表皮细胞去分化形成表皮干细胞的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:从建立表皮细胞去分化模型入手,比较去分化来源的表皮干细胞和机体自身来源的表皮干细胞在功能和生物学特性等方面的异同点,为实现无延迟、无瘢痕完美修复及皮肤组织的再生提供新的实验参考。
     方法:采用免疫组织化学的方法探寻胎儿皮肤中的表皮干细胞(epidermal stemcells,ESCs),研究不同发育时期ESCs在胎儿皮肤中分布与迁移。采用改良的Ⅳ型胶原铺板选择黏附法分离培养人ESCs,观察其形态及增值分化的特点,并进行细胞免疫组织化学鉴定。同时,提取小鼠胚胎发育中期组织液,模拟表皮干细胞壁龛微环境,采用免疫组织化学、免疫荧光染色、流式细胞检测及RT-PCR技术研究表皮干细胞在此环境中的表型变化,探讨表皮干细胞周围生长微环境在表皮干细胞“命运”决定过程中的作用。此外,本研究在前期的工作基础上,建立表皮细胞去分化研究的体内、体外实验模型,采用免疫组织化学、MTT法、免疫荧光染色、流式细胞技术、扫描及透射电镜检测技术、RT-PCR、Western-blot及TRAP法再次验证表皮细胞通过去分化途径形成机体内源性去分化来源的表皮干细胞,参与皮肤组织的创伤修复与再生。同时,从细胞表型、超微结构及生物学功能等方面比较去分化来源的表皮干细胞和机体自身来源的表皮干细胞二者之间的异同点。
     结果:表皮干细胞在从基底层经棘层和颗粒层到角质层的分化迁移过程中,经历了有序的成熟模式,这一过程与角蛋白的程序性表达密切相关;毛囊的发生、发育不仅与ESCs的增殖分化有关,同时受到毛乳头的诱导作用。改良的Ⅳ型胶原选择黏附法能够高效的分离表皮中的干细胞。这些细胞具有干细胞的形态特点表达α_6整合素,β_1整合素,CK19,CK14,p63,Nestin及PCNA为阳性,而CK10染色为阴性;激光共聚焦检测显示α_6整合素和CD71在表皮干细胞中的分布存在着区域性差异,可以作为区分标志之一,为ESCs及其亚群的分离与鉴定提供实验参考。此外,流式细胞检测显示胚胎组织提取液作用后α_6~+CD71~-表达细胞由细胞总数的22.49%减少至10.92%,而α_6~+CD71~+、α_6~-CD71~+表达细胞则分别由诱导前的62.29%及0.19%增加至诱导后的68.34%及4.51%。RT-PCR结果表明胚胎组织提取液作用后,表皮干细胞中β_1整合素、CKl9、CK10表达增强,而CK14表达减弱。本文在前期工作的基础上,建立了表皮细胞去分化研究的体内、体外实验模型,免疫组织化学染色结果显示去基底层的超薄皮片CK19和β_1整合素染色为阴性;而移植第3、5、7d后,存活皮片内CK19和β_1整合素染色阳性的细胞重新出现,并且呈多层分布;流式细胞仪检测结果表明移植前后α_6~+CD71~-和α_6~+CD71~+细胞比例有明显差异。人细胞系HEKa体外培养6~7代时,开始出现老化迹象。细胞免疫组织化学检测结果显示此时细胞表达CK10为强阳性,而β_1整合素、CK19表达为阴性,CK14则呈现弱阳性染色。在浓度为100ng/ml的bFGF诱导培养36~48h后,老化的HEKa细胞之间开始出现新生的表皮干细胞样克隆。这些细胞体积较小,为圆梭形,形态均一、折光性强、胞质近中央处有圆形核,核浆比大,因此称之为去分化来源的表皮干细胞(dHEK细胞)。dHEK细胞不但具有克隆形成能力,而且具有强大的分裂增殖能力。随着培养的延长,dHEK细胞克隆的面积逐渐增大,相互连接成片,并且和周围的HEKa细胞之间相互嵌合形成表皮嵴样结构。免疫组织化学检测发现bFGF诱导培养后,实验组细胞中β_1整合素、CK19和CK14的表达增强;CK10作为终末分化细胞的标志,在bFGF诱导组中的表达明显降低。流式细胞检测分析显示bFGF作用后,实验组CK14表达阳性的细胞与对照组相比明显增多(分别为87.14%和67.26%)。CK19表达阳性的细胞也由原来的15.74%增加至被检测细胞总数的74.77%。而bFGF诱导作用后,被检测细胞中表达CK10阳性的细胞数量较对照组明显下降(分别为4.56%和98.56%)。此外,RT-PCR和Western-blot检测结果同样再次支持了表皮细胞去分化的现象。在bFGF作用后,表皮细胞重新程序化,并获得其前体干细胞的某些潜在能力,表达表皮干细胞的一些未分化蛋白。另外,表皮干细胞和去分化来源的dHEK细胞之间有两个显著的相同点:(1)二者都表达表皮干细胞的表面标志,如β_1整合素、α_6整合素和CK19等;(2)二者都存在着α_6整合素和CD71表达的区域性分布差异。此外,表皮干细胞和dHEK细胞之间的差异点有:(1)CD71-PE和α6 integrin-FITC直标双色荧光流式检测分析显示表皮干细胞和去分化来源的dHEK细胞之间存在着细胞亚群的分布差异;(2)hTERT在表皮干细胞和去分化而来的干细胞中存在着亚细胞定位差异。
     结论:ESCs并非真正静止的未分化细胞,而是一种已经进入分化状态但是仍具有多向分化潜能的干细胞,其增殖分化行为不但受到自身程序化基因表达的影响,同时又受到其所处的微环境的调控。bFGF能够诱导表皮细胞在体外发生去分化,去分化而来的表皮干细胞与ESCs相比具有更加强大的分裂增殖能力,可以作为种子细胞应用于皮肤创伤修复与再生的相关研究之中。
Objectives:To investigate the effect of bFGF on cell-fate determination of human epidermal cells and its signaling related mechanism in vitro,meanwhile make a comparison of the difference between epithelial stem cells and those derived from dedifferentiation,and try to search for a possibility for the dedifferentiated stem cells to be used in the wound repair and regeneration of skin tissues.
     Methods:The expression of cytokeratin10(CK10),an established marker of the differentiated epidermal cells,integrinβ_1,cytokeratin19(CK19),cytokeratin14(CK14), and PCNA,which were expressed by epidermal stem cells and their subpopulations has been analysed in fetal skins during various stages of the development using immunohistochemical methods.Meanwhile,improved collagenⅣ-coated adhesion method was used to isolate and culture the epidermal stem cells(ESCs)after neutron-protease selectively digested the dermo-epidermal junctions.Morphological features and identification of these immature cells were studied by immunochemistry and confocal microscopy analysis.After treated with extracts from 14-day-old mouse fetuses at the concentration of 10%(w/v),phenotypic changes and the cell-fate determination of ESCs were detected by flow FACS analysis and RT-PCR assays. Furthermore,human foreskin epidermal sheets were prepared as previously described, following a removal of basal stem cells using repeated collagenⅣadhesion methods. Then,the treated ultrathin epidermal sheet was transplanted into the fresh full-thickness skin wounds measuring about 1 cm in diameter on the back of athymic BALB/c nude mice.Grafted biopsies were removed at day 3,5 and 7 post-grafting for histological and immunohistochemical staining,and flow FACS analysis.Additionally,HEKa cell line was incubated with bFGF(100ng/ml)for 36 to 48hr,then MTT assay, immunochemistry and confocal microscopy analysis,flow FACS,electron microscopy, semiquantitative RT-PCR,western-blot and telomerase activity assays(TRAP)were used to detected the the phenotypic changes and cell-fate determination of epidermal cells after bFGF treatment,simultaneously,making a comparison of the difference between epithelial stem cells and those derived from dedifferentiation.HEK cells with no intervention treatment were used as a control.
