减毒鼠伤寒沙门氏菌为载体的人呼吸道合胞病毒DNA疫苗免疫保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:人呼吸道合胞病毒(Human Respiratory Syncytial Virus,RSV)广泛分布于世界各地,是导致婴幼儿严重下呼吸道感染的最重要的病毒病原。目前尚无特异性防治方法,世界卫生组织将发展RSV疫苗列为最优先发展的疫苗项目之一。RSV的11种蛋白中,融合蛋白(Fusion Protein,F)是中和抗原,免疫动物后,可以产生具有免疫保护作用的中和抗体,为新型疫苗候选抗原。本实验中我们用减毒鼠伤寒沙门菌(Salmonella typhimurium aroA strain SL7207,SL7207)为载体携带能够表达F蛋白的DNA疫苗,经黏膜途径,开展体内免疫效果和免疫保护作用研究,以期更好了解该候选疫苗免疫生物学特征。
     方法:本研究中我们将能够表达RSV F蛋白的真核表达载体pcDNA3.1/F转化到SL7207,构建重组的减毒鼠伤寒沙门菌疫苗SL7207/pcDNA3.1/F,同时用pcDNA3.1空载体做对照。分别于0、2、6周三次口服免疫小鼠,通过体液免疫(IgG)、黏膜免疫(sIgA)、细胞免疫(CTL、T淋巴细胞增殖实验)等指标分析免疫后小鼠RSV特异性免疫应答产生情况。最后,利用RSV病毒经鼻腔攻击小鼠,并分别于攻毒后3、5和7天处死小鼠进行肺组织病毒含量及肺组织病理学动态分析了解免疫保护作用的效果。
     结果:取已转化pcDNA3.1/F的SL7207并提取质粒,经限制性内切酶分析与预期一致。经口服免疫BALB/c小鼠,与对照组相比,实验组小鼠血清及肺泡灌洗液(bronchoalveolar lavage,BAL)中分别产生了有效的血清IgG及sIgA(p<0.01),血清中抗体亚类分析显示IgG1和IgG2a的比值为0.96。实验组CTL反应(p<0.01,效靶比值为100:1和50:1)和T淋巴细胞增殖实验(p<0.05)均明显增强。攻毒实验中,病毒攻击后3天和5天的小鼠肺部病毒载量,实验组比对照组明显降低(p<0.05),组织病理学分析结果也显示在炎性细胞浸润和肺泡壁厚度方面两组有显著性差异(p<0.01)。
     结论:获得的重组减毒鼠伤寒沙门菌疫苗SL7207/pcDNA3.1/F,能够刺激机体产生有效的体液免疫和细胞免疫及局部免疫,抗体亚类分析显示诱导产生了Th1和Th2平衡的免疫应答,没有产生疾病增强作用,对RSV感染具有一定的免疫保护作用。因此我们认为以减毒伤寒沙门菌为载体的口服DNA疫苗兼具黏膜免疫及DNA疫苗的双重优点,是RSV等通过黏膜途径感染的病毒疫苗研究的重要方向,为今后RSV疫苗免疫策略等研究奠定了坚实基础。
Objective: Human respiratory syncytial virus (RSV) is the most important viral etiologic agent of pediatric respiratory disease worldwide. No effective vaccine is currently available for prophylaxis. The World Health Organization has affirmed RSV vaccines as one of the highest priority vaccine development projects. Among the encoded 11 viral proteins by RSV genome, fusion protein (F) is one of the neutralization antigens, which can induce protective immunity against RSV infection, and a good candidate antigen for the genetic engineering vaccine such as DNA vaccine, subunit vaccine, etc. In this research, we use the Attenuated Salmonella aroA strains SL7207 (SL7202) as the carrier to deliver DNA vaccine expressing RSV F protein orally, in order to make clear the elicited protective immunity against RSV and its mechanism in vivo.
     Method: The pcDNA3.1/F expressing RSV F protein was transformed into the SL7207, and the resultant recombinant attenuated Salmonella strains was named as SL7207/pcDNA3.1/F. As a control, the empty pcDNA3.1 transformed SL7207 (SL7207/ pcDNA3.1) was prepared simultaneously. Then the mice were grouped and administered orally by the above two recombinant Salmonella strains on weeks 0, 2, and 6, respectively, the induced RSV-specific immune responses, including humoral, mucosal and cellular immune responses, were investigated in detail. In the end, the mice were challenged by RSV nasally, and then sacrificed on days 3, 5 and 7 postchallenge for lung RSV load and lung histopathology assays to confirm the protective immunity.
