大肠杆菌K-12对消毒剂耐受和抗生素耐药相关外膜蛋白组学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用蛋白质组学和基因组学研究方法,对革兰氏阴性病原菌大肠杆菌K-12的外膜蛋白进行了较系统的研究,重点筛选和鉴定了与消毒剂耐受和抗生素耐药相关的蛋白质组,并对这些差异外膜蛋白进行验证和一系列的功能研究,有助于了解细菌对消毒剂耐受和对抗生素耐药的机制,这对于寻找新药物靶点和研制新的抗菌药物或疫苗具有重要的意义。
     通过对多种消毒剂的蛋白质组学进行分析,成功地在大肠杆菌K-12中分别鉴定出与异丙醇(7种)、乙醇(7种)和苯酚(5种)耐受相关的外膜蛋白,并发现异丙醇与乙醇耐受相关外膜蛋白一致,均为Tsx、OmpC、OmpF、FadL、OmpT、OmpA和LamB,其中FadL、OmpT、OmpA、LamB4种外膜蛋白是三者所共有的。在对这些结果进行Western blotting证实的基础上,采用基因敲除菌株、补救菌株和高表达菌株进一步进行消毒剂耐受试验,证明了LamB、OmpC和OmpA是大肠杆菌K-12对醇类消毒剂耐受相关最重要的外膜蛋白:LamB、OmpA和OmpT是大肠杆菌K-12对苯酚耐受相关的重要外膜蛋白,尤其以OmpA和OmpT为著。进一步实验显示,大肠杆菌K-12对这三种消毒剂的耐受还受EnvZ/OmpR双成分调节系统的调节。这些结果均显示外膜蛋白在革兰氏阴性细菌对消毒剂耐受中起到重要作用,其特征与消毒剂种类有关。
     通过亚蛋白质组学技术,研究大肠杆菌K-12对四环素和卡那霉素耐药相关的功能外膜蛋白。结果发现,在四环素耐药菌株中共有11个差异点,其中有8个点为外膜蛋白,属于6种外膜蛋白,分别为LamB、FirnD、TolC、OmpC、Tsx和OmpW;在卡那霉素耐药菌株的11个差异蛋白点中,有9个点为外膜蛋白,共为7种外膜蛋白,它们是OmpA、TolC、FadL、OstA、Tsx、OmpW和MipA。经比较发现,TolC、Tsx和OmpW为2种抗生素耐药菌株共同变化的外膜蛋白,Western blotting结果进一步证实了2-DE结果的可靠性。在此基础上,对这些外膜蛋白进行了较深入的功能分析。结果发现,在大肠杆菌K-12对四环素耐药过程中,LamB、TolC和OmpC这3个外膜蛋白发挥重要作用;在大肠杆菌K-12对卡那霉素耐药过程中,MipA和TolC是特别重要的外膜蛋白,其中关于MipA是细菌耐药相关外膜蛋白的报道在国内外尚属首次。
     采用功能基因组学的方法,构建了两株分别含有TolC长、短片段胞外结构域突变的突变株△tolC-pET-28a-tolC1和△tolC-pET-28a-tolC2,并通过耐药实验证明了TolC除了具有药物外排功能之外,还能感知外界环境药物浓度的新功能,而且这两个胞外区域对该功能的作用不一样。
Using proteomics and genomics technologies,we invesigated the outer membrane proteins of Gram-negative bacterium E.coli K-12 in response to disinfectant-tolerance and drug-resistance.This investigation was performed with the use of proteomic methodologies for altered proteome,Western blotting for verification of the altered proteins,and gene-defieient and protein-overexpressed approch for protein function. These studies would help us to understand disinfectant-tolerance and drug-resistance mechanisms of bacteria,find new drug targets,and develop new anti-bacteria agents or vaccine.
     Seven,seven and five altered outer membrane proteins were characterized in isopropanol-tolerant,ethanol-tolerant and phenol-tolerant E.coli K-12 strains,respectively, in which altered outer membrane proteins in both of isopropanol-tolerance and ethanol-tolerant strains were identical(Tsx,OmpC,OmpF,FadL,OmpT,OmpA and LamB).Out of the seven proteins,altered FadL,OmpT,OmpA,LamB changed were also characterized in phenol-tolerant strain.Following the verification of 2-DE by Western blotting,function of the altered proteins was investigated by gene knockout,gene complementation and gene overexpression experiments.LamB,OmpC and OmpA were determined as the most crucial outer membrane proteins in response to alcohols-tolerance, and LamB,OmpA and OmpT to phenol-tolerance,especially OmpA and OmpT.Further investigation indicated that bacterial tolerance to the threee disinfectants was regulated by EnvZ/OmpR two component signal transduction system.These results showed that outer membrane proteins of Gram-negative bacteria played important role in disinfectant tolerance,in which the characteristic feature of the altered outer membrane proteins was correlated to disinfectant types.