     Results:Both integrinsβ_1 and K19 were coexpressed in the undifferentiated epidermis.A specific,developmentally downregulation ofβ_1 expression was observed in the basal layer at the period of follicular keratinization.Coinciding with the differentiation of the epidermis,differential expression of K14 was observed in the basal and spinous layers,while K10 was confined to the differentiated spinous and granular layers.At the period of interfollicular keratinization,the epidermal progenitor cells mainly localized in the basal layer of epidermis and outer sheath,bulge and hair matrix of follicles,which were positive for integrinβ_1,CK19,CK14 and PCNA.Secondly, immunocytochemical analysis proved that ESCs and their subunits were positive for a6 andβ_1 integrin,CK19 and 14,p63,Nestin and PCNA,yet negative for CK10 expression. Double staining immunofluorescence demonstrated that markers such asα_6 integrin and CD71 was co-expressed in ESCs,and there will be important regional differences in the distribution ofα_6 integrin and CD71 in ESCs and transit amplifying cells(TA cells). Meanwhile,two-color flow cytometric analysis ofα_6 integrin and CD71 consistently revealed that after treated with an extract from mouse fetuses,the percent ofα_6~+ CD71~+ and CD71~+ fraction increased and reached to 68.43%and 4.51%of the total isolated cells respectively.However,the percent of a_6~+ CD71 fraction reduced from 22.49%to 10.92%determined by flow-cytometry.Moreover,the expression levels ofβ_1 integrin and some putative biological markers in human epidermal cells were analyses by RT-PCR detection after fetus extract treatment.The relative gene expressions ofβ_1 integrin,CK19 and CK10 increased in ESCs,whereas the expression of CK14 in keratinocytes stem cells was observed to be significantly suppressed when compared to the appropriate controls.After the establishment of the dedifferentiation model of human epidermal cells in vivo,morphological analysis using immunohistochemical and immunofluorescent staining indicated that the expression of CK14 and 19,p63,and PCNA was localized in spinous and granular layers at the early grafted stage,while CK10 antigen was detectable in middle and outer layers.With the elongation of grafted period,a developmentally specific up-regulation ofβ_1 integrin and CK19 was detected in the spinous and granular layers,when CK14,p63,and PCNA appeared extensively in the inner and middle layers of grafted biopsies with down-regulation of CK10 in the middle and outer layers.It was intrigue that some stem cell formed islands could be also seen in the spinous and granular layers between the basal layer and the stratum corneum, which were strongly positive forβ_1 integrin and cytokeratin 19.MTT-assay proved that the optimum cultural condition to induce the dedifferentiation of epidermal cells into their progenitors was to culture HEKa cells for 36 to 48 hr with the addition of bFGF at a dosage of 100ng/ml.After treatment with bFGF for 48hr,clusters of round-shaped cells became detectable around differentiated epidermal cells,and expanded progressively thereafter.These cells were smaller in shape and mononucleated cells with large nuclear-cytoplasmic ratio,which led to not only clonogenicity but also ability to reconstitute an epidermal ridge like structure.Immunohistochemical staining revealed that the expression levels ofβ_1 integrin,CK19 and CK14 were up-regulated,while the expression of CK10 was significant down-regulated after bFGF treatment.For flow FACS analysis,essentially all cells were strong CK14-staining compared with controls (87.14 and 67.26%,respectively).Significantly,the fluorescence intensity of the CK19 population was upregulated from 15.74%to 74.77%,and which of the CK10 population decreased from 98.56%to 4.56%after bFGF treatment.Additionally,the expression levels ofβ_1 integrin and some putative biological markers in human epidermal stem cells were analyses by RT-PCR detection after bFGF treatment.The relative gene expressions ofβ_1 integrin,CK19 and CK14 increased in bFGF treatment group, whereas the expression of CK10 was observed to be significantly suppressed when compared to controls.Western-blot and TRAP also proved the dedifferentiated phenomenon of epidermal cells in our experimental system.When epithelial stem cells are compared with dedifferentiated stem cells treated with bFGF(dHEK cells),two points seem noteworthy.First,in both cases the cells remain multipotent and express markers of keratinocyte stem cells.Second,in both cases there seems to exist the regional differences by detection ofα_6 integrin and CD71 double labeling.However, although there seemed no significant changes were observed regarding the ultra and three-dimensional structure of ESCs and dedifferentiated derived stem cells following analysis with electron microscopy,double-immunofluorescent staining showed that the percents of TA cell subpopulation in dedifferentiated epidermal stem cells treated with bFGF is much higher than that in ESCs.Importantly,there exists a differentance of subcellular localization and hTERT activity between ESCs and dedifferentiated derived stem cells.
     Conclusion:bFGF can reverse the differentiated process of epidermal cells and induce them to produce immature,stem-like cells,which can proliferate and be used in the wound repair and regeneration of skin tissues,however,the mechanism involved in bFGF signaling on the induction of epidermal cells' dedifferentiation is unclear,which needs further research.
引文
1.Watt FM,Lo Celso C,Silva-Vargas V.Epidermal stem cells:an update.Curr Opin Genet Dev,2006,6(5):518-524.
    2.Janes SM,Lowell S,Hutter C.Epidermal stem cells.J Pathol,2002,197(4):479-491.
    3.Kurata S,Okuyama T,Osada M,et al.p51/p63 controls subunit α3 of the major epidermis integrin anchoring the stem cells to the niche.J Biol Chem,2004,279(48):50069-50077.
    4.李海红,付小兵,周岗,等.细胞角蛋白在皮肤中的表达.中华实验外科杂志,2005,22(7):834.
    5.Wang Y,Zhang Y,Zeng Y,et al.Patterns of nestin expression in human skin.Cell Biol Int,2006,30(2):144-148.
    6.Mavilio F,Pellegrini G,Ferrari S,et al.Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells.Nat Med,2006,12(12):1397-1402.
    7.陈伟,付小兵,孙同柱,等.增殖细胞核抗原和P53在胎儿和成人皮肤中的表达特征及其意义.中国危重病急救医学,2002,14(11):654-657.
    8.Kozaki M,Nakamura Y,Iguchi M,et al.Immunohistochemical analysis of cytokeratin expression in dog skin.J Vet Med Sci,2001,63(1):1-4.
    9.赵志力,付小兵,孙同柱,等.人胎儿不同发育时期皮β_1整合素、角蛋白19,10表达特征及其与创面无瘢痕愈合关系的研究.中华创伤杂志,2002,18(7):404-406.
    10.Coraux C,Zahm JM,Puchelle E,et al.Beta(1)-integrins are involved in migration of human fetal tracheal epithelial cells and tubular morphogenesis.Am J Physiol Lung Cell Mol Physiol,2000,279(2):224-234.
    11.Jensen KB,Watt FM.Single-cell expression profiling of human epidermal stem and transit-amplifying cells:Lrigl is a regulator of stem cell quiescence.Proc Natl Acad Sci,2006,103(32):11958-11963.
    12.Brittan M,Braun KM,Reynolds LE,et al.Bone marrow cells engraft within the epidermis and proliferate in vivo with no evidence of cell fusion.J Pathol,2005,205(1):1-13.
    13.Moore KA,Lemischka IR.Stem cells and their niches.Science,2006,311(5769):1880-1884.
    1.Jones PH,Watt FM.Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression.Cell,1993,73(4):713-724.
    2.Watt FM.Epidermal stem cells:markers,patterning and the control of stem cell fate.Philos Trans R Soc Lond B Biol Sci,1998,353(1370):831-837.
    3.Michel M,Torok N,Godbout MJ,et al.Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro:keratin 19 expressing cells are differentially localized in function of anatomic sites,and their number varies with donor age and culture stage.J Cell Sci,1996,109(5):1017-1028.
    4.李海红,付小兵,周岗,等.细胞角蛋白在皮肤中的表达.中华实验外科杂志,2005,22(7):834.
    5.Kurata S,Okuyama T,Osada M,et al.p51/p63 Controls Subunit α3 of the Major Epidermis Integrin Anchoring the Stem Cells to the Niche.J Biol Chem,2004,279(48):50069-50077.
    6.Wang Y,Zhang Y,Zeng Y,et al.Patterns of nestin expression in human skin.Cell Biol Int,2006,30(2):144-148.
    7.谢晓繁,贾赤宇,付小兵,等.成体表皮干细胞的分离培养与鉴定.中国危重病急救医学,2006,18(1):46-48.
    8.Schmidt-Ullrich R,Paus R.Molecular principles of hair follicle induction and morphogenesis.Bioessays,2005,27(3):247-261.
    9.Alonso L,Fuchs E.The hair cycle.J Cell Sci,2006,119(Pt 3):391-393.
    10.Javier AF,Bata-Csorgo Z,Ellis CN,et al.Rapamycin(Sirolimus)inhibits proliferating cell nuclear antigen expression and blocks cell cycle in the G1 phase in human keratinocyte stem cells.J Clin.Invest,1997,99(9):2094-2099.
    11.Germain L,Rouabhia M,Guignard R,et al.Improvement of human keratinocyte isolation and culture using thermolysin.Burns,1993,19(2):99-104.
    12.Papini S,Cecchetti D,Campani D,et al.Isolation and clonal analysis of human epidermal keratinocyte stem cells in long-term culture.Stem Cells,2003,21(4):481-494.
    13.周岗,付小兵,陈伟,等.胎儿皮肤附件形成与成纤维细胞生长因子-10和Bek 基因表达的关系.中华实验外科杂志,2005,22(2):241-242.
    14.Fu XB,Sun XQ,Li XK and Sheng ZY.Dedifferentiation of epidermal cells to stem cells in vivo.Lancet,2001,358(9287):1067-1068.
    15.Carrie F,Lynne Wi,Jonathan H,et al.Contribution of bone marrow-derived cells to skin:collagen deposition and wound repair.Stem Cells,2004,22(5):812-822
    16.孙晓艳,安靓.神经中间丝蛋白Nestin在胎肝中的表达.第一军医大学学报,2004,24(2):207-209.