     Results: The plasmids extracted from SL7207/pcDNA3.1/F and SL7207/pcDNA3.1 were confirmed by restriction endonuclease assay. SL7207/pcDNA3.1/F administered mice showed significant elevations of serum anti-RSV IgG and bronchoalveolar lavage secretory (BAL) sIgA compared with the negative control group (p<0.01). The ratio of IgG1 and IgG2a was 0.96. The experimental group also showed a stronger cytotoxic T cell response (p<0.01 at effector:target ratios of 100:1 and 50:1) and a higher stimulation index value of T cell proliferation (p<0.05) than the respective control group. RSV titers in the lung homogenates of the experimental group on day 3 and day 5 postchallenge were lower than in the control group (p<0.05). Histopathological analysis showed obvious differences in infiltration of inflammatory cells and pulmonary alveolar wall thickness (p<0.01) between the two groups.
     Conclusion: SL7207/pcDNA3.1/F have been constructed successfully. This candidate vaccine could induce humoral, mucosal and cellular immune response which exhibit protective immunity against the RSV challenge. Moreover, no disease enhancement was observed. The IgG subclasses analysis showes balanced Th1 and Th2 immune response has been induced. Therefore, we think this vaccine strategy delivering DNA vaccine by Attenuated Salmonella Typhimurium has the combined merit of mucosal immunity and DNA vaccine, and is of great importance for vaccine against mucosally transmissible viruses such as RSV, rotavirus, etc.
引文
1. Collins, P.L., and Crowe, J.E., Jr. (2007). Respiratory syncytialvirus and metapneumovirus. In Fields Virology, 5th edit. D.M. Knipe, P.M. Howley, D.E. Griffin, R.A. Lamb, M.A. Martin, B. Roizman, and S.E. Straus, eds. (Lippincott Williams & Wilkins, Philadelphia) pp. 1601–1646.
    2. Johnson, P.R., Jr., et al., Antigenic relatedness between glycoproteins of human respiratory syncytial virus subgroups A and B: evaluation of the contributions of F and G glycoproteins to immunity. J Virol, 1987. 61(10): p. 3163-6.
    3. Johnson, P.R., et al., The G glycoprotein of human respiratory syncytial viruses of subgroups A and B: extensive sequence divergence between antigenically related proteins. Proc Natl Acad Sci U S A, 1987. 84(16): p. 5625-9.
    4. Mufson, M.A., et al., Two distinct subtypes of human respiratory syncytial virus. J Gen Virol, 1985. 66 ( Pt 10): p. 2111-24.
    5. Brandenburg AH, Neijens HJ, Osterhaus ADME. Pathogenesis of RSV lower respiratory tract infection: implications for vaccine development. Vaccine, 2001. 19, 2769-2782
    6. COLLINS PL and CROWE JE, Jr. Respiratory syncytial virus and metapneumovirus. InFields Virology, 5th edit. Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, and Straus SE, eds. (Lippincott Williams & Wilkins, Philadelphia) 2007. pp. 1601–1646
    7. Karron RA. Respiratory Syncytial Virus Vaccine. In Vaccines, 4th edit. Plotkin SA,Orenstein WA, eds. (Saunders, Philadelphia) 2004. pp. 1317-1326.
    8.陈惠中.流行性喘憋性肺炎的研究进展.临床儿科杂志, 2005. 23(9): 602-676
    9.邓洁,钱渊,朱汝南等. 2000年冬~2006年春北京地区急性呼吸道感染患儿中呼吸道合胞病毒的监测.中华儿科杂志, 2006. 44(12): 924-927
    10. Collins PL, Chanock RM, Murphy BR. Respiratory Syncytial Virus. In Knipe DM, Howley PM Eds. Fidelds Virology(4th ed), 2001; 1443~85. Lippincott Williams , Wilkins, Philadelphia
    11. KARRON, R.A. (2004). Respiratory syncytial virus vaccine. In Plotkin, S.A., and Orenstein, W.A., eds. Vaccines, 4 ed. (W.B. Saunders, Philadelphia, PA) pp. 1317–1326.
    12. Hu, H., et al., Induction of specific immune responses by severe acute respiratory syndrome coronavirus spike DNA vaccine with or without interleukin-2 immunization using different vaccination routes in mice. Clin Vaccine Immunol, 2007. 14(7): p. 894-901.
    13. Konjufca, V., et al., A recombinant attenuated Salmonella enterica serovar Typhimurium vaccine encoding Eimeria acervulina antigen offers protection against E. acervulina challenge. Infect Immun, 2006. 74(12): p. 6785-96.