     Through the sub-proteomics to study functional outer membrane proteins relevant to E.coli K-12 resistant to tetracycline and kanamycin,we found 11 altered spots in tetracycline-resistant strain and 8 of them were identified as outer membrane proteins which belonged to 6 types of outer membrane proteins(LamB,FimD,TolC,OmpC,Tsx and OmpW);11 altered spots in E.coli K-12 resistant to kanamycin and 9 of them were identified as outer membrane proteins which belonged to 7 types of outer membrane proteins(OmpA,TolC,FadL,OstA,Tsx,OmpW and MipA).Furthermore,TolC,Tsx and OmpW were commonly changed outer membrane proteins in these two drug-resistant strains.The reliability of 2-DE was confirmed by Western blotting.On the basis of these results,further functional analysis of these outer membrane proteins showed that LamB,TolC and OmpC were critical in the process of tetracycline-resistance,and MipA and TolC were especially important to kanamycin-resistance.Importantly,MipA was first reported here to be an outer membrane protein in response to bacterial drug-resistance.
     Moreover,we constructed two mutants,ΔtolC-pET-28a-tolC1 andΔtolC-pET-28a-tolC2,which respectively contained mutated TolC long and short extracellular domains for investigating ability of extracellular domains in response to an antibiotic.Our results indicated that TolC could sense the concentration of environmental drugs,which is a novel finding.
引文
[1]贾文祥,陈锦英,江丽芳.医学微生物学[M].北京:人民卫生出版社,2005.
    [2]Josko D.Yersinia pestis:still a plague in the 21st century[J].Clin Lab Sci,2004,17:25-29.
    [3]Parsi VK.Cholera[J].Palm Care Update Ob Gyns,2001,8:106-109.
    [4]Rabbani GH,Greenough WB.Food as a vehicle of transmission of cholera[J].J Diarrhocal Dis Res,1999,17:1-9.
    [5]Jennison AV,Verma NK.Shigella flexneri infection:pathogenesis and vaccine development[J].FEMS Microbiol Rev,2004,28:43-58.
    [6]Young LS,Stevens P,Kaijser B.Gram-negative pathogens in septicaemic infections[J].Scand J Infect Dis Suppl,1982,31:78-94.
    [7]Mesrobeanu I,Mesrobeanu L.Toxins of gram-negative microorganisms[J].Microbiol Parazitol Epidemiol,1965,10:461-478.
    [8]Sriskandan S,Cohen J.Gram-positive sepsis.Mechanisms and differences from gram-negative sepsis[J].Infect Dis Clin North Am,1999,13:397-412.
    [9]Freudenberg MA,Merlin T,Gumenscheimer M,Kalis C,Landmann R,Galanos C.Role of lipopolysaccharide susceptibility in the innate immune response to Salmonella typhimurium infection:LPS,a primary target for recognition of Gram-negative bacteria[J].Microbes Infect,2001,3:1213-1222.
    [10]Lugowski C.Immunotherapy in gram-negative bacterial infections[J].Acta Biochim Pol,1995,42:19-24.
    [11]焦炳华.分子内毒素学[M].上海:上海科学技术文献出版社,1995.
    [12]谭艳,方治平.抗菌药物的作用机制及细菌耐药机制的研究进展[J].国外医药抗生素分册,2003,24:65-66.
    [13]Li J,Nation RL,Milne RW,Turnidge JD,Coulthard K.Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria[J].Int J Antimicrob Agents,2005,25:11-25.
    [14]戴自英.实用抗菌药物学[M].上海:上海科学技术出版社,1992,.
    [15]Waterer GW,Wundednk RG.Increasing threat of Gram-negative bacteria[J].Crit Care Med,2001,29:75-81.
    [16]Denyer SP,Maillard JY.Cellular impermeability and uptake of biocides and antibiotics in gram-negative bacteria[J].Symp Ser Soc Appl Microbiol,2002,31:35-45.
    [17]Denyer SP,Maillard JY.Cellular impermeability and uptake of biocides and antibiotics in gram-negative bacteria[J].Symp Ser Soc Appl Microbiol,2002,31:35-45.
    [18]Poole K.Outer membranes and efflux:the path to multidrug resistance in Gram-negative bacteria[J].Curr Pharm Biotechnol,2002,3:77-98.
    [19]李碧华.革兰氏阴性菌外膜蛋白结构、功能及遗传学[J].国外遗传学-微生物学分册,1991,14:193-196.
    [20]Nikaido H.Molecular basis of bacterial outer membrane permeability revisited[J].Microbiol Mol Biol Rev,2003,67:593-656.
    [21]Tokuda H,Matsuyama S.Sorting of lipoproteins to the outer membrane in E.coli[J].BBA,2004,1693:5-13.
    [22]Koebnik R,Locher KP,Geider PV.Structure and function of bacterial outer membrane proteins:barrels in a nutshell[J].Mol Microbiol,2000;37:239-253.
    [23]Schirmer T.General and specific podns from bacterial outer membranes[J].J Struct Biol,1998,121:101-109.
    [24]Liu X,Ferenci T.An analysis of multifactorial influences on the transcriptional control of ompF and ompC porin expression under nutrient limitation[J].Microbiology,2001,147:2981-2989.
    [25]Prohinar P,Forst SA,Reed D,Mandic-Mulec I,Weiss J.OmpR-dependent and OmpR-independent responses of Escherichia coli to sublethal attack by the neutrophil bactericidal/permeability increasing protein[J].Mol Microbiol,2002;43:1493-1504.
    [26]Hancock R,Decad GM,Nikaido H.Identification of the protein producing transmembrane diffusion pores in the outer membrane of Pseudomonas aeruginosa PA01[J].Biochim Biophys Acta,1979,554:323-331.