    1.Jones PH,Watt FM.Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression.Cell,1993,73(4):713-724.
    2.Watt FM.Epidermal stem cells:markers,patterning and the control of stem cell fate.Philos Trans R Soc Lond B Biol Sci,1998,353(1370):831-837.
    3.Michel M,Torok N,Godbout MJ,et al.Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro:keratin 19 expressing cells are differentially localized in function of anatomic sites,and their number varies with donor age and culture stage.J Cell Sci,1996,109(Pt5):1017-1028.
    4.Kurata S,Okuyama T,Osada M,et al.p51/p63 Controls Subunit α3 of the Major Epidermis Integrin Anchoring the Stem Cells to the Niche.J Biol Chem,2004,279(48):50069-50077.
    5.Moore KA,Lemischka IR.Stem Cells and Their Niches.Science,2006,311(5769):1880-1885.
    6.Potten CS and Loeffler M.Stem cells:attributes,cycles,spirals,pitfalls and uncertainties.Lessons for and from the crypt.Development,1990,110(4):1001-1020.
    7.李海红,付小兵,周岗,等.细胞角蛋白在皮肤中的表达.中华实验外科杂志,2005,22(7):834.
    8.Wang Y,Zhang Y,Zeng Y,et al.Patterns of nestin expression in human skin.Cell Biol Int,2006,30(2):144-148.
    9.Tani H,Morris RJ,Kaur P.Enrichment for murine keratinocyte stem cells based on cell surface phenotype.Proc Natl Acad Sci,2000,97(25):13473-13475.
    10.Javier AF,Bata-Csorgo Z,Ellis CN,et al.Rapamycin(Sirolimus)Inhibits Proliferating Cell Nuclear Antigen Expression and Blocks Cell Cycle in the G1Phase in Human Keratinocyte Stem Cells.J Clin Invest,1997,99(9):2094-2099.
    11.Cotsarelis G,Sun TT,Lavker RM.Label-retaining cells reside in the bulge area of pilosebaceous unit:implications for follicular stem cells,hair cycle,and skin carcinogenesis.Cell,1990,61(7):1329-1337.
    12.Taylor G,Lehrer MS,Jensen PJ,et al.Involvement of follicular stem cells in forming not only the follicle but also the epidermis.Cell,2000,102(4):451-461.
    13.Oshima H,Rochat A,Kedzia C,et al.Morphogenesis and renewal of hair follicles from adult multipotent stem cells.Cell,2001,104(2):233-245.
    14.Commo S,Gaillard O,Bernard BA.The human hair follicle contains two distinct K19 positive compartments in the outer root sheath:a unifying hypothesis for stem cell reservoir?.Differentiation,2000,66(4-5):157-164.
    15.Endo K,Nakamura T,Kawasaki S,et al.Porcine comeal epithelial cells consist of high- and low-integrin betal-expressing populations.Ophthalmol Vis Sci,2004,45(11):3951-3954.
    1. Kurman RJ, Shih IeM. Pathogenesis of ovarian cancer: lessons from morphology and molecular biology and their clinical implications. Int J Gynecol Pathol, 2008, 27(2): 151-160.
    
    2. Zynger DL, Dimov ND, Ho LC, et al. Differential expression of neural-cadherin in pulmonary epithelial tumours. Histopathology, 2008,52(3):348-354.
    
    3. Harrisingh MC, Perez-Nadales E, Parkinson DB, et al. The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. EMBO J. 2004,4;23(15):3061-3071.
    
    4. Zhuang S, Yan Y, Han J, et al. p38 kinase-mediated transactivation of the epidermal growth factor receptor is required for dedifferentiation of renal epithelial cells after oxidant injury. J. Biol. Chem. 2005, 280(22):21036-21042.
    
    5. Tholpady SS, Aojanepong C, Llull R, et al. The Cellular Plasticity of Human Adipocytes. Ann. Plast. Surg. 2005, 54(6):651-656.
    6. Cibelli J. Development. Is therapeutic cloning dead? Science, 2007,318(5858): 1879-1880.
    7. Oliveri RS. Epigenetic dedifferentiation of somatic cells into pluripotency: cellular alchemy in the age of regenerative medicine? Regen Med, 2007,2(5):795-816.
    
    8. Odelberg SJ. Inducing cellular dedifferentiation: a potential method for enhancing endogenous regeneration in mammals. Semin Cell Dev Biol. 2002,13(5):335-343.
    
    9. Kumar A, Velloso CP, Imokawa Y, et al. Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema. Dev Biol. 2000, 218(2): 125-136.
    
    10. San Miguel-Ruiz JE, Garcia-Arraras JE. Common cellular events occur during wound healing and organ regeneration in the sea cucumber Holothuria glaberrima. BMC Dev Biol, 2007,18(7)115.
    11. Fu XB , Sun XQ , Li XK, et al. Dedifferentiation of epidermal cells to stem cells in vivo. Lancet[J], 2001, 358(9287): 1067-1068.
    12. Liang L, Bickenbach JR. Somatic epidermal stem cells can produce multiple cell lineages during development. Stem Cells,2002,20(1):21-31.
    13. Mescher AL, Neff AW. Limb regeneration in amphibians: immunological considerations. Scientific World Journal,2006,26(6):1-11.
    14. Tonge DA, Leclere PG. Directed axonal growth towards axolotl limb blastemas in vitro. Neuroscience,2000,100(1):201-211.
    15. Hwang SG, Ryu JH, Kim IC, et al. Wnt-7a causes loss of differentiated phenotype and inhibits apoptosis of articular chondrocytes via different mechanisms. J Biol Chem, 2004, 279(25):26597-26604.
    16. Harrisingh MC, Perez-Nadales E, Parkinson DB, et al. The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. EMBO J, 2004, 23(15): 3061-3071.
    17. Buitrago W, Roop DR. Oct-4: the almighty pouripotent regulator? J Invest Dermatol, 2007,127(2):260-262.
    18. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007,131(5): 861-872.
    19. Darr H, Mayshar Y, Benvenisty N. Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development, 2006,133(6): 1193-1201.
    20. Nakatake Y, Fukui N, Iwamatsu Y, et al. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol, 2006, 26(20):7772-7782.
    21. Agata K, Kobayashi H, Itoh Y, et al. Genetic characterization of the multipotent dedifferentiated state of pigmented epithelial cells in vitro. Development, 1993,118(4): 1025-1030.
    22. Imokawa Y, Brockes JP. Selective activation of thrombin is a critical determinant for vertebrate lens regeneration. Curr Biol, 2003,13(10):877-881.
    23. Kurten RC, Chowdhury P, Sanders RC Jr, et al. Coordinating epidermal growth factor-induced motility promotes efficient wound closure. Am J Physiol Cell Physiol,2005, 288(1):C109-121.
    24. Villanueva S, Cespedes C, Gonzalez A, et al. bFGF induces an earlier expression of nephrogenic proteins after ischemic acute renal failure. Am J Physiol Regul Integr Comp Physiol, 2006 ,291(6): R1677-1687.
    25. Schiller JR, Moore DC, Ehrlich MG. Increased lengthening rate decreases expression of fibroblast growth factor 2, platelet-derived growth factor, vascular endothelial growth factor, and CD31 in a rat model of distraction osteogenesis. J Pediatr Orthop,2007,27(8): 961-968.
    26. Deng T, Huang S, Zhou S, et al. Cartilage regeneration using a novel gelatin-chondroitin-hyaluronan hybrid scaffold containing bFGF-impregnated microspheres. J Microencapsul, 2007,24(2): 163-174.
    27. Wu JC, Huang WC, Tsai YA, et al. Nerve repair using acidic fibroblast growth factor in human cervical spinal cord injury: a preliminary Phase I clinical study. J Neurosurg Spine, 2008,8(3):208-214.
    28. Stocum DL. Amphibian regeneration and stem cells. Curr Top Microbiol Immunol, 2004,280:1-70.
    29. Giampaoli S, Bucci S, Ragghianti M, et al. Expression of FGF2 in the limb blastema of two Salamandridae correlates with their regenerative capability. Proc Biol Sci, 2003,270(1530):2197-2205.
    30. Shi C, Zhu Y, Su Y, Cheng T. Stem cells and their applications in skin-cell therapy. Trends Biotechnol, 2006,24(1):48-52.
    31. Corti S, Locatelli F, Papadimitriou D, et al. Nuclear reprogramming and adult stem cell potential. Histol Histopathol, 2005,20(3):977-986.
    32. Paling NR, Wheadon H, Bone HK, et al. Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. J Biol Chem, 2004, 279(46): 48063-48070.
    33. Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families.Trends Genet, 2004, 20(11):563-569.
    34. Wong JM, Kusdra L, Collins K. Subnuclear shuttling of human telomerase induced by transformation and DNA damage. Nat Cell Biol, 2002,4(9):731-736.