    14. Stokes, M.G., et al., Oral administration of a Salmonella enterica-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis. Infect Immun, 2007. 75(4): p. 1827-34.
    15. Medina, E. and C.A. Guzman, Use of live bacterial vaccine vectors for antigen delivery: potential and limitations. Vaccine, 2001. 19(13-14): p. 1573-80.
    16. Staats, H.F., et al., Mucosal immunity to infection with implications for vaccine development. Curr Opin Immunol, 1994. 6(4): p. 572-83.
    17. Handley SA,Miller VL.General and specific host responses to bacterial infection in Peyer's patches: a role for stromelysin-1 (matrix metalloproteinase-3) during Salmonella enterica infection. Mol Microbiol, 2007, 64(1): 94-110.
    18. Capozzo AV, Cuberos L, Levine MM, et al. Mucosally delivered Salmonella live vector vaccines elicit potent immune responses against a foreign antigen in neonatal mice born to naive and immune mothers. Infect Immun, 2004. 72(8): 4637-4646;
    19. Pasetti MF, Barry EM, Losonsky G, et al. Attenuated Salmonella enterica Serovar Typhi and Shigella flexneri 2a Strains Mucosally Deliver DNA Vaccines Encoding Measles Virus Hemagglutinin, Inducing Specific Immune Responses and Protection in Cotton Rats. J Virol, 2003. 77(9): 5209–5217;
    20. Darji A, zur Lage S, Garbe AI, et al. Oral delivery of DNA vaccines using attenuated Salmonella typhimurium as carrier. FEMS Immunol Med Microbiol, 2000. 27(4): 341-349
    21. Fernie, B.F., E.C. Ford, and J.L. Gerin, The development of Balb/c cells persistently infected with respiratory syncytial virus: presence of ribonucleoprotein on the cell surface. Proc Soc Exp Biol Med, 1981. 167(1): p. 83-6.
    22. Hall, C.B., Respiratory syncytial virus and parainfluenza virus. N Engl J Med, 2001. 344(25): p. 1917-28.
    23. Brandenburg AH, Neijens HJ, Osterhaus ADME. Pathogenesis of RSV lower respiratory tract infection: implications for vaccine development. Vaccine, 2001. 19, 2769-2782
    24. Waris ME, Tsou C, Erdman DD, et al. Respiratory syncytial virus infection in BALB/c mice previously immunized with formalin-inactivated virus induces enhanced pulmonary inflammatory response with a predominant Th2-like cytokine pattern. J Virol, 1996. 70(5):2852-2860
    25. Daudel, D., G. Weidinger, and S. Spreng, Use of attenuated bacteria as delivery vectors for DNA vaccines. Expert Rev Vaccines, 2007. 6(1): p. 97-110.
    26 Darji A, zur Lage S, Garbe AI, et al. Oral delivery of DNA vaccines using attenuated Salmonella typhimurium as carrier. FEMS Immunol Med Microbiol, 2000, 27(4): 341-349.
    27. Mcintosh K, Masters HB, Orr I, Chao RK, Barkin RM. The immunologic response to infections with respiratory syncytial virus in infants. J Infect Dis 1978; 138:24-32
    28. Kumar, M., et al., Intranasal gene transfer by chitosan-DNA nanospheres protects BALB/c mice against acute respiratory syncytial virus infection. Hum Gene Ther, 2002. 13(12): p. 1415-25.
    29. Golding B, Zaitseva M, Golding H. The potential for recruiting immune responses toward type 1 or type 2 T cell help. Am J Trop Med Hyg, 1994,50(4 Suppl):33-40
    30. Khajuria A, Gupta A, Malik F, Singh S, Singh J, Gupta BD, Suri KA, Suden P, Srinivas VK, Ella K, Qazi GN. A new vaccine adjuvant (BOS 2000) a potent enhancer mixed Th1/Th2 immune responses in mice immunized with HBsAg. Vaccine, 2007,25(23):4586-4594
    31. Kim YK, Na KS, Shin KH, Jung HY, Choi SH, Kim JB. Cytokine imbalance in the pathophysiology of major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry, 2007, 31(5):1044-1053
    32. Siddiqui AA, Pinkston JR, Quinlin ML, Saeed Q, White GL, Shearer MH, Kennedy RC. Characterization of the immune response to DNA vaccination strategies for schistosomiasis candidate antigen, Sm-p80 in the baboon. Vaccine, 2005, 23(12):1451-1456
    33. Mussalem JS, Vasconcelos JR, Squaiella CC, Ananias RZ, Braga EG, Rodrigues MM, Longo-Maugeri IM. Adjuvant effect of the propionibacterium acnes and its purified soluble polysaccharide on the immunization with plasmidial DNA containing a Trypanosoma cruzi gene. Microbiol Immunol, 2006, 50(4):253-263
    34. Openshaw, P.J., F.J. Culley, and W. Olszewska, Immunopathogenesis of vaccine-enhanced RSV disease. Vaccine, 2001. 20 Suppl 1: p. S27-31.