    [27]Yoshimura F,Zalman LS,Nikaido H.Purification and properties of Pseudomonas aeruginosa porin[J].J Biol Chem,1983,258:2308-2314.
    [28]Hancock REW,Decad GM,Nikaido H.Identification of the protein producing transmembrane diffusion pores in the outer membrane of Pseudomonas aeruginosa PA01[J].Biochim Biophys Acta,1979,554:323-331.
    [29]Fajardo DA,Cheung J,Ito C,Sugawara E,Nikaido H,Misra R.Biochemistry and regulation of a novel Escherichia coli K-12 porin protein,OmpG,which produces unusually large channels[J]. J Bacteriol, 1998,180:4452-4459.
    
    [30] Pilsl H, Smajs D, Braun V. Characterization of colicin S4 and its receptor, OmpW, a minor protein of the Escherichia coli outer membrane[J]. J Bacteriol, 1999,181:3578-3581.
    
    [31] Fralick JA. Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli[J]. J Bacteriol, 1996,178: 5803-5805.
    [32] Ma D, Cook DN, Hearst JE, Nikaido H. Efflux pumps and drug resisitance in gram-negative bacteria[J]. Trends Microbiol, 1994,2:489-493.
    [33] Okusu H, Ma D, Nikaido H. AcrAB efflux pump plays a major role in the antibiotic resisitance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants[J]. J Bacteriol, 1996,178:306-308.
    [34] Zgurskaya HI, Nikaido H. AcrA is ahighly asymmetric protein capable of spanning the periplasm[J]. J Mol Biol, 1999,285:409-420.
    [35] Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli[J]. J Bacteriol, 1993, 175:6299-6313.
    [36] Koronakis V, Li J, Koronakis E, Stauffer K. Structure of TolC, the outer-membrane component of the bacterial type I efflux system, derived from two-dimensional crystals[J]. Mol Microbiol, 1997,23:617-626.
    [37] Calladine CR, Sharff A, Luisi B. How to untwist an alpha-helix: structural principles of an alpha-helical barrel[J]. J Mol Biol, 2001,305:603-618.
    [38] Koronakis V. TolC-the bacterial exit duct for proteins and drugs[J]. FEBS Letters, 2003, 555:66-71.
    [39] Sharff A, Fanutti C, Shi J, Calladine C and Luisi B.The role of the TolC family in protein transport and multidrug efflux From stereochemical certainty to mechanistic hypothesis[J]. Eur J Biochem, 2001,268: 5011-5026.
    [40] Gimeno C, N avarro D, Savall F, Milla E, Farga MA, Garau J, Cisterna R, Garcia-de-Lomas J.Relationship between outer membrane protein profiles and resistance to ceftazidime, imipenem,and ciprofloxacin in Pseudomonas aeruginosa isolates from bacteremic patients[J]. Eur J Clin Microbiol Infect Dis, 1996,15: 82-85.
    [41] Nikaido H. Multidrug efflux pumps of gram-negative bacteria[J]. J Bacteriol, 1996, 178:5853-5859.
    [42] Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux[J]. Science, 1994,264:382-388.
    [43] Pirnay JP, De VD, Mossialos D, Vanderkelen A, Cornelis P, Zizi M. Analysis of the Pseudomonas aeruginosa oprD gene from clinical and environmental isolates[J]. Environ Microbiol, 2002, 4:872-882.
    [44] Cohen SP, McMurry LM, Levy SB. MarA locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. J Bacteriol, 1998, 179:5416-5422.
    [45] Hooper DC, Wolfson JS. Quinolones antimicrobial agents[M]. Washington DC: American Society for Microbiology, 1993.
    
    [46] Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria[J]. Drugs, 2004,64: 159-204.
    [47] McMurry L, Petrucci RE, Levy SB. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli[J]. Proc Natl Acad sci USA,1980,77:3974-3977.
    [48] Levy, SB. Active efflux mechanisms for antimicrobial resistance[J]. Antimicrob Agents Chemother, 1992,36:695-703.
    [49] Li XZ, Ma D, Livermore DM, Nikaido H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to beta-Iactam resistance[J].Antimicrob Agents Chemother, 1994,38:1742-1752.
    [50] Ross JI, Eady EA, Cove JH, Cunliffe WJ, Baumberg S, Wootton JC. Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family[J]. Mol Microbiol, 1990,4:1207-1214.
    [51] Aires JR, K(?)hler T, Nikaido H, Plesiat P. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides[J]. Antimicrob Agents Chemother,1999, 43: 2624-2628.
    [52] Van Bambeke F, Glupczynski Y, Plesiat P, Pechere JC, Tulkens PM. Antibiotic efflux pumps in prokaryotic cells: occurrence, impact on resistance and strategies for the future of antimicrobial therapy[J]. J Antimicrob Chemother, 2003, 51:1055-1065.
    [53]Nishino K,Yamaguchi A.Analysis of a complete library of putative drug transporter genes in Escherichia coli[J].J Bactcdoi,2001,183:5803-5812.
    [54]Wandersman C.Secretion across the bacterial outer membrane[J].Trends Genet,1992,8:317-322.
    [55]Wandersman C,Delepelaire P.TolC,an Escherichia coli outer membrane protein required for hemolysin secretion[J].Proc Natl Acad Sci USA,1990,87:4776-4780.