    35. Kurten RC, Chowdhury P, Sanders RC Jr, et al. Coordinating epidermal growth factor-induced motility promotes efficient wound closure. Am J Physiol Cell Physiol. 2005, 288(1):C109-C121.
    36. Chen S, Zhang Q, Wu X, et al. Dedifferentiation of lineage-committed cells by a small molecule. J Am Chem Soc. 2004,126(2):410-411.
    37. Latella L, Sacco A, Pajalunga D, et al. Reconstitution of Cyclin D1-associated kinase activity drives terminally differentiated cells into the cell cycle. Mol Cell Biol. 2001,21(16):5631-5643.
    
    38. Odelberg SJ. Inducing cellular dedifferentiation: a potential method for enhancing endogenous regeneration in mammals. Semin Cell Dev Biol. 2002,13(5):335-343.
    1. Towns CR, Jones DG. Stem cells, embryos, and the environment: a context for both science and ethics. J Med Ethics, 2004, 30: 410-413.
    2. Stenn KS, Cotsarelis G. Bioengineering the hair follicle: fringe benefits of stem cell technology. Curr Opin Biotechnol, 2005,16:493-497.
    3. Moore KA, Lemischka IR. Stem cells and their niches. Science, 2006, 311:1880-1885.
    4. Alonso L, Fuchs E. Stem cells in the skin: waste not, Wnt not. Genes Dev, 2003, 17: 1189-1200.
    5. Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell, 1993,73(4): 713-724.
    6. O'Shaughnessy RF, Christiano AM. Stem cells in the epidermis. Skin Pharmacol Appl Skin Physiol, 2001,14(6): 350-357.
    7. Alonso L, Fuchs E. The hair cycle. J Cell Sci, 2006,119: 391-393.
    8. Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development, 1990,110: 1001-1020.
    9. Potten CS. Cell replacement in epidermis (keratopoiesis) via discrete units of proliferation. Int Rev Cytol, 1981,69: 271-319.
    10. Watt FM. Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos Trans R Soc Lond B Biol Sci, 1998, 353: 831-837.
    11. Fuchs E, Green H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell, 1980,19: 1033-1042.
    12. Michel M, Torok N, Godbout MJ, et al. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J Cell Sci, 1996,109: 1017-1028.
    13. Liu Y, Lyle S, Yang Z, et al. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J Invest Dermatol, 2003, 121: 963-968.
    14. Kopan R, Fuchs E. A new look into an old problem: keratins as tools to investigate determination, morphogenesis, and differentiation in skin. Genes Dev, 1989, 3:1-15.
    15. Byrne C, Tainsky M, Fuchs E. Programming gene expression in developing epidermis. Development, 1994,120: 2369-2383.
    16. Li HH, Fu XB, Zhou G, et al. Expression of keratins in human skin. Zhonghua Shi Yan Wai Ke Za Zhi, 2005,22: 834.
    17. Mills AA, Zheng B, Wang XJ, et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature, 1999, 398: 708-713.
    18. Kurata S, Okuyama T, Osada M, et al. p51/p63 Controls subunit α_3 of the major epidermis integrin anchoring the stem cells to the niche. J Biol Chem, 2004, 279: 50069-50077.
    19. Risek B, Klier FG, Gilula NB. Multiple gap junction genes are utilized during rat skin and hair development. Development, 1992,116: 639-651.
    20. DasGupta R, Fuchs E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development, 1999, 126: 4557-4568.
    21. Laurikkala J, Pispa J, Jung HS, et al. Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar. Development, 2002, 129: 2541-2553.
    22. Zanet J, Pibre S, Jacquet C, et al. Endogenous Myc controls mammalian epidermal cell size, hyperproliferation, endoreplication and stem cell amplification. J Cell Sci, 2005,118:1693-1704.
    23. Kaufman CK, Zhou P, Pasolli HA, et al. GATA-3: an unexpected regulator of cell lineage determination in skin. Genes Dev, 2003,17: 2108-2122.
    24. Li L, Mignone J, Yang M, et al. Nestin expression in hair follicle sheath progenitor cells. PNAS, 2003,100: 9958-9961.
    25. Wang Y, Zhang Y, Zeng Y, et al. Patterns of nestin expression in human skin. Cell Biol Int, 2006, 30: 144-148.
    26. Magnaldo T, Barrandon Y. CD24 (heat stable antigen, nectadrin), a novel keratinocyte differentiation marker, is preferentially expressed in areas of the hair follicle containing the colony-forming cells. J Cell Sci, 1996,109: 3035-3045.
    27. Tani H, Morris RJ, Kaur P. Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci, 2000, 97(25):13473-13475.
    28. Cotsarelis G. Gene expression profiling gets to the root of human hair follicle stem cells. J Clin Invest, 2006,116: 19-22.
    29. Schmidt-Ullrich R, Paus R. Molecular principles of hair follicle induction and morphogenesis. Bioessays, 2005, 27: 247-261.
    30. Tumbar T, Guasch G, Greco V, et al. Defining the epithelial stem cell niche in skin. Science, 2004, 303: 359-363.
    31. Kobayashi K, Nishimura E. Ectopic growth of mouse whiskers from implanted lengths of plucked vibrissa follicles. J Invest Dermatol, 1989, 92: 278-282.
    32. Oshima H, Rochat A, Kedzia C, et al. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell, 2001,104: 233-245.
    33. Taylor G, Lehrer MS, Jensen PJ, et al. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell, 2000,102: 451-461.
    34. Ghazizadeh S, Taichman LB. Organization of stem cells and their progeny in human epidermis. J Invest Dermatol, 2005,124: 367-372.
    35. Javier AF, Bata-Csorgo Z, Ellis CN, et al. Rapamycin (Sirolimus) inhibits proliferating cell nuclear antigen expression and blocks cell cycle in the G_1 phase in human keratinocyte stem cells. J Clin. Invest, 1997, 99:2094-2099.
    36. Tam SW, Theodoras AM, Shay JW, et al. Differential expression and regulation of Cyclin D1 protein in normal and tumor human cells: association with Cdk4 is required for Cyclin Dl function in G1 progression. Oncogene, 1994, 9: 2663-2674.
    37. Chunmeng S, Tianmin C. Skin: a promising reservoir for adult stem cell populations. Med Hypotheses, 2004, 62:683-688.
    38. Gambardella L, Barrandon Y. The multifaceted adult epidermal stem cell. Curr Opin Cell Biol, 2003, 15:771-777.
    39. Morris RJ, Liu Y, Maries L, et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol, 2004, 22:411-417.
    40. Williams DF. To engineer is to create: the link between engineering and regeneration. Trends Biotechnol, 2006, 24:4-8.
    41. Christoph T, Muller-Rover S, Audring H, et al. The human hair follicle immune system: cellular composition and immune privilege. Br J Dermatol, 2000, 142: 862-873.
    42. Ito M, Liu Y, Yang Z, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med, 2005,11: 1351 - 1354.
    43. Badiavas EV, Abedi M, Utmarc JB, et al. Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol, 2003,196: 245-250.
    44. Nakagawa H, Akita S, Fukui M, et al. Human mesenchymal stem cells successfully improve skin-substitute wound healing. Br J Dermatol, 2005,153: 29-36.
    45. Satoh H, Kishi K, Tanaka T, et al. Transplanted mesenchymal stem cells are effective for skin regeneration in acute cutaneous wounds. Cell Transplant, 2004,13: 405-412.
    46. Fathke C, Wilson L, Hutter J, et al. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells, 2004,22: 812-822.
    47. Shi CM, Cheng TM, Su YP, et al. Transplantation of dermal multipotent cells promotes the hematopoietic recovery in sublethally irradiated rats. J Radiat Res (Tokyo), 2004, 45:19-24.
    48. Kawase Y, Yanagi Y, Takato T, et al. Characterization of multipotent adult stem cells from the skin: transforming growth factor-beta (TGF-beta) facilitates cell growth. Exp Cell Res, 2004, 295: 194-203.
    49. Cotsarelis G, Sun TT, Lavker RM.Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 1990, 61: 1329-1337.
    50. Nusse R. WNT targets. Repression and activation. Trends Genet, 1999, 15: 1-3.
    51. Millar SE, Willert K, Salinas PC, et al. WNT signaling in the control of hair growth and structure. Dev Biol, 1999,207: 133-149.
    52. Reddy S, Andl T, Bagasra A, et al. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev, 2001,107: 69-82.
    53. Zhou P, Byrne C, Jacobs J, et al. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev., 1995, 9: 700-713.
    54. Van Genderen C, Okamura RM, Farinas I, et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev, 1994, 8: 2691-2703.
    55. Povelones M, Nusse R. Wnt signalling sees spots. Nat Cell Biol, 2002, 4: E249-250.
    56. Kratochwil K, Dull M, Farinas I, et al. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev, 1996,10:1382-1394.
    57. Jamora C, DasGupta R, Kocieniewski P, et al. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature, 2003, 422: 317-322.