    35. Graham, B.S., et al., Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice. J Clin Invest, 1991. 88(3): p. 1026-33.
    36. Siegrist CA. The Challenges of Vaccine Responses in Early Life: Selected Examples. J Comp Path, 2007. 137(supple 1): S4-S9
    37. Capozzo AV, Cuberos L, Levine MM, et al. Mucosally delivered Salmonella live vector vaccines elicit potent immune responses against a foreign antigen in neonatal mice born to naive and immune mothers. Infect Immun, 2004. 72(8): 4637-4646
    38. Pasetti MF, Barry EM, Losonsky G, et al. Attenuated Salmonella enterica Serovar Typhi and Shigella flexneri 2a Strains Mucosally Deliver DNA Vaccines EncodingMeasles Virus Hemagglutinin, Inducing Specific Immune Responses and Protection in Cotton Rats. J Virol, 2003. 77(9): 5209–5217
    39. Wada KN, Aota SI, Tsuchiya R, et al. Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res, 1990. 18(supple): 2367-2403
    40. Ternette N, Stefanou D, Kuate S, et al. Expression of RNA virus proteins by RNA polymerase II dependent expression plasmids is hindered at multiple steps. Virol J, 2007. 4:51
    41. Garmory HS, Brown KA and Titball RW. DNA vaccine: improving expression of antigens. Genet Vaccines Ther, 2003. 1:2
    42. Ternette N, Trippler B,überla K, et al. Immunogencicity and efficacy of codon optimized DNA vaccines encoding the F-protein of respiratory syncytial virus. Vaccine, 2007. 25(41):7271-7279
    43. Haas J, Park EC and Seed B. Codon usage limitation in the expressiong of HIV-1 envelop glycoprotein. Curr Biol, 1996. 6(3): 315-324
    44. Sullivan NJ, Sanchez A, Rollin PE, et al. Development of a preventive vaccine for Ebola virus infection in primates. Nature, 2000. 408: 605-609
    45. Shiver JW, Fu TM, Chen L, et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature, 2002. 415: 331– 335
    46. Webster DE, Cooney ML, Huang Z, et al. Successful boosting of a DNA measles immunization with an oral plant-derived measles virus vaccine. J Virol, 2002. 76(15):7910–7912
    47.范江涛,赵莉,陈心秋等.人乳头瘤病毒16型不同基因疫苗联合免疫的实验研究.中华微生物学和免疫学杂志. 2006. 26(6): 510-515
    48. Devico AL, Fouts TR, Shata MT, et al. Development of an oral prime-boost strategy to elicit broadly neutralizing antibodies against HIV-1. Vaccine, 2002.
    20(15): 1968-1974
    49. Woodland DL. Jump-starting the immune system: prime-boost comes of age.Trend Immunol, 2004. 25(2): 98-104
    50. Ryan EJ, Daly LM and Mills KH, et al. Immunomodulators and delivery systems for vaccination by mucosal routes. Trends Biotechnol, 2001. 19(8): 293-304
    1. Daudel D, Weidinger G, Spreng S, et al. Use of attenuated bacteria as delivery vectors for DNA vaccines. Expert Rev Vaccines, 2007, 6(1): 97-110.
    2. Nagy G, Danino V, Dobrindt U, et al. Down-regulation of key virulence factors makes the Salmonella enterica serovar Typhimurium rfaH mutant a promising live-attenuated vaccine candidate. Infect Immun, 2006, 74(10): 5914-5925.
    3. Terry TD, Downes JE, Dowideit SJ, et al. Investigation of ansB and sspA derived promoters for multi- and single-copy antigen expression in attenuatedSalmonella enterica var. typhimurium. Vaccine, 2005, 23(36): 4521-4531.
    4. Chen XY, John MD, Jiang LL ,et al. Stability of recombinant plasmids in attenuated Salmonella typhimurium and their effects on bacterial invasiveness and multiplication. Wei Sheng Wu Xue Bao, 2005, 45(5): 744-747.