    [56]Downes A,Blunt TP.Researches on the effect of light upon bacteria and other organisms[J].Proc Roy Soc London,1877,26:488-500.
    [57]傅金泉.常用消毒灭菌法及其机理与应用[J].酿酒科技,1999,2:97-101.
    [58]Burducea O.35 years of research and study in radiovirology at the Stefen S.Nicolau institute of virology[J].Rev Roum Virol,1990,41:157-169
    [59]Miller D.A review of the ultrasonic bioeffects of microsonation gas-body activation and related cativation-like phenomena[J].Ultrasound Med Biol,1988,13:443-470.
    [60]Wirgin G,Vergleichende Untersuchungen fiber die keimabt(o|¨)tenden und die entwicklungshemmenden Wirkungen yon Alkoholen der Methyl-,(?)thyl-,Propyl-,Butyl-,und Amylreihen[J].Z.Hyg,1904,46:49-168.
    [61]Tilley,FW.An experimental study of the influence of temperature on the bactericidal activities of alcohols and phenols[J].J Bacteriol,1942,43:521-525.
    [62]Rotter M,Skopec M.Entwicklung der h(a|¨)ndehygiene und die bedeutung der erkenntnisse von ignaz Ph semmelweis[M].Berlin:Springer,2003.
    [63]Anonymous.Tentative final monograph for health care antiseptic products:proposed rule[J].Fed Regist,1994,59:31401-31452.
    [64]Powell,UM.The antiseptic properties of isopropyl alcohol in relation to cold sterilization[J].J Indiana State Med Assoc,1945,38:303-304.
    [65]Vincent CM,Hector HG,Joel TK.Neurocysticercosis[J].Current Infectious Disease Reports,2006,8:293-300.
    [66]薛广波.现代消毒学[M].北京:人民军医出版社,2002.
    [67]Gorman SP.Antimicrobial activity,uses and mechanism of glutaraldehyde[J].J Appl Bacteriol,1980,48:161-190.
    [68]张流波.国外医院消毒考察报告[J].中国消毒学杂志,2006,23:24-26.
    [69] Russell AD, Hugo WB, Ayliffe GAJ. Principles and practice of disinfection, preservation and sterilization: chloride compounds[M]. London: Blackwell Scientific publications, 1999.
    [70] Martinez ML, Pasaul A, Jacoby GA. Quinolone resistance from a transferable plasmid[J]. Lancet,1998,351:797.
    [71] Langsruda S, Sidhua MS, HeirE, Hoick AL. Bacterial disinfectant resistance-a challenge for the food industry[J]. Int Biodeterior Biodegrad, 2003,51:283-290.
    [72] McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance[J]. Clin Microbiol Rev, 1999,12:147-179.
    [73] Russell AD. Mechanisms of bacterial resistance to biocides[J]. Int Biodeterior Biodegrad, 1995,6:247-265.
    [74] Russell AD. Hammond SA. Bacterial resistance to antiseptics and disinfections[J], J Hosp Infect,1986,7:213-225.
    [75] Stickler DJ, King BJ. Bacterial sensitivity and resistance A. Intrinsic resistance[A]. Oxford:Blackwell Science, 1999.
    [76] Bloomfield SF. Bacterial sensitivity and resistance C. Resistance of bacterial spores to chemicals [A]. Oxford: Blackwell Science, 1999.
    [77] Stickler DJ, Thomas B. Studies on the genetic basis of chlorhexidine resistance[J]. Br J Clin Pract,1983, 25(Symp Suppl):23-28.
    [78] Ohta S. Studies on resistant mechanisms in the resistant bacteria to chlorhexidine. I. Chemical components of the cell membrane and the electron microscopical obserbvation of cell surface structure of chlorhexidine-resistant bacteria[J]. Vakugaku Zasshi, 1990,110:414-425.
    [79] Brown MRW. Resisance of Pseudomonas aeruginosa[M]. London: John Wiley and Sons, 1975.
    [80] Mitchell BA, Brown MH, Skurray RA. Qac a multidrug efflux pump from Staphylococcus aureus:comparative analysis of resistance to diamidines, biguanidines, and guanylhydrazones[J].Antimcrob Agents Chemother, 1998,42:475-477.
    [81] Mayer S, Boos M, Beyer A, Fluit AC, Schmitz FJ. Distribution of the antiseptic resistance genes qacA, qacB and qacE in 497 methicillin-resistant and-susceptible European isolates of Staphylococcus auresus[J]. Antimicrob Chemnther, 2001,47: 896-897.
    [82] Poly M, Courvalin P, Lambert T. Characterization of In40 of Enterobacter aerogenes BM2688, a class1 integron with two new gene cassettes, cm1A2 and qacF[J]. Antimicrob Agents Chemother, 1998,42:2557-2563.
    [83]Kummerle N,Feucht HH,Kaulfers PM.Plasmid-mediated formaldehyde resistance in Escherichia coli[J].Antimicrob Agents Chemother,1996,40:2276-2279.
    [84]Poole K.Overcoming multidrug resistance in gram-negative bacteria[J].Curt Opin Investig Drugs,2003,4:128-139.
    [85]杜梦藻.微生物学[M].长春:东北师范大学出版社,1990.