    58. Kobielak K, Pasolli HA, Alonso L, et al. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J Cell Biol, 2003,163: 609-623.
    59. Vats A, Tolley NS, Bishop AE, et al. Embryonic stem cells and tissue engineering: delivering stem cells to the clinic. J R Soc Med, 2005,98: 346-350.
    60. Germain L, Rouabhia M, Guignard R, et al. Improvement of human keratinocyte isolation and culture using thermolysin. Burns, 1993, 19: 99-104.
    61. Papini S, Cecchetti D, Campani D, et al. Isolation and clonal analysis of human epidermal keratinocyte stem cells in long-term culture. Stem Cells, 2003, 21: 481-494.
    62. Pouliot R, Larouche D, Auger FA, et al. Reconstructed human skin produced in vitro and grafted on athymic mice. Transplantation, 2002, 73: 1751-1757.
    63. Roh C, Tao QF, Lyle S. Dermal papilla-induced hair differentiation of adult epithelial stem cells from human skin. Physiol Genomics, 2004,19: 207-217.
    64. Black AF, Berthod F, L'heureux N, et al. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J, 1998, 12: 1331-1340.
    65. Tremblay PL, Hudon V, Berthod F, et al. Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am J Transplant, 2005, 5: 1002-1010.
    66. Berthod F, Germain L, Li H, et al. Collagen fibril network and elastic system remodeling in a reconstructed skin transplanted on nude mice. Matrix Biol, 2001, 20(7): 463-473.
    67. Philp D, Nguyen M, Scheremeta B, et al. Thymosin β_4 increases hair growth by activation of hair follicle stem cells. FASEB J, 2004, 18: 385-387.
    68. Kumamoto T, Shalhevet D, Matsue H, et al. Hair follicles serve as local reservoirs of skin mast cell precursors. Blood, 2003,102: 1654-1660.
    69. Grenier G, Remy-Zolghadri M, Larouche D, et al. Tissue reorganization in response to mechanical load increases functionality. Tissue Eng, 2005, 11: 90-100.
    70. Liu Y, Li JF, Fu XB, et al. Significance and characteristics of p63 and cytokeratin expression during skin expansion. Zhongguo Mei Rong Yi Xue Za Zhi, 2005, 14: 665-667.
    71. Li A, Pouliot N, Redvers R, et al. Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. J Clin Invest, 2004, 113: 390-400.
    72. Hilton L. Stem cells proliferate, regenerate: Neonatal human keratinocyte stem cells show unexpected ability. Dermatology Times, 2004, 25: 43.
    73. Fu XB , Sun XQ , Li XK, et al. Dedifferentiation of epidermal cells to stem cells in vivo. Lancet. 2001, 358: 1067-1068.
    1.Dhouailly D,Olivera-Martinez I,Fliniaux I,et al.Skin field formation: morphogenetic events[J]. Int J Dev Biol, 2004,48(2-3):85-91.
    2. Launay C, Fromentoux V, Shi DL, et al. A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers[J]. Development, 1996,122(3):869-880.
    3. Fuchs E.Scratching the surface of skin development[J]. Nature,2007, 445(7130):834-842.
    4. Alonso L, Fuchs E. Stem cells in the skin: waste not, Wnt not[J]. Genes Dev, 2003, 17(10): 1189-200.
    5. Ellis T, Gambardella L, Horcher M, et al. The transcriptional repressor CDP (Cutl1) is essential for epithelial cell differentiation of the lung and the hair follicle [J]. Genes Dev, 2001,15(17);2307-2319.
    6. Paus R, Muller-Rover S, Van Der Veen C, et al. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Invest Dermatol, 1999,113(4):523-532.
    7. Iida M, Ihara S, Matsuzaki T.Hair cycle-dependent changes of alkaline phosphatase activity in the mesenchyme and epithelium in mouse vibrissal follicles [J] .Dev Growth Differ, 2007,49(3): 185-195.
    8. Kumar A, Velloso CP, Imokawa Y, et al. Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema[J]. Dev Biol, 2000,218(2): 125-136.
    9. Combates NJ, Chuong CM, Stenn KS, et al. Expression of two Ig family adhesion molecules in the murine hair cycle: DCC in the bulge epithelia and NCAM in the follicular papilla[J]. J Invest Dermatol, 1997,109(5):672-678.
    10. Hardy MH.The secret life of the hair follicle[J].Trends Genet, 1992 8(2):55-61.
    11. Kobayashi K, Nishimura E. Ectopic growth of mouse whiskers from implanted lengths of plucked vibrissa follicles[J]. J Invest Dermatol, 1989, 92(2):278-282.
    12. Weinberg WC, Goodman LV, George C, et al. Reconstitution of hair follicle development in vivo: determination of follicle formation, hair growth, and hair quality by dermal cells. J Invest Dermatol, 1993, 100(3):229-236.
    13. Lichti U, Weinberg WC, Goodman L, et al. In vivo regulation of murine hair growth: insights from grafting defined cell populations onto nude mice. J Invest Dermatol, 1993,101(1 Suppl):124S-129S.
    14. Iida M, Ihara S, Matsuzaki T. Follicular epithelia and dermal papillae of mouse vibrissal follicles qualitatively change their hair-forming ability during anagen. Differentiation, 2007,75(5):371-381.
    15. Osada A, Iwabuchi T, Kishimoto J, et al. Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction. Tissue Eng, 2007, 13(5): 975-982.
    16. Ito M, Sato Y. Dynamic ultrastructural changes of the connective tissue sheath of human hair follicles during hair cycle. Arch Dermatol Res, 1990,282(7):434-441.
    17. Stenn KS, Paus R. What controls hair follicle cycling? Exp Dermatol, 1999,8(4): 229-236.
    18. Chase HB. Growth of hair. Physiol Rev, 1954,34(1): 113-126.
    19. Paus R, Stenn KS, Link RE. Telogen skin contains an inhibitor of hair growth. Br J Dermatol, 1990,122(6): 777-784.
    20. Botchkarev VA, Botchkareva NV, Roth W, et al. Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nature Cell Biol, 1999, 1(3): 157-163.
    21. Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 1990, 61(7): 1329-1337.
    22. Sun TT, Cotsarelis G, Lavker RM. Hair follicular stem cells: the bulge-activation hypothesis. J Invest Dermatol, 1991, 96(5):77S-78S.
    23. Fuchs E, Merrill BJ, Jamora C, et al. At the roots of a never-ending cycle. Dev Cell, 2001, 1(1):13-25.
    24. Taylor G, Lehrer MS, Jensen PJ, et al. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell, 2000,102(4):451-461.
    25. Oshima H, Rochat A, Kedzia C, et al. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell, 2001,104(2):233-245.
    26. Hardy MH. The secret life of the hair follicle. Trends Genet, 1992, 8(2):55-61.
    27. Lindner G, Botchkarev VA, Botchkareva NV, et al. Analysis of apoptosis during hair follicle regression (catagen). Am J Pathol, 1997, 51(6): 1505-1509.
    28. Alonso L, Fuchs E. The hair cycle. J Cell Sci, 2006,119(Pt 3):391-393.
    29. Panteleyev AA, Jahoda CA, Christiano AM. Hair follicle predetermination. J Cell Sci, 2001,114(Pt 19):3419-3431.
    30. Jindo T, Tsuboi R, Takamori K, et al. Local injection of hepatocyte growth factor/scatter factor (HGF/SF) alters cyclic growth of murine hair follicles. J Invest Dermatol, 1998,110(4):338-342.
    31. Lindner G, Menrad A, Gherardi E, et al. Involvement of hepatocyte growth factor/scatter factor and met receptor signaling in hair follicle morphogenesis and cycling. FASEB J, 2000,14(2):319-332.
    32. Paus R, Maurer M, Slominski A, et al. Mast cell involvement in murine hair growth. Dev Biol, 1994,163(1):230-240.
    33. Philp D, Nguyen M, Scheremeta B, St-Surin S, Villa AM, Orgel A, Kleinman HK, Elkin M. Thymosin beta4 increases hair growth by activation of hair follicle stem cells. FASEB J, 2004,18(2):385-387.
    34. Muller-Rover S, Peters EJ, Botchkarev VA, et al. Distinct patterns of NCAM expression are associated with defined stages of murine hair follicle morphogenesis and regression. J Histochem Cytochem, 1998,46(12):1401-1410.
    35. Wilson C, Cotsarelis G, Wei ZG, et al. Cells within the bulge region of mouse hair follicle transiently proliferate during early anagen: heterogeneity and functional differences of various hair cycles. Differentiation, 1994, 55(2): 127-136.
    36. Muller-Rover S, Bulfone-Paus S, Handjiski B, et al. Intercellular adhesion molecule-1 and hair follicle regression. J Histochem Cytochem, 2000,48(4):557-568.
    37. Sato N, Leopold PL, Crystal RG. Induction of the hair growth phase in postnatal mice by localized transient expression of Sonic hedgehog. J Clin Invest, 1999, 104(7):855-864.
