI., 1997, 3086: 110–121P
    [110] Julier S J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems. Proc. AeroSense: 11th Int. Symp. Aerospace/Defense Sensing, Simulation and Controls, 1997, 3086: 182-193P
    [111] Julier S J, Uhlman J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401-422P
    [112]高惠璇.统计计算.北京大学出版社, 1995
    [113] Christian P. Robert, George Casella, Monte Carlo Statistical Methods. 1999: Springer-Verlag.80
    [114] Doucet A, N. Gordon, V. Krishnamurthy. Particle filter for state estimation of jump Markov linear system. IEEE Transactions on Signal Processing, 2001, 49(3): 613-624P
    [115] Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 2000, 10(3): 197-208P
    [116] Djuric M P. Particle filtering. IEEE Signal Processing Magazine, 2003, 9(20): 19-38P
    [117] Liu J, Chen R. Sequential Monte Carlo Methods for Dynamic Systems. Journal of the American Statistical Association. 1998, 93: 1032-1044P
    [118] Liu J. Monte Carlo strategies in scientific computing. 2001: Springer
    [119] Doucet A, Godsill S. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing. 2000, 10: 197–208P
    [120] Markandey V. Motion estimation for moving target detection. IEEE Trans. on AES. 1996, 32(3): 866-874P
    [121] Doucet, A. and S. Godsill, On sequential Monte Carlo methods for Bayesian filtering. Statist. Computer, 2000, 10: 197-208P
    [122] P. Del Moral. Measure valued processes and inteacing particle systems. 1998, 8(2): 438- 495P
    [123] N J Gordon, D J Salmond, A F M Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proceedings Part F: Radar and Signal Processing, 1993, 140(2): 107-133P
    [124] J S Liu, R Chen, W H Wong. Rejection control and sequential importance sampling. Journal of American Statistical Association, 1998, 93(443): 1022-1031P
    [125] Carpenter J, Clifford P, Fearnhead P. An improved particle filter for non-linear problems. IEEE proceedings- Radar, Sonar and Navigation, 1999, 146: 2-7P
    [126] Doucet A, Godsill S, Andrieu, C. On sequential Monte Carlo sampling methods for Bayesian filtering. Statist. Comput. 2000, 10: 197–208P
    [127] Doucet A, J F G de Freitas, Muprhy K, Russel S. Rao-blackwellized Particle Filtering for dynamic Bayesian networks. In Proceedings of the Conference on Unscertainty in Artificial Intelligence(UAI), 2000
    [128] Murphy K P. Bayesian map learning in dynamic environments. In Advances in Neural Information Processing System, 2000, 12: 1015-1021P, MIT Press
    [129] Montemerlo M, Thrun S, KOller D,et al. FastSLAM: A factored solution to the Simultaneous localization and mapping problem. Proceedings of the Eighteenth National Conference on Artificial Intelligence. Edmonton: AAAI Press, 2002: 593-598P
    [130] A. J. Davison, D. W. Murray. Mobile robot localisation using active vision. In Proceedings of the 5th European Conference on Computer Vision, Freiburg, 1998, 809-825P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700