    [86]吴谋胜,彭宣宪.微生物蛋白质组学研究进展[J].微生物学报,2002,42:251-254.
    [87]Gilleland HE,Parker MG,Matthews JM,Berg RD.Use of a purified outer membrane protein F (porin) preparation of Pseudomonas aeruginosa as a protective vaccine in mice.Infect Immun,1984,44:49-54.
    [88]Price BM.,Galloway D R.,Baker NR,Gilleland LB,Staczek J,Gilleland HE.Protection against Pseudomonas aeruginosa chronic lung infection in mice by genetic immunization against outer membrane protein F(OprF) of P.aeruginosa[J].Infect Immun,2001,69:3510-3515.
    [89]Wu JY,Wade WF,Taylor RK.Evaluation of cholera vaccines formulated with toxin-coregulated pilin peptide plus polymer adjuvant in mice[J].Infect Immun,2001,69:7695-7702.
    [90]Walcher P,Mayr UB,Azimpour-Tabrizi C,Eko FO,Jechlinger W,Mayrhofer P,Alefantis T,Mujer CV,DelVecchio VG,Lubitz W.Antigen discovery and delivery of subunit vaccines by nonliving bacterial ghost vectors[J].Expert Rev Vaccines,2004,3:681-691.
    [91]Chakravarti DN,Fiske MJ,Fletcher LD,Zagursky RJ.Application of geomics and proteomics for idendification of bacterial gene products as potential vaccine candidates[J].Vaccine,2001,19:601-612.
    [92]纪念念.大肠杆菌和铜绿假单胞菌外膜蛋白高效中和免疫原的研究[D].厦门:厦门大学硕士学位论文,2005.
    [93]Pitarch A,Pardo M,Jimenez A,Pla J,Gil C,Sanchez M,Nombela C.Two-dimensional gel electrophoresis as analytical tool for identifying Candida albicans immunogenic proteins.Electrophoresis,1999,20:1001-1010.
    [94]Sanchez-Campillo M,Bini L,Comanducci R,Raggiaschi R,Marzocchi B,Pallini V,Ratti G.Identification of immunoreactive proteins of Chlamydia trachomatis by Western blot analysis of a two-dimensional electrophoresis map with patient sera[J].Electrophoresis,1999,20:2269-2279.
    [95]章喻军.铜绿假单胞菌外膜耐药和保护原功能蛋白组学的研究[D].厦门:厦门大学硕士学 位论文, 2007.
    [96] Hancock REW, Decad GM, Nikaido H. Identification of the protein producing transmembrane diffusion pores in the outer membraneof Pseudomonas aeruginosa PA01[J]. Biochim Biophys Acta, 1979,554:323-331.
    [97] O'Farrell, PH. High resolution two-dimensional electrophoresis of proteins[J]. J Biol Chem, 1975,250:4007-4021.
    [98] Gorg A, Boguth G, Obermaier C, Weiss W. Two-dimensional electrophoresis of proteins in an immobilized pH 4-12 gradient[J]. Electrophoresis, 1998,19:1516-1519.
    [99] Wildgruber R, Harder A, Obermaier C, Boguth G, Weiss W, Fey SJ, Larsen PM, Gorg A. Towards higher resolution: two dimensional electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients[J]. Electrophoresis, 2000,21: 2610-2616.
    [100]Pedersen SK, Harry JL, Sebastian L, Baker J, Traini MD, McCarthy JT, Manoharan A, Wilkins MR, Gooley AA, Righett PG, Packer NH, Williams KL, and Herbert BR. Unseen proteome:mining below the tip of the iceberg to find low abundance and membrane proteins[J]. J Proteome Res, 2003,2: 303-311.
    [101]Gorg A, Boguth G, Kopf A. Sample prefractionation with Sephadex isoelectric focusing prior to narrow pH range two-dimensional gels. Proteomics, 2002,2:1652-1657
    [102]Espina V, WoodhouseEC, Wulfkuhle J, Asmussen H, Petricoin E, Liotta L. Protein microarray detection strategies: focus on direct detection technologies[J]. J Immunol Methods, 2004, 290:121-133.
    [103]Wang H, Hanash SJ. Multi-dimensional liquid phase based separations in proteomics[J].Chromatogr B Analyt Technol Biomed Life Sci, 2003:787:11-18.
    [104]Jorgenson JW, Lukacs KD. Free-zone electrophoresis in glass capillaries[J]. Clin Chem, 1981: 27:1551-1553.
    
    [105]Aebersold R, Mann M. Mass spectrometry-based proteomics[J]. Nature, 2003,422:198-207.
    [106]Shevchenko A, Loboda A, Shevchenko A, Ens W, Standing KG MALDI quadrupole time-of-flight mass spectrometry: a powerful tool for proteomic research[J]. Anal Chem, 2000,72:2132-2141.
    [107]Huang L, Baldwin MA, Maltby DA, Medzihradszky KF, Baker PR, Allen N, Rexach M,Edmondson RD, Campbell J, Juhasz P, Martin SA, Vestal ML, Burlingame AL. The identification of protein-protein interactions of the nuclear pore complex of Saccharomyces cerevisiae using high throughput matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry[J].Mol Cell Proteomics,2002,1:434-450.