    38. Zhou P, Byrne C, Jacobs J, et al. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev, 1995, 9(6):700-713.
    39. DasGupta R, Fuchs E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development, 1999, 126(20):4557-4568.
    40. Tsuboi R, Yamazaki M, Matsuda Y, et al. Antisense oligonucleotide targeting fibroblast growth factor receptor (FGFR)-1 stimulates cellular activity of hair follicles in an in vitro organ culture system. Int J Dermatol, 2007,46(3): 259-263.
    41. Mak KK, Chan SY. Epidermal growth factor as a biologic switch in hair growth cycle. J Biol Chem, 2003,278(28):26120-26126.
    42. Weger N, Schlake T. Igf-I signalling controls the hair growth cycle and the differentiation of hair shafts. J Invest Dermatol, 2005,125(5):873-882.
    43. Sowden HM, Karoo RO, Tobin DJ. Transforming growth factor-beta receptorII is preferentially expressed in the companion layer of the human anagen hair follicle. Br J Dermatol, 2007, 157(1):161-164.
    44. Darnell JE Jr. STATs and gene regulation. Science, 1997,277(5332):1630-1635.
    45. Sano S, Kira M, Takagi S, et al. Two distinct signaling pathways in hair cycle induction: Stat3-dependent and -independent pathways. PNAS, 2000,97(25): 13824-13829.
    46. Alonso L, Fuchs E. Stem cells of the skin epithelium. PNAS,2003,100 (Suppl) 1:11830-11835.
    47. Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell, 1993,73(4):713-724.
    48. Christiano AM. Epithelial stem cells: stepping out of their niche. Cell,2004,118(5):530-532.
    49. Tumbar T, Guasch G, Greco V, et al. Defining the epithelial stem cell niche in skin. Science, 2004,303(5656):359-363.
    50. Steingrimsson E, Copeland NG, Jenkins NA. Melanocyte stem cell maintenance and hair graying. Cell,2005,121(1):9-12.
    51. Amoh Y, Li L, Katsuoka K, et al. Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. PNAS, 2005,102(15): 5530-5534.
    52. Amoh Y, Li L, Yang M, et al. Hair follicle-derived blood vessels vascularize tumors in skin and are inhibited by Doxorubicin. Cancer Res, 2005, 65(6):2337-2343.
    53. Amoh Y, Yang M, Li L, et al. Nestin-linked green fluorescent protein transgenic nude mouse for imaging human tumor angiogenesis. Cancer Res, 2005, 65(12):5352-5357.
    
    54. Paus R, Cotsarelis G. The biology of hair follicles. N Engl J Med, 1999,341(7):491-497.
    55. Reynolds AJ, Lawrence C, Cserhalmi-Friedman PB, et al. Trans-gender induction of hair follicles. Nature, 1999, 402(6757):33-34.
    56. Reynolds AJ, Jahoda CA. Hair matrix germinative epidermal cells confer follicle-inducing capabilities on dermal sheath and high passage papilla cells. Development, 1996,122(10): 3085-3094.
    57. Gharzi A, Reynolds AJ, Jahoda CA. Plasticity of hair follicle dermal cells in wound healing and induction. Exp Dermatol, 2003,12(2): 126-136.
    58. Watt FM, Lo Celso C, Silva-Vargas V. Epidermal stem cells: an update. Curr Opin Genet Dev. 2006,16(5):518-524.
    59. Blanpain C, Lowry WE, Geoghegan A, et al. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell, 2004,118(5): 635-648.
    60. Watt FM, Kubler MD, Hotchin NA, et al. Regulation of keratinocyte terminal differentiation by integrin-extracellular matrix interactions. J Cell Sci, 1993,106 (Ptl):175-182.
    61. Li A, Simmons PJ, Kaur P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. PNAS, 1998,95(7):3902-3907.
    62. Raghavan S, Bauer C, Mundschau G, et al. Conditional ablation of betal integrin in skin. Severe defects in epidermal proliferation, basement membrane formation, and hair follicle invagination. J Cell Biol, 2000,150(5):1149-1160.
    63. Grose R, Flutter C, Bloch W, et al. A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development, 2002, 129(9):2303-2315.
    64. Bagutti C, Flutter C, Chiquet-Ehrismann R, et al. Dermal fibroblast-derived growth factors restore the ability of beta(1) integrin-deficient embryonal stem cells to differentiate into keratinocytes. Dev Biol, 2001, 231(2):321-333.
    65. Ivanova NB, Dimos JT, Schaniel C, et al. A stem cell molecular signature. Science, 2002, 298(5593):601-604.
    66. Ramalho-Santos M, Yoon S, Matsuzaki Y, et al. Sternness: transcriptional profiling of embryonic and adult stem cells. Science, 2002,298(5593):597-600.
    67. Brakebusch C, Grose R, Quondamatteo F, et al. Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes. EMBO J, 2000,19(15):3990-4003.
    68. Tani H, Morris RJ, Kaur P. Enrichment for murine keratinocyte stem cells based on cell surface phenotype. PNAS, 2000,97(25):13473-13475.
    69. Michel M, Torok N, Godbout MJ, et al. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J Cell Sci, 1996,109(Pt5):1017-1028.
    70. George Cotsarelis. Gene expression profiling gets to the root of human hair follicle stem cells. The Journal of Clinical investigation. J Clin Invest, 2006, 116(1):19-22.
    71. Kopan R, Fuchs E. A new look into an old problem: keratins as tools to investigate determination, morphogenesis, and differentiation in skin. Genes Dev, 1989,3(1): 1-15.
    72. Byrne C, Tainsky M, Fuchs E. Programming gene expression in developing epidermis. Development, 1994,120(9): 2369-2383.
    73. Li HH, Fu XB, Zhou G, et al. Expression of keratins in human skin. Zhonghua Shi Yan Wai Ke Za Zhi, 2005, 22: 834.
    74. Pellegrini G, Dellambra E, Golisano O, et al. p63 identifies keratinocyte stem cells. PNAS, 2001, 98(6):3156-3161.
    75. Jensen KB, Watt FM. Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrigl is a regulator of stem cell quiescence. PNAS, 2006, 103(32): 11958-11963.
    76. Wan H, Stone MG, Simpson C, et al. Desmosomal proteins, including desmoglein 3, serve as novel negative markers for epidermal stem cell-containing population of keratinocytes. J Cell Sci, 2003,116(Pt20):4239 -4248.
    77. Matic M, Evans WH, Brink PR, et al. Epidermal stem cells do not communicate through gap junctions.J Invest Dermatol, 2002,118(1): 110-116.
    78. Fortunel NO, Hatzfeld JA, Rosemary PA, et al. Long-term expansion of human functional epidermal precursor cells: promotion of extensive amplification by low TGF-betal concentrations. J Cell Sci, 2003,116(Pt19):4043-4052.
    79. Mimeault M, Bonenfant D, Batra SK. New advances on the functions of epidermal growth factor receptor and ceramides in skin cell differentiation, disorders and cancers. Skin Pharmacol Physiol, 2004,17(4): 153-166.
    80. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature, 2004, 432(7015):324 -331.
    81. Levy V, Lindon C, Harfe BD, et al. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev Cell, 2005, 9(6): 855-861.
    82. Sarin KY, Cheung P, Gilison D, et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature, 2005,436(7053): 1048 -1052.
    83. Dotto GP, Cotsarelis G. Developmental biology. Racl up for epidermal stem cells.Science, 2005,309(5736):890-891.
    84. Zanet J, Pibre S, Jacquet C, et al. Endogenous Myc controls mammalian epidermal cell size, hyperproliferation, endoreplication and stem cell amplification. J Cell Sci, 2005, 118(Pt8):1693-1704.
    85. Lemaitre G, Gonnet F, Vaigot P, et al. CD98, a novel marker of transient amplifying human keratinocytes. Proteomics, 2005,5(14):3637- 3645.
    86. Javier AF, Bata-Csorgo Z, Ellis CN, et al. Rapamycin (Sirolimus) inhibits proliferating cell nuclear antigen expression and blocks cell cycle in the Gl phase in human keratinocyte stem cells. J Clin. Invest, 1997, 99(9): 2094-2099.
    87. Tam SW, Theodoras AM, Shay JW, et al. Differential expression and regulation of Cyclin Dl protein in normal and tumor human cells: association with Cdk4 is required for Cyclin Dl function in Gl progression. Oncogene, 1994, 9(9):2663-2674.
    88. So PL, Epstein EH Jr. Adult stem cells: capturing youth from a bulge? Trends Biotechnol, 2004,22(10):493-496.
    89. Morasso MI, Tomic-Canic M. Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. Biol Cell, 2005, 97(3):173-183.
    90. Christiano AM. Epithelial stem cells: stepping out of their niche. Cell, 2004, 118(5):530-532.
    91. Germain L, Rouabhia M, Guignard R, et al. Improvement of human keratinocyte isolation and culture using thermolysin. Burns, 1993,19(2):99-104.