    5. Handley SA,Miller VL.General and specific host responses to bacterial infection in Peyer's patches: a role for stromelysin-1 (matrix metalloproteinase-3) during Salmonella enterica infection. Mol Microbiol, 2007, 64(1): 94-110.
    6. Darji A, zur Lage S, Garbe AI, et al. Oral delivery of DNA vaccines using attenuated Salmonella typhimurium as carrier. FEMS Immunol Med Microbiol, 2000, 27(4): 341-349.
    7. Nishikawa, H,Sato, E,Briones, G,et al.In vivo antigen delivery by a Salmonella typhimurium type III secretion system for therapeutic cancer vaccines. J Clin Invest, 2006, 116(7): 1946-1954.
    8. Chen LM, Briones G, Donis RO,et al.Optimization of the delivery of heterologous proteins by the Salmonella enterica serovar Typhimurium type III secretion system for vaccine development. Infect Immun, 2006, 74(10): 5826-5833.
    9. Kiyono H,Fukuyama S. NALT- versus Peyer's-patch-mediated mucosal immunity. Nat Rev Immunol, 2004, 4(9): 699-710.
    10. Ryan EJ, Daly LM, Mills KH. Immunomodulators and delivery systems for vaccination by mucosal routes. Trends Biotechnol, 2001, 19(8): 293-304.
    11. Rudin A, Johansson EL, Bergquist C,et al.Differential kinetics and distribution of antibodies in serum and nasal and vaginal secretions after nasal and oral vaccination of humans. Infect Immun, 1998, 66(7): 3390-3396.
    12. Liu WT, Hsu HL, Liang CC,et al. A comparison of immunogenicity and protective immunity against experimental plague by intranasal and/or combined with oral immunization of mice with attenuated Salmonella serovarTyphimurium expressing secreted Yersinia pestis F1 and V antigen. FEMS Immunol Med Microbiol, 2007, 51(1): 58-69.
    13. Xu C, Li ZS, Du YQ,et al. Construction of recombinant attenuated Salmonella typhimurium DNA vaccine expressing H pylori ureB and IL-2. World J Gastroenterol, 2007, 13(6): 939-944.
    14. Stokes MG,Titball RW,Neeson BN,et al. Oral administration of a Salmonella enterica-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis. Infect Immun, 2007, 75(4): 1827-1834.
    15. Feng KK, Zhao HY, Qiu H,et al. Specific anti-glioma angiogenesis immune response induced by attenuated Salmonella typhimurium vaccine expressing vascular endothelial growth factor receptor-2. Ai Zheng, 2005, 24(5): 548-553.
    16. Meng FP, Ding J, Yu ZC, et al. Oral attenuated Salmonella typhimurium vaccine against MG7-Ag mimotope of gastric cancer. World J Gastroenterol, 2005, 11(12): 1833-1836.
    17. Chen ZH, Zhao P, Wu SM, et al.Comparison of immune responses induced by recombinant attenuated Salmonella typhi carrying eukaryotic expression plasmid or prokaryotic expression plasmid of HCV core protein. Sheng Wu Gong Cheng Xue Bao, 2007, 23(5): 862-866.
    18. Xie C, He JS, Zhang M ,et al.Oral respiratory syncytial virus (RSV) DNA vaccine expressing RSV F protein delivered by attenuated Salmonella typhimurium. Hum Gene Ther, 2007, 18(8): 746-752.
    19. Hu H, Lu X, Tao L,et al.Induction of specific immune responses by severe acute respiratory syndrome coronavirus spike DNA vaccine with or without interleukin-2 immunization using different vaccination routes in mice. Clin Vaccine Immunol, 2007, 14(7): 894-901.
    20. Cong H, Gu QM, Zhou HY,et al.Oral mixed DNA vaccine protects mice from infection of Toxoplasma gondii. Zhongguo Ji Sheng Chong Xue Yu Ji ShengChong Bing Za Zhi, 2005, 23(3): 159-162.
    21. Konjufca V, Wanda SY, Jenkins MC,et al. A recombinant attenuated Salmonella enterica serovar Typhimurium vaccine encoding Eimeria acervulina antigen offers protection against E. acervulina challenge. Infect Immun, 2006, 74(12): 6785-6796.
    22. Chen AY,Fry SR,Forbes-Faulkner J, et al.Comparative immunogenicity of M. hyopneumoniae NrdF encoded in different expression systems delivered orally via attenuated S. typhimurium aroA in mice. Vet Microbiol, 2006, 114(3-4): 252-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700