    [108]Lewin M,Guilhaus M,Wildgoose J,Hoyes J,Bateman B.Ion dispersion near parallel wire grids in orthogonal acceleration time-of-flight mass spectrometry:predicting the effect of the approach angle on resolution[J].Rapid Commun Mass Spectrom,2002,16:609-615.
    [109]Wilm M,Shevchenko A,Houthaeve T,Breit S,Schweigerer L,Fotsis T,Mann M.Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry[J].Nature,1996,379:466-469.
    [110]李蓉,梁恒.生物质谱-蛋白质组研究的关键技术[J].化学通,2002,11:748-752
    [111]黄凌云,赵和平,丁勤学,何大澄.生物质谱在蛋白质组学研究中的应用[J].现代仪器,2004,1:7-12.
    [112]应万涛,钱小红.生物质谱技术应用及进展[J].军事医学科学院院刊,2000,24;146-150.
    [113]王正华,王勇献.后基因组时代生物信息学的新进展[J].国防科技大学学报,2003,25:1-6.
    [114]Deiwick J,Hensel M.Regulation of virulence genes by environmental signals in Salmonella typhimurium[J].Electrophoresis,1999,20:813-817.
    [115]Dreger M.Subcellular proteomics[J].Mass Spectrom Rev,2003,22:27-56.
    [116]Mogok A,Tomoyasu T,Goloubinoff P,Rudiger S,Roder D,Langen H,Bukau B.Identification of thermolabile Escherichia coli proteins:prevention and reversion of aggregation by DnaK and CipB[J].EMBO J,1999,18:6934-6949.
    [117]Huang C,Lin X,Wu L,Zhang D,Liu D,Wang S,Peng X.Systematic identification of the subproteome of Escherichia coli cell envelope reveals the interaction network of membrane proteins and membrane-associated peripheral proteins[J].J Proteome Res,2006,5:3268-3276.
    [118]Fruton JS著,昌曾益译.蛋白质、酶和基因-化学与生物学的交互作用[M].北京:清华大学出版社,2005
    [119]Tanford C,Reynolds J.Nature's robot-a history of proteins[M].Oxford:Oxford University Press,2001.
    [120]查锡良.医学分子生物学[M].北京:人民卫生出版社.2003.
    [121]Fields S,Song O.A novel genetic system to detect protein-protein interactions[J].Nature,1989,340:245-246.
    [122]Vidal M, Brachmann R K., Fattaey A, Harlow E, Boeke JD. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions[J]. Proc Natl Acad Sci, 1996,93:10315-10320.
    [123]Vidal M, Legarin P. Yeast forward and reverese 'n'-hybrid systems[J]. Nucleic Acid Research,1999,27:919-929.
    [124]Durfee T, Becherer K, Chen PL, Yeh SH, Yang Y, Kilburn AE, Lee WH, Elledge SJ. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit[J]. Genes Dev, 1993,7: 555-569.
    [125]Chevary P M, Nathans D. Protein interaction cloning in yeast: identification of mammalian proteins that react with leucine zipper of jun[J]. Proc Natl Acad Sci USA, 1992, 89: 5789-5793.
    [126]Zhang XF, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, Bruder JT,Rapp UR, Avruch J. Normal and oncogenic p21ras binds to the amino-terminal regulatory domain of c-Raf-1[J]. Nature, 1993,364: 308-313.
    [127]Aelst L V, Barr M, Marcus S, Polverino A, Wigler W. Complex formation between RAS and RAF and other protein kinases[J]. Proc Natl Acad Sci USA, 1993, 90: 6213-6217.
    [128]Vojtek AB, Hollenberg SM, Copper JA. Mammalian RAS interacts directly with the Serin/Threonine kinase Raf[J]. Cell, 1993,74:205-214.
    [129]Stanger B Z, Leder P, Lee T H, Kim E, Seed B. RIP: a novel protein containing a death domain that interacts with with Fas/APO-1(CD95) in yeast and causes cell death[J]. Cell, 1995, 81:513-523.
    [130]Yang M, Wu Z, Fields S. Protein-peptide interactions analyzed with the yeast two-hybrid system[J]. Nucleic Acid Res, 1995,23:1152-1156.
    [131]James P, Hallady J, Craig EA. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast[J]. Genetics, 1996,144:1425-1436.
    [132] Mahlknecht U, Ottmann OG., Hoelzer D. Far-Western based protein-protein interaction screening of high-density protein filter arrays[J]. J Biotechnol, 2001,88: 89-94.
    [133] Muller U. Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis[J]. Mech Dev, 1999,82:3-21.
    [134]Zheng BH, Milisa A, Bradleya A. System for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements in mice[J]. Nucleic Acids Res, 1999,27:23542-23601.
    [135]Lloyd DJ,Hall FW,Tarantinol LM,Gekakis N.Diabetes insipidus in mice with a mutation in aquaporin-2 PloS[J].Genetics,2005,1:171-178.
    [136]Lin Q,Donahue SL,Moore-Jarrett T,Cao S,Osipovich AB,Ruley HE.Mutagenesis of diploid mammalian genes by gene entrapment[J].Nucleic Acids Res,2006,34:e1391.
    [137]Murphy KC.Use of bacteriophage λ.recombination functions to promote gene replacement in Escherichia coll[J].Bacteriol,1998,180:2063-2071.