    92. Papini S, Cecchetti D, Campani D, et al. Isolation and clonal analysis of human epidermal keratinocyte stem cells in long-term culture. Stem Cells, 2003, 21(4): 481-494.
    93. Fuchs E. Scratching the surface of skin development. Nature, 2007, 445(7130):834-842.
    94. Christoph T, Muller-Rover S, Audring H, Tet al. The human hair follicle immune system: cellular composition and immune privilege. Br. J. Dermatol, 2000, 142(5), 862-873.
    95. Reynolds AJ, Lawrence C, Cserhalmi-Friedman PB, et al.Trans-gender induction of hair follicles. Nature, 1999,402 (6757): 33-34.
    96. Pouliot R, Larouche D, Auger FA, et al. Reconstructed human skin produced in vitro and grafted on athymic mice. Transplantation, 2002, 73(11): 1751 -1757.
    97. Black AF, Berthod F, L'heureux N, et al. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J, 1998, 12(13):1331 -1340.
    98. Tremblay PL, Hudon V, Berthod F, et al. Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am J Transplant, 2005, 5(5): 1002-1010.
    99. Berthod F, Germain L, Li H, et al. Collagen fibril network and elastic system remodeling in a reconstructed skin transplanted on nude mice. Matrix Biol, 2001, 20(7): 463-473.
    100. Grenier G, Remy-Zolghadri M, Larouche D, et al. Tissue reorganization in response to mechanical load increases functionality. Tissue Eng, 2005, 11(1-2): 90-100.
    101. Liu Y, Li JF, Fu XB, et al. Significance and characteristics of p63 and cytokeratin expression during skin expansion. Zhongguo Mei Rong Yi Xue Za Zhi, 2005, 14: 665-667.
    102. Liang L, Bickenbach JR. Somatic epidermal stem cells can produce multiple cell lineages during development. Stem Cells, 2002,20(1), 21-31.
    103. Fu XB, Sun XQ, Li XK, et al. Dedifferentiation of epidermal cells to stem cells in vivo. Lancet, 2001, 358(9287): 1067-1068.
    104. Gurtner GC, Callaghan MJ, Longaker MT. Progress and potential for regenerative medicine. Annu Rev Med, 2007, 58:299-312.
    105. Kumar A, Velloso CP, Imokawa Y, et al. Plasticity of retro virus-labelled myotubes in the newt limb regeneration blastema. Dev Biol, 2000,218(2): 125-136.
    106. Harrisingh MC, Perez-Nadales E, Parkinson DB, et al. The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. EMBO J, 2004, 23(15):3061-3071.
    107. Zhuang S, Yan Y, Han J, et al. p38 kinase-mediated transactivation of the epidermal growth factor receptor is required for dedifferentiation of renal epithelial cells after oxidant injury. J Biol Chem, 2005,280(22):21036-21042.
    108. Tholpady SS, Aojanepong C, Llull R, et al.The cellular plasticity of human adipocytes. Ann Plast Surg, 2005, 54(6):651-656.
    109. Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 2001,105(3):369-377.
    110. Chunmeng S, Tianmin C, Yongping S, et al. Effects of dermal multipotent cell transplantation on skin wound healing. J Surg Res, 2004, 121(1):13-19.
    111. Lee AR. Enhancing dermal matrix regeneration and biomechanical properties of 2nd degree-burn wounds by EGF-impregnated collagen sponge dressing. Arch Pharm Res, 2005,28(11): 1311-1316.
    112. Maas-Szabowski N, Starker A, Fusenig NE. Epidermal tissue regeneration and stromal interaction in HaCaT cells is initiated by TGF-alpha. J Cell Sci, 2003,116(Pt 14):2937-2948.
    113. Hopkinson-Woolley J, Hughes D, Gordon S, et al. Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse. J Cell Sci, 1994,107 (Pt5):1159-1167.
    114. Martin P. Wound healing-aiming for perfect skin regeneration. Science, 1997,276 (5309): 75-81.
    115. Shah M, Foreman DM, Ferguson MW. Neutralising antibody to TGF-beta 1, 2 reduces cutaneous scarring in adult rodents. J Cell Sci, 1994,107 (Pt 5):1137-1157.
    116. Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci, 1995,108 (Pt3):985-1002.
    117. Grotendorst GR, Okochi H, Hayashi N. A novel transforming growth factor-B response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ, 1996, 7(4):469-480.
    118. Daniels JT, Schultz GS, Blalock TD, et al. Mediation of transforming growth factor-beta(1)-stimulated matrix contraction by fibroblasts: a role for connective tissue growth factor in contractile scarring. Am J Pathol, 2003, 163(5): 2043-2052.
    119. Grotendorst GR. Connective tissue growth factor: a mediator of TGF -beta action on fibroblasts. Cytokine Growth Factor Rev, 1997, 8(3):171—179.
    120. Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 1995, 81(1):53-62.
    121. Guo L, Degenstein L, Fuchs E. Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev, 1996,10(2):165-175.
    122. Ono I, Tateshita T, Inoue M. Effects of a collagen matrix containing basic fibroblast growth factor on wound contraction. J Biomed Mater Res, 1999,48(5):621-630.
    123. Bastaki M, Nelli EE, Dell'Era P, et al. Basic fibroblast growth factor-induced angiogenic phenotype in mouse endothelium. A study of aortic and microvascular endothelial cell lines. Arterioscler Thromb Vasc Biol, 1997,17(3):454-464.
    124. Pierce GF, Mustoe TA. Pharmacologic enhancement of wound healing. Annu Rev Med. 1995,46:467-81.
    125. Pierce GF, Tarpley JE, Yanagihara D, et al. Platelet-derived growth factor (BB homodimer), transforming growth factor-beta 1, and basic fibroblast growth factor in dermal wound healing. Neovessel and matrix formation and cessation of repair. Am J Pathol, 1992, 140(6): 1375-1388.
    126. Mustoe TA, Tae Ahn S, Tarpley JE, et al. The effect of hypoxia on growth factor actions: differential response of basic fibroblast growth factor and platelet-derived growth factor in an ischemic wound model. Wound Rep Regen, 1994,2(4):277-283.
    127. Robson MC, Phillips LG, Thomason A, et al. Platelet-derived growth factor BB for the treatment of chronic pressure ulcers. Lancet, 1992, 339(8784):23-25.
    128. Mustoe TA, Cutler NR, Allman RM, et al. A phase II study to evaluate recombinant platelet-derived growth factor-BB in the treatment of stage 3 and 4 pressure ulcers. Arch Surg, 1994,129(2):213-219
    129. He XC, Zhang J, Tong WG, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet, 2004, 36(10):1117-1121.
    130. Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 2003,423(6938): 409-414.
    131. Millar SE, Willert K, Salinas PC, et al. WNT signaling in the control of hair growth and structure. Dev Biol, 1999,207(1):133-149.
    132. Reddy S, Andl T, Bagasra A, et al. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev, 2001,107(1-2): 69-82.
    133. Gat U, DasGupta R, Degenstein L, et al. De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell, 1998, 95(5):605-614.
    134. Chan EF, Gat U, McNiff JM, et al. A common human skin tumour is caused by activating mutations in beta-catenin. Nat Genet, 1999, 21(4):410-413.
    135. Huelsken J, Vogel R, Erdmann B, et al. beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell, 2001,105(4):533-545.
    136. Zhu AJ, Watt FM. beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development, 1999, 126(10): 2285-2298.
    137. Lo Celso C, Prowse DM, Watt FM.Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development, 2004, 131(8):1787-1799.
    138. Silva-Vargas V, Lo Celso C, Giangreco A, et al. Beta-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev Cell, 2005, (1):121-131.
    139. Kratochwil K, Dull M, Farinas I, et al. Lefl expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev, 1996, 10(11):1382-1394.
    140. Liu X, Driskell RR, Luo M, et al. Characterization of Lef-1 promoter segments that facilitate inductive developmental expression in skin. J Invest Dermatol, 2004, 123(2):264-274.
    141. Van Mater D, Kolligs FT, Dlugosz AA, et al. Transient activation of beta -catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev, 2003, 17(10):1219-1224.
    142. Merrill BJ, Gat U, DasGupta R, et al. Tcf3 and Lefl regulate lineage differentiation of multipotent stem cells in skin. Genes Dev, 2001, 15(13): 1688-1705.
    143. Arnold I, Watt FM. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr Biol, 2001, 11(8):558-568.
    144. Waikel RL, Kawachi Y, Waikel PA, et al. Deregulated expression of c-Myc depletes epidermal stem cells. Nat Genet, 2001,28(2):165-168.
    145. Frye M, Gardner C, Li ER, et al. Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment. Development, 2003,130(12):2793-2808.
    146. Wilson PA, Hemmati-Brivanlou A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature, 1995, 376(6538):331-333.
    147. Kulessa H, Turk G, Hogan BL. Inhibition of BMP signaling affects growth and differentiation in the anagen hair follicle. EMBO J, 2000,19(24):6664-6674.