    [138]Datsenko KA,Wanner BL.One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J].Proc Natl Acad Sci USA,2000,97:6640-6645.
    [139]Baba T,Ara T,Hasegawa M,Takai Y,Okumura Y,Baba M,Datsenko KA,Tomita M,Wanner BL,Moil H.Construction of Escherichia coil K-12 in-frame,single-gene knockout mutants:the Keio collection[J].Mol Syst Biol,2006,2:1-11.
    [140]Oshima T,Aiba H,Masuda Y,Kanaya S,Sugiura M,Wanner BL,Mori H,Mizuno T Transcriptome analysis of all two-component regulatory systems of Escherichia coli[J].Mol Microbiol,2002a,46:281-291.
    [141]Inon de Iannino N,Briones G,Tolmasky M,Ugalde RA.Molecular cloning and characterization of cgs,the Brucella abortus cyclic beta(1-2) glucan synthetase gene:complementation of Rhizobium meliloti ndvB and Agrobacterium tumefaciens chvB mutants[J].J bacteriol,1998,180:4392-4400.
    [142]Ganthier A,Puente JL,Finlay BB.Secretin of the enteropathogenic Escherichia coli type Ⅲsecretion system requires components of the type Ⅲ apparatus for assembly and localization[J].Infect Immun,2003,6:3310-3319.
    [143]Wu L,Lin X,Wang F,Ye D,Xiao X,Wang S,Peng X.OmpW and OmpV are required for NaCi regulation in Photobacterium damsela[J].J Proteome Res,2006,5:2250-2257.
    [144]Loughlin MF,Jones MV,Lambert PA.Pseudomonas aeruginosa cells adapted to benzalkonium chloride show resistance to other membrane-active agents but not to clinically relevant antibiotics[J].J Antimicrob Chemother,2002,49:631-639.
    [145]Sabri MY,Zamri-Saad M,Mutalib AR,Israf DA,Muniandy N.Efficacy of an outer membrane protein of Pasteurella haemolytica A2,A7 or A9-enriched vaccine against intratracheal challenge exposure in sheep[J].Vet Microbioi,2000,73:13-23.
    [146]夏其昌.蛋白质化学研究技术与进展[M].北京,科学出版社,1997.
    [146]Zhang GL,Wang GZ,Wang SY,Peng XX.Applying proteomic methodologies to analyze the effect of hexamethylene bisacetamide(HMBA) on proliferation and differentiation of human gastric carcinoma BGC-823 cells[J].Int J Biochem Cell Biol,2004,36;1613-1623.
    [148]萨姆步鲁克,弗里奇,曼尼阿蒂斯著.分子克隆实验指南[M].北京:科学出版社,1999.
    [149]Peng XX,Zhang JY,Wang SY,Lin ZL,Zhang WY.Immuno-capture PCR for detection of Aeromonas hydrophila[J].J Microbiol Methods,2002,49:335-338.
    [150]Peng XX,Wu YJ,Wang SY.Acute phase response(APR)-related proteome of loach skin to injury[J].Proteomies,2004:4:3989-3997.
    [151]Peng XX,Ye XT,Wang SY.Identification of novel immunogenic proteins of Shigella flexneri 2a by proteomic methodologies[J].Vaccine,2004,22:2750-2756.
    [152]王家平,王苏建,张洪亚,糜祖煌,张晓梅.65株大肠埃希菌耐消毒剂基因检测结果分析[J].中华微生物学和免疫学杂志.2005,25:522.
    [153]张本,张嫒,刘衡川,张朝武,涂国平.连续消毒中大肠杆菌O157:H7对消毒剂抗力变化与DNA关系的研究[J].中国消毒学杂志,2005,22:161-164.
    [154]Gehring K,Cheng C.H.,Nikaido H,Jap BK.Stoichiometry of maltodextrin-binding sites in LamB,an outer membrane protein from Escherichia coli[J].J Bacteriol,1991,173:1873-1878.
    [155]Xu CX,Lin XM.,Ren HX,Zhang YL,Wang SY,Peng XX.Analysis of outer membrane proteome of Escherichia coli related to resistance to ampicillin and tetracycline[J].Proteomics,2006,6:462-473.
    [156]Fried V A,Novick A.Organic solvents as probes for the structure and function of the bacterial membrane:effects of ethanol on the wild type and an ethanol-resistant mutant of Escherichia coli K-12[J].J Bacteriol,1973,114:239-248.
    [157]Kampf G,Kramer A.Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs[J].Clin Mierobiol Rev,2004,17:863-893.
    [158]Larson EL,Morton HE.Disinfection,sterilization and preservation[M].Philadephia(PA):Lea and Febiger,1991.
    [159]Isken S,de Bont JA.Bacteria tolerant to organic solvents[J].Extremophiles,1998,2:229-238.
    [160]Kaulfers,PM.Epidemiology and reasons for microbial resistance to biocides[J].Zentralbl Hyg Umweltmed,1995,197:252-259.
    [161]Hingst V,Klippei KM,Sommtag HG.Epidemiology of microbial resistance to bioxides[J]. Zentralbl Hyg Umweltmed, 1995,197:232-250.
    [162]May LL. Gabrial MM; Simmons RB, Wilson LA, Ahearn DG. Resisatnce of adhered bacteria to rigid gas permeable contact lens solutions[J]. CLAO J, 1995,21:242-246
    [163]Russell AD, Furr JR. Susceptibility of some porin- and lippopolysaccharide-deficient strains of Escherichia coli to some antiseptics and disinfectants[J]. J Hosp Infect, 1986,8:47-56.
    [164]Keweloh H, Weyrauch G, Rehm HJ. Phenol-induced membrane changes in free and immobilized Escherichia coli[J]. Appl Microbiol Biotechnol, 1990,33:66-71.
    [165]Kivistik PA, Putrins M, Puvi K, Heili I, Kivisaar M, Horak R. ColRS two-component system regulates membrane functions and protects Pseudomonas putida against phenol[J]. J Bacteriol,2006,188:8109-8117.
    [166]Chopra I, Hawkey P M, Hinton M. Tetracyclines, molecular and clinical aspects[J]. J Antimicrob Chemother, 1992,29:245-277.
    
    [1671Lakow S. Infectious multiple drug resistance[M]. London: Pion Limited, 1975.
    [168]Akiba T, Koyama K, Ishiki Y, Terawaki Y. On the mechanism of the development of multiple-drug-resistant clones of Shigella[J]. Jpn J Microbiol, 1960,4:219-227
    [169]Watanabe T. Infective heredity of multiple drug resistance in bacteria[J]. Bacteriol Rev, 1963, 27:87-115.
    [170]McDermott P F, Walker R D, White D G. Antimicrobials: models of action and mechanisms of resistance[J]. Int J Toxicol, 2003,22:135-143
    [171]Nikaido H. Outer membrane barrier as a mechanism of anti-microbial resistance[J]. Antimicrob Agents Chemother, 1989, 33:1831-1836.
    [172] Cowan SW, Schirmer T, Rummel G, Pauptit, Jansonius JN, Rosenbusch JP.Crystal structures explain functional properties of two E. coli porins[J]. Nature, 1992,358: 727-733.
    [173]Fralick JA. Evidence that TolC is required for functioning ofthe Mar/AcrAB efflux pump of Escherichia coli[J]. J Bacteriol, 1996,178: 5803-5805.
    
    [174]Cristobal R E, Vincent P A, Salomon R A. Multidrug resistance pump AcrAB-TolC is required for high-level, Tet(A)-mediated tetracycline resistance in Escherichia coli[J]. J Antimicrob Chemother, 2006, 58(1): 31-36.
    [175]Schatz A, Waksman SA. Effect of streptomycin and other antibiotic substances upon Mycobacterium tuberculosis and related organisms[J]. Proc Soc Exp Biol Med, 1944, 57: 244-248.
    [176]Vakulenko SB, Mobashery S. Versatility of aminogiycosides and prospects for their future[J].Clin Microbiol Rev, 2003,16: 430-450
    [177]Gerding DN, Buxton AE, Hughes RA, Paul PC, Joseph A, Walter ES. Nosocomial multiply resistant Klebsiella pneumoniae: epidemiology of an outbreak of apparent index case origin[J]. Antimicrob Agents Chemother, 1979,15:608-615.
    [178]Mikkelsen N, Brannvali M, Virtanen A, Kirsebom LA. Inhibition of P RNA cleavage by aminoglycosides[J]. Proc Natl Acad Sci USA, 1999,96:6155-6160.
    [179]Onaolapo JA. Cross-resistance between some aminoglycoside antibiotics[J]. Afr J Med Med Sci,1994,23:215-219.
    [180]Vollmer W, Rechenberg VM, Holtje JV. Demonstration of molecular interactions between the murein Poiymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of Escherichia coli[J]. J Biol Chem, 1999, 274:6726-6734.
    [181]Rolhion N, Barnich N, Claret L, Darfeuille-Michaud A. Strong decrease in invasive ability and outer membrane vesicle release in Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 with the yfgL gene deleted[J]. J Bacteriol, 2005, 187, 7:2286-2296.
    [182]Langsrud S, Sundheim G, Hoick AL. Cross-resistance to antibiotics of Escherichia coli adapted to benzalkonium chloride or exposed to stress-inducers[J]. J Appl Microbiol, 2004,96:201-208.
    [183]Provenzano D, Lauriano CM, Klose KE. Characterization of the role of the ToxR-modulated outer membrane porins OmpU and OmpT in Vibrio cholerae virulence[J]. J Bacteriol., 2001,183:3652-3662.
    [184]Wimley WC. The versatile β-barrel membrane protein[J]. Curr Opin Struct Biol, 2003, 13:404-411.
    [185]Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export[J]. Nature, 2000, 45:914-919.
    [186]Li H, Lin X, Wang S, Peng X. Identification and antibody-therapeutic targeting of chloramphenicol-resistant outer membrane proteins in Escherichia coli[J]. J proteome Res,Online.
    
    [187]Yon J, Fried M. Precise gene fusion by PCR[J]. Nucleic Acids Res, 1989,17:4895.
    [188]Pont-Kingdon G Creation of chimeric junctions, deletions, and insertions by PCR[J]. Meth Mol Biol, 1997,67:167-172.
    [189]Nikolai AS, Anton VB, Yevgeniya AN, Nusinovich FCC, Margaret S, Stephan L. Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously[J].Nucleic Acids Res, 2004,32:1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700