    148. Wilson N, Hynd PI, Powell BC. The role of BMP-2 and BMP-4 in follicle initiation and the murine hair cycle. Exp Dermatol, 1999, 8(4):367-368.
    149. Takahashi H, Ikeda T. Transcripts for two members of the transforming growth factor-beta superfamily BMP-3 and BMP-7 are expressed in developing rat embryos. Dev Dyn, 1996,207(4):439-449.
    150. Panchision DM, Pickel JM, Studer L, et al. Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev, 2001, 15(16):2094-2110.
    151. Rizvi AZ, Wong MH. Epithelial Stem Cells and Their Niche: There's No Place Like Home. Stem Cells, 2005.23(2):150-165.
    152. Fuchs E, Raghavan S. Getting under the skin of epidermal morphogenesis. Nat Rev Genet, 2002, 3(3): 199-209.
    153. Blanpain C, Lowry WE, Geoghegan A, et al. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell, 2004, 118(5): 635-648.
    154. Kobielak K, Stokes N, de la Cruz J, et al. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. PNAS, 2007, 104(24):10063-10068.
    155. Andl T, Ahn K, Kairo A, et al. Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development, 2004,131(10):2257-2268.
    156. Jamora C, DasGupta R, Kocieniewski P, et al. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature, 2003, 422(6929):317-322.
    157. Botchkarev VA, Botchkareva NV, Roth W, et al. Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nat Cell Biol, 1999, 1(3): 158-164.
    158. Plikus M, Wang WP, Liu J, et al. Morpho-regulation of ectodermal organs: integument pathology and phenotypic variations in K14-Noggin engineered mice through modulation of bone morphogenic protein pathway. Am J Pathol, 2004, 164(3):1099-1114.
    159. Pearson H. Science of hair: the roots of accomplishment. Nature, 2007, 446(7131):20-21.
    160. Botchkarev VA, Botchkareva NV, Nakamura M, et al. Noggin is required for induction of the hair follicle growth phase in postnatal skin. FASEB J, 2001, 15(12):2205-2214.
    161. Kobielak K, Pasolli HA, Alonso L, et al. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J Cell Biol, 2003,163(3): 609-623.
    162. Parks AL, Stout JR, Shepard SB, et al. Structure-function analysis of delta trafficking, receptor binding and signaling in Drosophila. Genetics, 2006, 174(4): 1947_1961.
    163. Kopan R, Nye JS, Weintraub H. The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD .Development, 1994,120(9):2385-2396.
    164. Kopan R. Notch: a membrane-bound transcription factor.J Cell Sci, 2002, 115(Pt): 1095-1097.
    165. Lowell S, Jones P, Le Roux I, et al. Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr Biol, 2000, 10(9):491-500.
    166. Rangarajan A, Talora C, Okuyama R, et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J, 2001, 20(13):3427-3436.
    167. Estrach S, Ambler CA, Lo Celso C, et al. Jagged 1 is a beta-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development, 2006, 133(22):4427-4438.
    168. Nicolas M, Wolfer A, Raj K, et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet, 2003, 33(3):416-421.
    169. Yamamoto N, Tanigaki K, Han H, et al. Notch/RBP-J signaling regulates epidermis/hair fate determination of hair follicular stem cells. Curr Biol, 2003, 13(4):333-338.
    170. Thelu J, Rossio P, Favier B. Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol, 2002, 2:7.
    171. Adolphe C, Wainwright B. Pathways to improving skin regeneration. Expert Rev Mol Med, 2005,7(20):1-14.
    172. Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 2003,423(6938):409-414.
    173. Devgan V, Mammucari C, Millar SE, et al. p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev, 2005,19(12):1485-1495.
    174. Willert K, Jones KA. Wnt signaling: is the party in the nucleus? Genes Dev, 2006, 20(11):1394-1404.
    175. Vauclair S, Nicolas M, Barrandon Y, et al. Notchl is essential for postnatal hair follicle development and homeostasis. Dev Biol, 2005,284(1):184-193.
    176. Alonso L, Fuchs E. Stem cells in the skin: waste not, Wnt not. Genes Dev, 2003, 17(10): 1189-1200.
    177. Holbro T, Civenni G, Hynes NE. The ErbB receptors and their role in cancer progression. Exp Cell Res, 2003,284(1):99-110.
    178. Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Curr Opin Cell Biol, 1998,10(2):205-219.
    179. Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev, 2004, 68(2):320-44.
    180. Eckert RL, Efimova T, Balasubramanian S, et al. p38 Mitogen-activated protein kinases on the body surface--a function for p38 delta. J Invest Dermatol, 2003, 120(5): 823-828.
    181. Bode AM, Dong Z. Mitogen-activated protein kinase activation in UV-induced signal transduction. Sci STKE, 2003, 2003(167):RE2.
    182. Hildesheim J, Awwad RT, Fornace AJ Jr. p38 Mitogen-activated protein kinase inhibitor protects the epidermis against the acute damaging effects of ultraviolet irradiation by blocking apoptosis and inflammatory responses. J Invest Dermatol, 2004, 122(2):497-502.
    183. Hildesheim J, Bulavin DV, Anver MR, et al. Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res, 2002, 62(24):7305-7315.
    184. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002,298(5600): 1911-1912.
    185. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev, 1999,13(22):2905-2927.
    186. Di-Poi N, Ng CY, Tan NS, Yet al. Epithelium-mesenchyme interactions control the activity of peroxisome proliferator-activated receptor beta/delta during hair follicle development. Mol Cell Biol, 2005,25(5):1696-1712.
    187. Peng XD, Xu PZ, Chen ML, et al. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev, 2003,17(11):1352-1365.
    188. McCormick JA, Feng Y, Dawson K, et al. Targeted disruption of the protein kinase SGK3/CISK impairs postnatal hair follicle development. Mol Biol Cell, 2004, 15(9): 4278-4288.
    189. Alonso L, Okada H, Pasolli HA, et al. Sgk3 links growth factor signaling to maintenance of progenitor cells in the hair follicle. J Cell Biol, 2005,170(4):559-570.
    190. Yamaguchi K, Nagai S, Ninomiya-Tsuji J, et al. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J, 1999, 18(1):179-187.
    191. Ishitani T, Ninomiya-Tsuji J, Nagai S, et al. The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature, 1999, 399(6738):798-802.
    192. Kimura N, Matsuo R, Shibuya H, et al. BMP2-induced apoptosis is mediated by activation of the TAKl-p38 kinase pathway that is negatively regulated by Smad6. J Biol Chem, 2000, 275(23): 17647-17652.
    193. Tsukui T, Capdevila J, Tamura K, et al. Multiple left-right asymmetry defects in Shh(-/-) mutant mice unveil a convergence of the shh and retinoic acid pathways in the control of Lefty-1. PNAS, 1999, 96(20):11376-11381.
    194. Zhu G, Mehler MF, Zhao J, Yet al. Sonic hedgehog and BMP2 exert opposing actions on proliferation and differentiation of embryonic neural progenitor cells. Dev Biol, 1999,215(1):118-129.
    195. Wang LC, Liu ZY, Gambardella L, et al. Regular articles: conditional disruption of hedgehog signaling pathway defines its critical role in hair development and regeneration. J Invest Dermatol, 2000,114(5):901-908.
    196. Chiang C, Swan RZ, Grachtchouk M, et al. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol, 1999, 205(1):1-9.
    197. Mill P, Mo R, Fu H, et al. Sonic hedgehog dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev, 2003,17(2):282-294.
    198. Allen M, Grachtchouk M, Sheng H, et al. Hedgehog signaling regulates sebaceous gland development. Am J Pathol, 2003,163(6):2173-2178.
    199. Adolphe C, Narang M, Ellis T, et al. An in vivo comparative study of sonic, desert and Indian hedgehog reveals that hedgehog pathway activity regulates epidermal stem cell homeostasis. Development, 2004,131(20):5009-5019.
    200. Williams JA, Guicherit OM, Zaharian BI, et al. Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions. PNAS, 2003,100(8): 4616-4621.
    201. Xie J, Murone M, Luoh SM, et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature, 1998, 391(6662):90-92.
    202. Gailani MR, Stahle-Backdahl M, Leffell DJ, et al. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet, 1996, 14(1):78-81.
    203. Hahn H, Wicking C, Zaphiropoulous PG, et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell, 1996, 85(6):841-851.
    204. Hutchin ME, Kariapper MS, Grachtchouk M, et al. Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival: conditional skin tumorigenesis recapitulates the hair growth cycle.Genes Dev, 2005,19(2):214-223.
    205. Van den Brink GR, Bleuming SA, Hardwick JC, et al. Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet, 2004, 36(3): 277-282.
    206. Niemann C, Unden AB, Lyle S, et al. Indian hedgehog and beta-catenin signaling: role in the sebaceous lineage of normal and neoplastic mammalian epidermis. PNAS, 2003,100 (Suppl) 1:11873-11880.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700